Skip to main content

Brain Protection in Neuropsychiatric Disorders: Past, Present and Future Challenges

  • Chapter
  • First Online:
Brain Protection in Schizophrenia, Mood and Cognitive Disorders

Abstract

Brain- or neuroprotection is any therapy that prevents, retards, or reverses neuronal cell death resulting from neurodegenerative processes. In the past neuroprotection has been an active field of research in medical areas ranging diversely from neurology through cardiology to ophthalmology. However, it has only been in recent years that the psychiatric community began to “sit up and take notice” − be it due to improved technological imaging capabilities or because of the growing dissatisfaction with current pharmacological treatments (particularly in schizophrenia) regarding negative and cognitive symptom domains, second generation antipsychotics included. Mounting evidence indicates that neuropsychiatric disorders such as Parkinson’s disease, amyotrophic lateral sclerosis, multiple sclerosis, epilepsy, schizophrenia, mood and cognitive disorders all have a neurodegenerative component proposed to be due to various mechanisms including oxidative stress, mitochondrial dysfunction, excitotoxicity, myelin dysfunction and apoptosis to name just a few. New and improved imaging techniques combined with advanced cognitive testing continue to help us assess this degenerative component. However, despite considerable research effort, clinical trials in search of an agent that can effectively protect the brain of patients with schizophrenia, mood and cognitive disorders have been largely disappointing as of yet. Thus, it would seem that the continuing search for neuroprotective factors in psychiatry would be especially pertinent for finding novel treatments and augmentation strategies − not only for treating active symptoms, but also for slowing down disease progression and possibly even providing primary prevention in recognized prodromal states. As of now several drugs, hormones, neurosteroids, vitamins as well as various other substances have been studied regarding their neuroprotective properties in psychiatric disorders, with variable amounts of success. Other neuroprotective approaches being studied include the utilization of nanotechnological scientific advances as well as neuromodulatory techniques (such as transcranial magnetic stimulation, vagal nerve stimulation and deep brain stimulation).

In this chapter we will review the trends in psychiatric neuroprotection in the past and the present in addition to raising questions for future directions and challenges. The present overview will cover the evidence concerning the different theoretical frameworks regarding the basis of psychiatric neuropathology and specifically their applicability to the field of neuroprotection. The different classification possibilities of neuroprotective candidates are also discussed. Finally, we will propose using a separate term in an attempt to differentiate psychiatric neuroprotection from other forms of neuroprotection − “psychoprotection”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    It is not in the scope of this introductory chapter to go into detailed discussion about each and every agent − that’s what the rest of this book is for. The reader is advised to refer to the other relevant chapters as well as the references provided with each agent.

Abbreviations

NMDA:

N-methyl-D-aspartic acid

AMPA:

alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

PKC:

Protein kinase C

CNS:

central nervous system

DHEA:

dehydroepiandrosterone

EPO:

erythropoietin

GABA:

gamma-aminobutyric acid;

CRH:

cortisol releasing hormone

HPA:

hypothalamic- pituitary-adrenal axis

AChE:

acetylcholinesterase

EPS:

extrapyramidal symptoms

fMRI:

functional magnetic resonance imaging

DTI:

diffusion tensor imaging

VNS:

vagal nerve stimulation

TMS:

transcranial magnetic stimulation

DBS:

deep brain stimulation

DCM:

direct causal modeling

ALS:

amyotrophic lateral sclerosis

MS:

multiple sclerosis

References

  1. Barkana Y, Belkin M. Neuroprotection in ophthalmology: a review. Brain Res Bull 2004 February 15;62:447–453

    Article  PubMed  CAS  Google Scholar 

  2. Ehrenreich H, Siren AL. Neuroprotection – what does it mean? – What means do we have? Eur Arch Psychiatry Clin Neurosci 2001 August; 251:149–151

    Article  CAS  Google Scholar 

  3. Selling The Promise Of Youth. BusinessWeek . 3-20-2009. McGraw-Hill Companies Inc.

    Google Scholar 

  4. Levin LA, Peeples P. History of neuroprotection and rationale as a therapy for glaucoma. Am J Manag Care 2008 February; 14:S11–S14

    PubMed  Google Scholar 

  5. Iuvone T, Esposito G, Esposito R et al. Neuroprotective effect of cannabidiol, a non-psychoactive component from Cannabis sativa, on beta-amyloid-induced toxicity in PC12 cells. J Neurochem 2004 April; 89:134–141

    Article  PubMed  CAS  Google Scholar 

  6. Weinreb O, Mandel S, Amit T et al. Neurological mechanisms of green tea polyphenols in Alzheimer’s and Parkinson’s diseases. J Nutr Biochem 2004 September; 15:506–516

    Article  PubMed  CAS  Google Scholar 

  7. Kraepelin E, Robertson GM. Dementia praecox and paraphrenia. Edinburgh: Livingstone; 1919

    Google Scholar 

  8. Ritsner MS and Susser E. Molecular genetics of schizophrenia: focus on symptom dimensions. In: Ritsner MS (ed) The Handbook of Neuropsychiatric Biomarkers, Endophenotypes, and Genes, Volume 4: Molecular Genetic and Genomic Markers. Springer; 2009, pp. 95–124

    Google Scholar 

  9. McCarley RW, Wible CG, Frumin M et al. MRI anatomy of schizophrenia. Biol Psychiatry 1999 May 1; 45:1099–1119

    Article  PubMed  CAS  Google Scholar 

  10. Harrison PJ. The neuropathology of schizophrenia. A critical review of the data and their interpretation. Brain 1999 April; 122 (Pt 4):593–624

    Google Scholar 

  11. Lieberman JA. Neuroprotection: a new strategy in the treatment of schizophrenia. Neurobiological basis of neurodegeneration and neuroprotection. CNS Spectr 2007 October; 12:4–6

    PubMed  Google Scholar 

  12. Ginsberg MD. Neuroprotection for ischemic stroke: past, present and future. Neuropharmacology 2008 September; 55:363–389

    Article  PubMed  CAS  Google Scholar 

  13. Gill R, Foster AC, Woodruff GN. MK-801 is neuroprotective in gerbils when administered during the post-ischaemic period. Neuroscience 1988 June; 25:847–855

    Article  PubMed  CAS  Google Scholar 

  14. Internet Stroke Center, Stroke Trials Registry at http://www.strokecenter.org/trials/index.aspx. 2009

  15. Diener HC, Lees KR, Lyden P et al. NXY-059 for the treatment of acute stroke: pooled analysis of the SAINT I and II Trials. Stroke 2008 June; 39:1751–1758

    Article  PubMed  CAS  Google Scholar 

  16. Haley EC, Jr., Thompson JL, Levin B et al. Gavestinel does not improve outcome after acute intracerebral hemorrhage: an analysis from the GAIN International and GAIN Americas studies. Stroke 2005 May; 36:1006–1010

    Article  PubMed  CAS  Google Scholar 

  17. Clark WM, Raps EC, Tong DC et al. Cervene (Nalmefene) in acute ischemic stroke : final results of a phase III efficacy study. The Cervene Stroke Study Investigators. Stroke 2000 June; 31:1234–1239

    CAS  Google Scholar 

  18. Rother J. Neuroprotection does not work! Stroke 2008 February; 39:523–524

    Article  PubMed  Google Scholar 

  19. Hussain MS, Shuaib A. Research into neuroprotection must continue … But with a different approach. Stroke 2008 February; 39:521–522

    Article  PubMed  Google Scholar 

  20. Hemmen TM, Lyden PD. Hypothermia after acute ischemic stroke. J Neurotrauma 2009 March; 26:387–391

    Article  PubMed  Google Scholar 

  21. Ginsberg MD, Palesch YY, Hill MD. The ALIAS (ALbumin In Acute Stroke) Phase III randomized multicentre clinical trial: design and progress report. Biochem Soc Trans 2006 December; 34:1323–1326

    Article  PubMed  CAS  Google Scholar 

  22. Saver JL, Kidwell C, Eckstein M et al. Prehospital neuroprotective therapy for acute stroke: results of the Field Administration of Stroke Therapy-Magnesium (FAST-MAG) pilot trial. Stroke 2004 May; 35:e106–e108

    Article  PubMed  CAS  Google Scholar 

  23. Gupta A, Dawson VL, Dawson TM. What causes cell death in Parkinson’s disease? Ann Neurol 2008 December; 64(Suppl 2):S3–S15

    PubMed  CAS  Google Scholar 

  24. Olanow CW. Can we achieve neuroprotection with currently available anti-parkinsonian interventions? Neurology 2009 February 17; 72:S59–S64

    Article  PubMed  CAS  Google Scholar 

  25. Stangel M. Neuroprotection and neuroregeneration in multiple sclerosis. J Neurol 2008 December; 255(Suppl 6):77–81

    Article  PubMed  CAS  Google Scholar 

  26. Miller RG, Mitchell JD, Lyon M et al. Riluzole for amyotrophic lateral sclerosis (ALS)/motor neuron disease (MND). Cochrane Database Syst Rev 2007; CD001447

    Google Scholar 

  27. Brooks BR. Managing amyotrophic lateral sclerosis: slowing disease progression and improving patient quality of life. Ann Neurol 2009 January; 65(Suppl 1):S17–S23

    Article  PubMed  CAS  Google Scholar 

  28. Stip E, Chouinard S, Boulay LJ. On the trail of a cognitive enhancer for the treatment of schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2005 February; 29:219–232

    Article  PubMed  CAS  Google Scholar 

  29. Ringman JM, Cummings JL. Current and emerging pharmacological treatment options for dementia. Behav Neurol 2006; 17:5–16

    PubMed  Google Scholar 

  30. Tsai PT, Ohab JJ, Kertesz N et al. A critical role of erythropoietin receptor in neurogenesis and post-stroke recovery. J Neurosci 2006 January 25; 26:1269–1274

    Article  PubMed  CAS  Google Scholar 

  31. Lykissas MG, Korompilias AV, Vekris MD et al. The role of erythropoietin in central and peripheral nerve injury. Clin Neurol Neurosurg 2007 October; 109:639–644

    Article  PubMed  Google Scholar 

  32. Gorio A, Gokmen N, Erbayraktar S et al. Recombinant human erythropoietin counteracts secondary injury and markedly enhances neurological recovery from experimental spinal cord trauma. Proc Natl Acad Sci USA 2002 July 9; 99:9450–9455

    Article  PubMed  CAS  Google Scholar 

  33. Whitcup SM. Clinical trials in neuroprotection. Prog Brain Res 2008; 173:323–335

    Article  PubMed  Google Scholar 

  34. WoldeMussie E, Ruiz G, Wijono M et al. Neuroprotection of retinal ganglion cells by brimonidine in rats with laser-induced chronic ocular hypertension. Invest Ophthalmol Vis Sci 2001 November; 42:2849–2855

    PubMed  CAS  Google Scholar 

  35. Conlon N, Grocott HP, Mackensen GB. Neuroprotection during cardiac surgery. Expert Rev Cardiovasc Ther 2008 April; 6:503–520

    Article  PubMed  CAS  Google Scholar 

  36. Silva GA. Nanotechnology approaches for the regeneration and neuroprotection of the central nervous system. Surg Neurol 2005 April; 63:301–306

    Article  PubMed  Google Scholar 

  37. George MS, Nahas Z, Borckardt JJ et al. Brain stimulation for the treatment of psychiatric disorders. Curr Opin Psychiatry 2007 May; 20:250–254

    PubMed  Google Scholar 

  38. Sharma HS, Sharma A. Conference Scene: New perspectives on nanoneuroscience, nanoneuropharmacology and nanoneurotoxicology. Nanomed 2009 July; 4:509–513

    Article  Google Scholar 

  39. Andrews RJ. Neuroprotection at the nanolevel – Part II: Nanodevices for neuromodulation – deep brain stimulation and spinal cord injury. Ann NY Acad Sci 2007 December; 1122: 185–196

    Article  PubMed  CAS  Google Scholar 

  40. Sharma HS. Nanoneuroscience: emerging concepts on nanoneurotoxicity and nanoneuroprotection. Nanomed 2007 December; 2:753–758

    Article  CAS  Google Scholar 

  41. Raty JK, Lesch HP, Wirth T et al. Improving safety of gene therapy. Curr Drug Saf 2008 January; 3:46–53

    Article  PubMed  CAS  Google Scholar 

  42. Berger TW, Ahuja A, Courellis SH et al. Restoring lost cognitive function. IEEE Eng Med Biol Mag 2005 September; 24:30–44

    Article  PubMed  Google Scholar 

  43. Kundra SN. Toward the emergence of nanoneurosurgery: part III-nanomedicine: targeted nanotherapy, nanosurgery and progress toward the realization of nanoneurosurgery. Neurosurgery 2008 June; 62:E1384

    Article  PubMed  Google Scholar 

  44. Sharma HS. Birth of a New Journal. J Nanoneurosci 2009; 1:1–2

    Article  CAS  Google Scholar 

  45. The Global College of Neuroprotection and Neuroregeneration at http://www.gcnpnr.org/index.html. 2009

  46. The Society for the Study of Neuroprotection and Neuroplasticity at http://www.ssno.ro. 2009

  47. Philippe Pinel. A treatise on insanity. Sheffield: W. Todd; 1806

    Google Scholar 

  48. Hendler T, Bleich-Cohen M, Sharon H. Neurofunctional view of psychiatry: clinical brain imaging revisited. Curr Opin Psychiatry 2009 May; 22:300–305

    Article  PubMed  Google Scholar 

  49. Wright IC, Rabe-Hesketh S, Woodruff PW et al. Meta-analysis of regional brain volumes in schizophrenia. Am J Psychiatry 2000 January; 157:16–25

    PubMed  CAS  Google Scholar 

  50. Cahn W, Rais M, Stigter FP et al. Psychosis and brain volume changes during the first five years of schizophrenia. Eur Neuropsychopharmacol 2009 February; 19:147–151

    Article  PubMed  CAS  Google Scholar 

  51. Hulshoff Pol HE, Kahn RS. What happens after the first episode? A review of progressive brain changes in chronically ill patients with schizophrenia. Schizophr Bull 2008 March; 34:354–366

    Article  PubMed  Google Scholar 

  52. Goodwin GM, Martinez-Aran A, Glahn DC et al. Cognitive impairment in bipolar disorder: neurodevelopment or neurodegeneration? An ECNP expert meeting report. Eur Neuropsychopharmacol 2008 November; 18:787–793

    Article  CAS  Google Scholar 

  53. Brambilla P, Stanley JA, Nicoletti MA et al. 1H Magnetic resonance spectroscopy study of dorsolateral prefrontal cortex in unipolar mood disorder patients. Psychiatry Res 2005 February 28; 138:131–139

    Article  PubMed  Google Scholar 

  54. Friedman JI, Adler DN, Howanitz E et al. A double blind placebo controlled trial of donepezil adjunctive treatment to risperidone for the cognitive impairment of schizophrenia. Biol Psychiatry 2002 March 1; 51:349–357

    Article  PubMed  CAS  Google Scholar 

  55. Chung YC, Lee CR, Park TW et al. Effect of donepezil added to atypical antipsychotics on cognition in patients with schizophrenia: an open-label trial. World J Biol Psychiatry 2009; 10:156–162

    Article  PubMed  Google Scholar 

  56. Schubert MH, Young KA, Hicks PB. Galantamine improves cognition in schizophrenic patients stabilized on risperidone. Biol Psychiatry 2006 September 15; 60:530–533

    Article  PubMed  CAS  Google Scholar 

  57. Buchanan RW, Javitt DC, Marder SR et al. The Cognitive and Negative Symptoms in Schizophrenia Trial (CONSIST): the efficacy of glutamatergic agents for negative symptoms and cognitive impairments. Am J Psychiatry 2007 October; 164:1593–1602

    Article  PubMed  Google Scholar 

  58. Lieberman JA, Papadakis K, Csernansky J et al. A randomized, placebo-controlled study of memantine as adjunctive treatment in patients with schizophrenia. Neuropsychopharmacology 2009 April; 34:1322–1329

    Article  PubMed  CAS  Google Scholar 

  59. Zdanys K, Tampi RR. A systematic review of off-label uses of memantine for psychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatry 2008 August 1; 32:1362–1374

    Article  PubMed  CAS  Google Scholar 

  60. Lewis DA, Levitt P. Schizophrenia as a disorder of neurodevelopment. Annu Rev Neurosci 2002; 25:409–432

    Article  PubMed  CAS  Google Scholar 

  61. Torrey EF, Miller J, Rawlings R et al. Seasonality of births in schizophrenia and bipolar disorder: a review of the literature. Schizophr Res 1997 November 7; 28:1–38

    Article  PubMed  CAS  Google Scholar 

  62. Machon RA, Huttunen MO, Mednick SA et al. Adult schizotypal personality characteristics and prenatal influenza in a Finnish birth cohort. Schizophr Res 2002 March 1; 54:7–16

    Article  PubMed  Google Scholar 

  63. McNeil TF, Cantor-Graae E, Weinberger DR. Relationship of obstetric complications and differences in size of brain structures in monozygotic twin pairs discordant for schizophrenia. Am J Psychiatry 2000 February; 157:203–212

    Article  PubMed  CAS  Google Scholar 

  64. Feinberg I. Cortical pruning and the development of schizophrenia. Schizophr Bull 1990; 16:567–570

    Article  PubMed  CAS  Google Scholar 

  65. Crow TJ. Schizophrenia as the price that homo sapiens pays for language: a resolution of the central paradox in the origin of the species. Brain Res Brain Res Rev 2000 March; 31:118–129

    Article  PubMed  CAS  Google Scholar 

  66. Weinberger DR. Implications of normal brain development for the pathogenesis of schizophrenia. Arch Gen Psychiatry 1987 July; 44:660–669

    Article  PubMed  CAS  Google Scholar 

  67. Bayer TA, Falkai P, Maier W. Genetic and non-genetic vulnerability factors in schizophrenia: the basis of the “two hit hypothesis”. J Psychiatr Res 1999 November; 33: 543–548

    Article  PubMed  CAS  Google Scholar 

  68. Bleich-Cohen M, Hendler T, Kotler M et al. Reduced language lateralization in first-episode schizophrenia: an fMRI index of functional asymmetry. Psychiatry Res 2009 February 28; 171:82–93

    Article  PubMed  Google Scholar 

  69. Addington AM, Gornick M, Duckworth J et al. GAD1 (2q31.1), which encodes glutamic acid decarboxylase (GAD67), is associated with childhood-onset schizophrenia and cortical gray matter volume loss. Mol Psychiatry 2005 June; 10:581–588

    Article  PubMed  CAS  Google Scholar 

  70. Arnold SE, Ruscheinsky DD, Han LY. Further evidence of abnormal cytoarchitecture of the entorhinal cortex in schizophrenia using spatial point pattern analyses. Biol Psychiatry 1997 October 15; 42:639–647

    Article  PubMed  CAS  Google Scholar 

  71. Benes FM, Berretta S. GABAergic interneurons: implications for understanding schizophrenia and bipolar disorder. Neuropsychopharmacology 2001 July; 25:1–27

    Article  PubMed  CAS  Google Scholar 

  72. Benes FM, McSparren J, Bird ED et al. Deficits in small interneurons in prefrontal and cingulate cortices of schizophrenic and schizoaffective patients. Arch Gen Psychiatry 1991 November; 48:996–1001

    Article  PubMed  CAS  Google Scholar 

  73. Kikinis R, Shenton ME, Gerig G et al. Temporal lobe sulco-gyral pattern anomalies in schizophrenia: an in vivo MR three-dimensional surface rendering study. Neurosci Lett 1994 November 21; 182:7–12

    Article  PubMed  CAS  Google Scholar 

  74. Stephan KE, Friston KJ, Frith CD. Dysconnection in schizophrenia: from abnormal synaptic plasticity to failures of self-monitoring. Schizophr Bull 2009 May; 35:509–527

    Article  PubMed  Google Scholar 

  75. Goff DC, Coyle JT. The emerging role of glutamate in the pathophysiology and treatment of schizophrenia. Am J Psychiatry 2001 September; 158:1367–1377

    Article  PubMed  CAS  Google Scholar 

  76. Abi-Saab WM, D’Souza DC, Moghaddam B et al. The NMDA antagonist model for schizophrenia: promise and pitfalls. Pharmacopsychiatry 1998 July; 31(Suppl 2):104–109

    Article  PubMed  CAS  Google Scholar 

  77. Friston KJ. The disconnection hypothesis. Schizophr Res 1998 March 10; 30:115–125

    Article  PubMed  CAS  Google Scholar 

  78. Stephan KE, Baldeweg T, Friston KJ. Synaptic plasticity and dysconnection in schizophrenia. Biol Psychiatry 2006 May 15; 59:929–939

    Article  PubMed  CAS  Google Scholar 

  79. Westerhausen R, Kreuder F, Dos Santos SS et al. The association of macro- and microstructure of the corpus callosum and language lateralisation. Brain Lang 2006 April; 97:80–90

    Article  PubMed  Google Scholar 

  80. Kanaan R, Barker G, Brammer M et al. White matter microstructure in schizophrenia: effects of disorder, duration and medication. Br J Psychiatry 2009 March; 194:236–242

    Article  PubMed  Google Scholar 

  81. Bleich-Cohen M, Strous RD, Even R et al. Diminished neural sensitivity to irregular facial expression in first-episode schizophrenia. Hum Brain Mapp 2009 August; 30:2606–2616

    Article  PubMed  Google Scholar 

  82. Radulescu AR, Mujica-Parodi LR. A systems approach to prefrontal-limbic dysregulation in schizophrenia. Neuropsychobiology 2008; 57:206–216

    Article  PubMed  Google Scholar 

  83. Zhou Y, Shu N, Liu Y et al. Altered resting-state functional connectivity and anatomical connectivity of hippocampus in schizophrenia. Schizophr Res 2008 March; 100:120–132

    Article  PubMed  Google Scholar 

  84. Stephan KE, Harrison LM, Kiebel SJ et al. Dynamic causal models of neural system dynamics:current state and future extensions. J Biosci 2007 January; 32:129–144

    Article  PubMed  Google Scholar 

  85. Moran RJ, Stephan KE, Kiebel SJ et al. Bayesian estimation of synaptic physiology from the spectral responses of neural masses. Neuroimage 2008 August 1; 42:272–284

    Article  PubMed  CAS  Google Scholar 

  86. Antonio AM, Druse MJ. Antioxidants prevent ethanol-associated apoptosis in fetal rhombencephalic neurons. Brain Res 2008 April 14; 1204:16–23

    Article  PubMed  CAS  Google Scholar 

  87. Warner DS, Sheng H, Batinic-Haberle I. Oxidants, antioxidants and the ischemic brain. J Exp Biol 2004 August; 207:3221–3231

    Article  PubMed  CAS  Google Scholar 

  88. Vardimon L. Neuroprotection by glutamine synthetase. Isr Med Assoc J 2000 July; 2(Suppl):46–51

    PubMed  Google Scholar 

  89. Collip D, Myin-Germeys I, Van OJ. Does the concept of “sensitization” provide a plausible mechanism for the putative link between the environment and schizophrenia? Schizophr Bull 2008 March; 34:220–225

    Article  PubMed  Google Scholar 

  90. Lang UE, Jockers-Scherubl MC, Hellweg R. State of the art of the neurotrophin hypothesis in psychiatric disorders: implications and limitations. J Neural Transm 2004 March; 111:387–411

    Article  PubMed  CAS  Google Scholar 

  91. Chuang DM. The antiapoptotic actions of mood stabilizers: molecular mechanisms and therapeutic potentials. Ann NY Acad Sci 2005 August; 1053:195–204

    Article  PubMed  CAS  Google Scholar 

  92. Marmol F. Lithium: bipolar disorder and neurodegenerative diseases Possible cellular mechanisms of the therapeutic effects of lithium. Prog Neuropsychopharmacol Biol Psychiatry 2008 December 12; 32:1761–1771

    Article  PubMed  CAS  Google Scholar 

  93. McKernan DP, Dinan TG, Cryan JF. “Killing the Blues”: a role for cellular suicide (apoptosis) in depression and the antidepressant response? Prog Neurobiol 2009 August; 88:246–263

    Article  PubMed  CAS  Google Scholar 

  94. Ritsner M.S., Gibel A., Ratner Y., Weizman A. Dehydroepiandrosterone and pregnenolone alterations in schizophrenia. In: Ritsner MS, Weizman A (eds) Neuroactive Steroids in Brain Functions, and Mental Health. Springer, Springer-Verlag New York, LLC; 2008, pp. 251–298

    Chapter  Google Scholar 

  95. Green PS, Simpkins JW. Neuroprotective effects of estrogens: potential mechanisms of action. Int J Dev Neurosci 2000 July; 18:347–358

    Article  PubMed  CAS  Google Scholar 

  96. Ehrenreich H, Aust C, Krampe H et al. Erythropoietin: novel approaches to neuroprotection in human brain disease. Metab Brain Dis 2004 December; 19:195–206

    Article  PubMed  CAS  Google Scholar 

  97. Minzenberg MJ, Carter CS. Modafinil: a review of neurochemical actions and effects on cognition. Neuropsychopharmacology 2008 June; 33:1477–502

    Article  PubMed  CAS  Google Scholar 

  98. Hanstein R, Trotter J, Behl C et al. Increased connexin 43 expression as a potential mediator of the neuroprotective activity of the corticotropin-releasing hormone. Mol Endocrinol 2009 September; 23:1479–1493

    Article  PubMed  CAS  Google Scholar 

  99. Angelucci F, Brene S, Mathe AA. BDNF in schizophrenia, depression and corresponding animal models. Mol Psychiatry 2005 April; 10:345–352

    Article  PubMed  CAS  Google Scholar 

  100. Buckley PF, Mahadik S, Pillai A et al. Neurotrophins and schizophrenia. Schizophr Res 2007 August; 94:1–11

    Article  PubMed  Google Scholar 

  101. Cho HS, Kim S, Lee SY et al. Protective effect of the green tea component, L-theanine on environmental toxins-induced neuronal cell death. Neurotoxicology 2008 July; 29:656–662

    Article  PubMed  CAS  Google Scholar 

  102. Freeman MP, Hibbeln JR, Wisner KL et al. Omega-3 fatty acids: evidence basis for treatment and future research in psychiatry. J Clin Psychiatry 2006 December; 67:1954–1967

    Article  PubMed  CAS  Google Scholar 

  103. Ullrich O, Merker K, Timm J et al. Immune control by endocannabinoids – new mechanisms of neuroprotection? J Neuroimmunol 2007 March; 184:127-35

    Article  PubMed  CAS  Google Scholar 

  104. Malakar D, Dey A, Basu A et al. Antiapoptotic role of S-adenosyl-l-methionine against hydrochloric acid induced cell death in Saccharomyces cerevisiae. Biochim Biophys Acta 2008 July; 1780:937–947

    Article  PubMed  CAS  Google Scholar 

  105. Muller WE, Eckert GP, Eckert A. Piracetam: novelty in a unique mode of action. Pharmacopsychiatry 1999 March; 32(Suppl 1):2–9

    Article  PubMed  CAS  Google Scholar 

  106. McGlashan TH, Zipursky RB, Perkins D et al. Randomized, double-blind trial of olanzapine versus placebo in patients prodromally symptomatic for psychosis. Am J Psychiatry 2006 May; 163:790–799

    Article  PubMed  Google Scholar 

  107. Clark D, Dedova I, Cordwell S et al. A proteome analysis of the anterior cingulate cortex gray matter in schizophrenia. Mol Psychiatry 2006 May; 11:459–470, 423

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ehud Susser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Susser, E., Ritsner, M.S. (2010). Brain Protection in Neuropsychiatric Disorders: Past, Present and Future Challenges. In: Ritsner, M. (eds) Brain Protection in Schizophrenia, Mood and Cognitive Disorders. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8553-5_1

Download citation

Publish with us

Policies and ethics