Skip to main content
Log in

Changes in molecular ordering associated with alkali treatment and vacuum drying of cellulose

  • Research Papers
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Carbon-13 NMR methods were used to monitor changes in the proportions of crystalline and non-crystalline cellulose, and the exposure of chains on crystallite surfaces, in samples of alkali-treated kraft pulp and regenerated cellulose. A large increase in the amount of disorderd cellulose, as a result of conversion to cellulose II, is the major effect of alkali treatment with kraft pulp. Removal of small crystallites is the major effect with regenerated cellulose. Samples were examined never-dried, or were vacuum-dried prior to remoistening for characterization. Changes in molecular ordering consistent with pore collapse and coalescence of crystallite surfaces accompanied the removal of water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allan, G. G., Ko, Y. C. and Ritzenthaler, P. (1991) The microporosity of pulp. The nature of the pore size distribution.Tappi 74, 205–212.

    Google Scholar 

  • Allan, G. G., Caroll, J. P., Negri, A. R., Raghuraman, M., Ritzenthaler, P. and Yahiaoui, A. (1992) The microporosity of pulp. The precipitation of inorganic fillers within the micropores of the cell wall.Tappi 75, 175–178.

    Google Scholar 

  • Atalla, R. H. and VanderHart, D. L. (1984) Native cellulose: a composite of two distinct crystalline forms.Science 223, 283–285.

    Google Scholar 

  • Atalla, R. H., Gast, J. C., Sindorf, D. W., Bartuska, V. J. and Maciel, G. E. (1980)13C NMR spectra of cellulose polymorphs.Journal of the American Chemical Society 102, 3249–3251.

    Google Scholar 

  • Belton, P. S., Tanner, S. F., Cartier, N. and Chanzy, H. (1989) High-resolution solid-state13C nuclear magnetic resonance spectroscopy of tunicin, an animal cellulose.Macromolecules 22, 1615–1617.

    Google Scholar 

  • Brazhnik, L. G., Zhbankov, R. G., Tsetsokho, T. A. and Shishko, A. M., (1990) Investigating the system of hydrogen bonds in ordered regions of native cellulose during its transition to regenerated cellulose.Zhurnal Prikladnoi Spektroskopii 53, 633–637.

    Google Scholar 

  • Cael, J. J., Kwoh, D. L. W., Bhattacharjee, S. S. and Patt, S. L. (1985) Cellulose crystallites: a perspective from solid-state13C NMR.Macromolecules 18, 819–821.

    Google Scholar 

  • Debzi, E. M., Chanzy, H., Sugiyama, J., Tekely, P. and Excoffier, G. (1991) The Iα→Iβ tranformation of highly crystalline cellulose by annealing in various mediums.Macromolecules 24, 6816–6822.

    Google Scholar 

  • Ferrige, A. G. and Lindon, J. C. (1978) Resolution enhancement in FT NMR through the use of a double exponential function.Journal of Magnetic Resonance 31, 337–340.

    Google Scholar 

  • Ferrus, R. and Pages, P. (1977) Water retention value and degree of crystallinity by infrared absorption spectroscopy in caustic-soda-treated cotton.Cellulose Chemistry and Technology 11, 633–637.

    Google Scholar 

  • Hearle, J. W. S. (1958) A fringed fibril theory of structure in crystalline polymers.Journal of Polymer Science 28, 432–435.

    Google Scholar 

  • Horii, F., Hirai A. and Kitamaru, R. (1983) Solid-state13C-NMR study of conformations of oligosaccharides and cellulose. Conformation of CH2OH group about the exo-cyclic C-C bond.Polymer Bulletin (Berlin)10, 357–361.

    Google Scholar 

  • Ioelovitch, M. Ya. (1990) Crystalline structure of alkali cellulose and its effect on the process of viscose formation.Khimiya Drevesiny (2), 8–15.

    Google Scholar 

  • Ioelovitch, M. Ya. and Veveris, G. (1984) Structural changes in cellulose in the presence of aqueous solutions of alkalies.Khimiya Drevesiny (6), 36–41.

    Google Scholar 

  • Isogai, A., Usuda, M., Kato, T., Uryu, T. and Atalla, R. H. (1989) Solid-state CP/MAS13C NMR study of cellulose polymorphs.Macromolecules 22, 3168–3172.

    Google Scholar 

  • Kamide, K., Okajima, K. and Kowsaka, K. (1992) Dissolution of natural cellulose into aqueous akali solution: role of super-molecular structure of cellulose.Polymer Journal 24, 71–86.

    Google Scholar 

  • Kamide, K., Okajima, K., Kowsaka K. and Matsui, T. (1985) CP/MAS13C NMR spectra of cellulose solids: an explanation by the intramolecular hydrogen bond concept.Polymer Journal 17, 701–706.

    Google Scholar 

  • Krässig, H. (1984) Struktur und reaktivität von cellulosefasern.Das Papier 38, 571–582.

    Google Scholar 

  • le Maire, M., Viel, A. and Moller, J. V. (1989) Size exclusion chromatography and universal calibration of gel columns.Analytical Biochemistry 177, 50–56.

    Google Scholar 

  • Lindström, T. and Carlsson, G. (1982) The effect of carboxyl groups and their ionic form during drying on the hornification of cellulose fibers.Svensk Papperstidning 85, R146–151.

    Google Scholar 

  • Newman, R. H. and Hemmingson, J. A. (1990) Determination of the degree of cellulose crystallinity in wood by carbon-13 nuclear magnetic resonance spectroscopy.Holzforschung 44, 351–355.

    Google Scholar 

  • Newman, R. H., Hemmingson, J. A. and Suckling, I. D. (1993) Carbon-13 nuclear magnetic resonance studies of kraft pulping.Holzforschung 47, 234–238.

    Google Scholar 

  • Rowland, S. P. and Howley, P.S. (1988) Structure in ‘amorphous regions’, accessible segments of fibrils, of the cotton fiber.Textile Research Journal 58, 96–101.

    Google Scholar 

  • Rydholm, S. A. (1965)Pulping Processes. New York: Interscience (John Wiley), pp. 136, 144, 1166.

    Google Scholar 

  • Štamberg, J. (1988) Bead cellulose.Separation and Purification Methods 17, 155–183.

    Google Scholar 

  • Stone, J. E. and Scallan, A. M. (1967) The effect of component removal upon the porous structure of the cell wall of wood. II. Swelling in water and the fiber saturation point.Tappi 50, 496–501.

    Google Scholar 

  • Stone, J. E., Scallan, A. M. and Ahlgren, P. A. V. (1971) The ultrastructural distribution of lignin in tracheid cell walls.Tappi 54, 1527–1530.

    Google Scholar 

  • VanderHart, D. L. and Atalla, R. H. (1984) Studies of microstructure in native celluloses using solid-state13C NMR.Macromolecules 17, 1465–1472.

    Google Scholar 

  • Yokota, H., Sei, T., Horii, F. and Kitamaru, R. (1990)13C CP/MAS NMR study on alkali cellulose.Journal of Applied Polymer Science 41, 783–791.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hemmingson, J.A., Newman, R.H. Changes in molecular ordering associated with alkali treatment and vacuum drying of cellulose. Cellulose 2, 71–82 (1995). https://doi.org/10.1007/BF00812773

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00812773

Keywords

Navigation