Skip to main content

Advertisement

Log in

The Dialogue Between Neuroinflammation and Adult Neurogenesis: Mechanisms Involved and Alterations in Neurological Diseases

  • Reviews
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Adult neurogenesis occurs mainly in the subgranular zone of the hippocampal dentate gyrus and the subventricular zone of the lateral ventricles. Evidence supports the critical role of adult neurogenesis in various conditions, including cognitive dysfunction, Alzheimer's disease (AD), and Parkinson's disease (PD). Several factors can alter adult neurogenesis, including genetic, epigenetic, age, physical activity, diet, sleep status, sex hormones, and central nervous system (CNS) disorders, exerting either pro-neurogenic or anti-neurogenic effects. Compelling evidence suggests that any insult or injury to the CNS, such as traumatic brain injury (TBI), infectious diseases, or neurodegenerative disorders, can provoke an inflammatory response in the CNS. This inflammation could either promote or inhibit neurogenesis, depending on various factors, such as chronicity and severity of the inflammation and underlying neurological disorders. Notably, neuroinflammation, driven by different immune components such as activated glia, cytokines, chemokines, and reactive oxygen species, can regulate every step of adult neurogenesis, including cell proliferation, differentiation, migration, survival of newborn neurons, maturation, synaptogenesis, and neuritogenesis. Therefore, this review aims to present recent findings regarding the effects of various components of the immune system on adult neurogenesis and to provide a better understanding of the role of neuroinflammation and neurogenesis in the context of neurological disorders, including AD, PD, ischemic stroke (IS), seizure/epilepsy, TBI, sleep deprivation, cognitive impairment, and anxiety- and depressive-like behaviors. For each disorder, some of the most recent therapeutic candidates, such as curcumin, ginseng, astragaloside, boswellic acids, andrographolide, caffeine, royal jelly, estrogen, metformin, and minocycline, have been discussed based on the available preclinical and clinical evidence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Not applicable as this is a review article.

References

  1. Kempermann G, Song H, Gage FH (2015) Neurogenesis in the adult hippocampus. Cold Spring Harb Perspect Biol 7(9):a018812

    Article  Google Scholar 

  2. Leuner B, Gould E (2010) Structural plasticity and hippocampal function. Annu Rev Psychol 61:111–40, c13

    Article  Google Scholar 

  3. Braun SM, Jessberger S (2014) Adult neurogenesis: mechanisms and functional significance. Development 141(10):1983–1986

    Article  CAS  Google Scholar 

  4. Ribeiro FF, Xapelli S (2021) An overview of adult neurogenesis. Adv Exp Med Biol 1331:77–94

    Article  Google Scholar 

  5. Gage FH (2019) Adult neurogenesis in mammals. Science 364(6443):827–828

    Article  CAS  Google Scholar 

  6. Ming GL, Song H (2011) Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron 70(4):687–702

    Article  CAS  Google Scholar 

  7. Lledo PM, Alonso M, Grubb MS (2006) Adult neurogenesis and functional plasticity in neuronal circuits. Nat Rev Neurosci 7(3):179–193

    Article  CAS  Google Scholar 

  8. Brill MS et al (2009) Adult generation of glutamatergic olfactory bulb interneurons. Nat Neurosci 12(12):1524–1533

    Article  CAS  Google Scholar 

  9. Ge S et al (2008) Synaptic integration and plasticity of new neurons in the adult hippocampus. J Physiol 586(16):3759–3765

    Article  CAS  Google Scholar 

  10. Mongiat LA, Schinder AF (2011) Adult neurogenesis and the plasticity of the dentate gyrus network. Eur J Neurosci 33(6):1055–1061

    Article  Google Scholar 

  11. Sung PS et al (2020) Neuroinflammation and neurogenesis in Alzheimer’s disease and potential therapeutic approaches. Int J Mol Sci 21(3):701

    Article  CAS  Google Scholar 

  12. Chesnokova V, Pechnick RN, Wawrowsky K (2016) Chronic peripheral inflammation, hippocampal neurogenesis, and behavior. Brain Behav Immun 58:1–8

    Article  CAS  Google Scholar 

  13. Fan LW, Pang Y (2017) Dysregulation of neurogenesis by neuroinflammation: key differences in neurodevelopmental and neurological disorders. Neural Regen Res 12(3):366–371

    Article  CAS  Google Scholar 

  14. Al-Onaizi M et al (2020) Role of microglia in modulating adult neurogenesis in health and neurodegeneration. Int J Mol Sci 21(18):6875

    Article  CAS  Google Scholar 

  15. Rodríguez-Iglesias N, Sierra A, Valero J (2019) Rewiring of memory circuits: connecting adult newborn neurons with the help of microglia. Front Cell Dev Biol 7:24

    Article  Google Scholar 

  16. Fuster-Matanzo A et al (2013) Role of neuroinflammation in adult neurogenesis and Alzheimer disease: therapeutic approaches. Mediators Inflamm 2013:260925

    Article  Google Scholar 

  17. Krathwohl MD, Kaiser JL (2004) Chemokines promote quiescence and survival of human neural progenitor cells. Stem Cells 22(1):109–118

    Article  CAS  Google Scholar 

  18. Wang B, Jin K (2015) Current perspectives on the link between neuroinflammation and neurogenesis. Metab Brain Dis 30(2):355–365

    Article  CAS  Google Scholar 

  19. Cheng X et al (2017) The role of SDF-1/CXCR4/CXCR7 in neuronal regeneration after cerebral ischemia. Front Neurosci 11:590

    Article  Google Scholar 

  20. Gong X et al (2006) Stromal cell derived factor-1 acutely promotes neural progenitor cell proliferation in vitro by a mechanism involving the ERK1/2 and PI-3K signal pathways. Cell Biol Int 30(5):466–471

    Article  CAS  Google Scholar 

  21. Dziembowska M et al (2005) A role for CXCR4 signaling in survival and migration of neural and oligodendrocyte precursors. Glia 50(3):258–269

    Article  CAS  Google Scholar 

  22. Naseri A et al (2014) Study of the effects of short-term REM sleep deprivation on neurogenesis and spatial memory of adult male rats. Razi J Med Sci 21(126):95–106

    Google Scholar 

  23. Khodaverdiloo A et al (2021) Neurogenesis in the rat neonate’s hippocampus with maternal short-term REM sleep deprivation restores by royal jelly treatment. Brain and Behavior 11(12):e2423

    Article  Google Scholar 

  24. Jameie B et al (2016) Effects of exogenous estrogen treatment on hippocampal neurogenesis of diabetic ovariectomized rats. International Clinical Neurosciences Journal 3(2):99–108

    Google Scholar 

  25. Ziabreva I et al (2006) Altered neurogenesis in Alzheimer’s disease. J Psychosom Res 61(3):311–316

    Article  Google Scholar 

  26. Mu Y, Gage FH (2011) Adult hippocampal neurogenesis and its role in Alzheimer’s disease. Mol Neurodegener 6:85

    Article  Google Scholar 

  27. Desplats P et al (2012) α-Synuclein induces alterations in adult neurogenesis in Parkinson disease models via p53-mediated repression of Notch1. J Biol Chem 287(38):31691–31702

    Article  CAS  Google Scholar 

  28. Marxreiter F, Regensburger M, Winkler J (2013) Adult neurogenesis in Parkinson’s disease. Cell Mol Life Sci 70(3):459–473

    Article  CAS  Google Scholar 

  29. Winner B, Winkler J (2015) Adult neurogenesis in neurodegenerative diseases. Cold Spring Harb Perspect Biol 7(4):a021287

    Article  Google Scholar 

  30. Liang H et al (2019) Region-specific and activity-dependent regulation of SVZ neurogenesis and recovery after stroke. Proc Natl Acad Sci 116(27):13621–13630

    Article  CAS  Google Scholar 

  31. Cho K-O et al (2015) Aberrant hippocampal neurogenesis contributes to epilepsy and associated cognitive decline. Nat Commun 6(1):6606

    Article  CAS  Google Scholar 

  32. Wang X et al (2016) Traumatic brain injury severity affects neurogenesis in adult mouse hippocampus. J Neurotrauma 33(8):721–733

    Article  Google Scholar 

  33. Ou Z et al (2018) Metformin treatment prevents amyloid plaque deposition and memory impairment in APP/PS1 mice. Brain Behav Immun 69:351–363

    Article  CAS  Google Scholar 

  34. Scopa C et al (2020) Impaired adult neurogenesis is an early event in Alzheimer’s disease neurodegeneration, mediated by intracellular Aβ oligomers. Cell Death Differ 27(3):934–948

    Article  CAS  Google Scholar 

  35. Olesen L et al (2017) Neuron and neuroblast numbers and cytogenesis in the dentate gyrus of aged APP(swe)/PS1(dE9) transgenic mice: Effect of long-term treatment with paroxetine. Neurobiol Dis 104:50–60

    Article  CAS  Google Scholar 

  36. Rodríguez JJ, Jones VC, Verkhratsky A (2009) Impaired cell proliferation in the subventricular zone in an Alzheimer’s disease model. NeuroReport 20(10):907–912

    Article  Google Scholar 

  37. Haughey NJ et al (2002) Disruption of neurogenesis by amyloid beta-peptide, and perturbed neural progenitor cell homeostasis, in models of Alzheimer’s disease. J Neurochem 83(6):1509–1524

    Article  CAS  Google Scholar 

  38. Baglietto-Vargas D et al (2017) Dual roles of Aβ in proliferative processes in an amyloidogenic model of Alzheimer’s disease. Sci Rep 7(1):10085

    Article  Google Scholar 

  39. Singh S et al (2018) Glycogen synthase kinase-3β regulates equilibrium between neurogenesis and gliogenesis in rat model of Parkinson’s disease: a crosstalk with Wnt and Notch signaling. Mol Neurobiol 55(8):6500–6517

    Article  CAS  Google Scholar 

  40. Singh S et al (2018) Axin-2 knockdown promote mitochondrial biogenesis and dopaminergic neurogenesis by regulating Wnt/β-catenin signaling in rat model of Parkinson’s disease. Free Radic Biol Med 129:73–87

    Article  CAS  Google Scholar 

  41. Tani M et al (2010) Ectopic expression of α-synuclein affects the migration of neural stem cells in mouse subventricular zone. J Neurochem 115(4):854–863

    Article  CAS  Google Scholar 

  42. Winner B et al (2004) Human wild-type alpha-synuclein impairs neurogenesis. J Neuropathol Exp Neurol 63(11):1155–1166

    Article  CAS  Google Scholar 

  43. van den Berge SA et al (2011) The proliferative capacity of the subventricular zone is maintained in the parkinsonian brain. Brain 134(Pt 11):3249–3263

    Article  Google Scholar 

  44. Parent JM et al (1997) Dentate granule cell neurogenesis is increased by seizures and contributes to aberrant network reorganization in the adult rat hippocampus. J Neurosci 17(10):3727–3738

    Article  CAS  Google Scholar 

  45. Victor TR, Tsirka SE (2020) Microglial contributions to aberrant neurogenesis and pathophysiology of epilepsy. Neuroimmunol Neuroinflamm 7:234–247

    CAS  Google Scholar 

  46. Jessberger S et al (2007) Seizure-associated, aberrant neurogenesis in adult rats characterized with retrovirus-mediated cell labeling. J Neurosci 27(35):9400–9407

    Article  CAS  Google Scholar 

  47. Jessberger S, Parent JM (2015) Epilepsy and adult neurogenesis. Cold Spring Harb Perspect Biol 7(12):a020677

  48. Urrea C et al (2007) Widespread cellular proliferation and focal neurogenesis after traumatic brain injury in the rat. Restor Neurol Neurosci 25(1):65–76

    CAS  Google Scholar 

  49. Dash PK, Mach SA, Moore AN (2001) Enhanced neurogenesis in the rodent hippocampus following traumatic brain injury. J Neurosci Res 63(4):313–319

    Article  CAS  Google Scholar 

  50. Jin K et al (2006) Evidence for stroke-induced neurogenesis in the human brain. Proc Natl Acad Sci U S A 103(35):13198–13202

    Article  CAS  Google Scholar 

  51. Macas J et al (2006) Increased generation of neuronal progenitors after ischemic injury in the aged adult human forebrain. J Neurosci 26(50):13114–13119

    Article  CAS  Google Scholar 

  52. Singh S, Aggarwal BB (1995) Activation of transcription factor NF-κB is suppressed by curcumin (diferuloylmethane)(∗). J Biol Chem 270(42):24995–25000

    Article  CAS  Google Scholar 

  53. Wang Y et al (2013) Curcumin as a potential treatment for Alzheimer’s disease: a study of the effects of curcumin on hippocampal expression of glial fibrillary acidic protein. Am J Chin Med 41(01):59–70

    Article  Google Scholar 

  54. Tiwari SK et al (2014) Curcumin-loaded nanoparticles potently induce adult neurogenesis and reverse cognitive deficits in Alzheimer’s disease model via canonical Wnt/β-catenin pathway. ACS Nano 8(1):76–103

    Article  CAS  Google Scholar 

  55. Ahmed T, Enam S, Gilani A (2010) Curcuminoids enhance memory in an amyloid-infused rat model of Alzheimer’s disease. Neuroscience 169(3):1296–1306

    Article  CAS  Google Scholar 

  56. Bassani TB et al (2017) Effects of curcumin on short-term spatial and recognition memory, adult neurogenesis and neuroinflammation in a streptozotocin-induced rat model of dementia of Alzheimer’s type. Behav Brain Res 335:41–54

    Article  CAS  Google Scholar 

  57. Sayed AS et al (2018) Role of 3-acetyl-11-keto-beta-boswellic acid in counteracting LPS-induced neuroinflammation via modulation of miRNA-155. Mol Neurobiol 55(7):5798–5808

    Article  CAS  Google Scholar 

  58. Arredondo SB et al (2021) Andrographolide promotes hippocampal neurogenesis and spatial memory in the APPswe/PS1ΔE9 mouse model of Alzheimer’s disease. Sci Rep 11(1):22904

    Article  CAS  Google Scholar 

  59. Varela-Nallar L et al (2015) Andrographolide stimulates neurogenesis in the adult hippocampus. Neural Plast 2015:935403

  60. Ahmed S et al (2021) Andrographolide suppresses NLRP3 inflammasome activation in microglia through induction of parkin-mediated mitophagy in in-vitro and in-vivo models of Parkinson disease. Brain Behav Immun 91:142–158

    Article  CAS  Google Scholar 

  61. Tripanichkul W, Jaroensuppaperch E (2013) Ameliorating effects of curcumin on 6-OHDA-induced dopaminergic denervation, glial response, and SOD1 reduction in the striatum of hemiparkinsonian mice. Eur Rev Med Pharmacol Sci 17(10):1360–1368

    CAS  Google Scholar 

  62. Ameen AM et al (2017) Anti-inflammatory and neuroprotective activity of boswellic acids in rotenone parkinsonian rats. Can J Physiol Pharmacol 95(7):819–829

    Article  CAS  Google Scholar 

  63. Iqbal H et al (2020) Korean Red Ginseng alleviates neuroinflammation and promotes cell survival in the intermittent heat stress-induced rat brain by suppressing oxidative stress via estrogen receptor beta and brain-derived neurotrophic factor upregulation. J Ginseng Res 44(4):593–602

    Article  Google Scholar 

  64. Kim JK et al (2021) Korean Red Ginseng exerts anti-inflammatory and autophagy-promoting activities in aged mice. J Ginseng Res 45(6):717–725

    Article  Google Scholar 

  65. Jung JS et al (2010) Anti-inflammatory mechanism of ginsenoside Rh1 in lipopolysaccharide-stimulated microglia: critical role of the protein kinase A pathway and hemeoxygenase-1 expression. J Neurochem 115(6):1668–1680

    Article  CAS  Google Scholar 

  66. Shi Y-H et al (2020) Ginsenoside-Rb1 for ischemic stroke: a systematic review and meta-analysis of preclinical evidence and possible mechanisms. Front Pharmacol 11:285

    Article  Google Scholar 

  67. Ko C-H et al (2018) Paeoniflorin has anti-inflammation and neurogenesis functions through nicotinic acetylcholine receptors in cerebral ischemia-reperfusion injury rats. Iran J Basic Med Sci 21(11):1174

    Google Scholar 

  68. Tang H et al (2021) Paeoniflorin improves functional recovery through repressing neuroinflammation and facilitating neurogenesis in rat stroke model. PeerJ 9:e10921

    Article  Google Scholar 

  69. Sun L et al (2020) Antagonistic effects of IL-17 and Astragaloside IV on cortical neurogenesis and cognitive behavior after stroke in adult mice through Akt/GSK-3β pathway. Cell Death Discov 6:74

    Article  CAS  Google Scholar 

  70. Huang F et al (2018) Astragaloside IV promotes adult neurogenesis in hippocampal dentate gyrus of mouse through CXCL1/CXCR2 signaling. Molecules 23(9):2178

    Article  Google Scholar 

  71. Li L et al (2021) Astragaloside IV promotes microglia/macrophages M2 polarization and enhances neurogenesis and angiogenesis through PPARγ pathway after cerebral ischemia/reperfusion injury in rats. Int Immunopharmacol 92:107335

    Article  CAS  Google Scholar 

  72. Costa IM et al (2019) Astragaloside IV supplementation promotes a neuroprotective effect in experimental models of neurological disorders: a systematic review. Curr Neuropharmacol 17(7):648–665

    Article  CAS  Google Scholar 

  73. Chen G et al (2018) Curcumin attenuates gp120-induced microglial inflammation by inhibiting autophagy via the PI3K pathway. Cell Mol Neurobiol 38(8):1465–1477

    Article  CAS  Google Scholar 

  74. Yu SY et al (2013) Curcumin ameliorates memory deficits via neuronal nitric oxide synthase in aged mice. Prog Neuropsychopharmacol Biol Psychiatry 45:47–53

    Article  CAS  Google Scholar 

  75. Kim SJ et al (2008) Curcumin stimulates proliferation of embryonic neural progenitor cells and neurogenesis in the adult hippocampus. J Biol Chem 283(21):14497–14505

    Article  CAS  Google Scholar 

  76. Sun G et al (2020) Curcumin alleviates neuroinflammation, enhances hippocampal neurogenesis, and improves spatial memory after traumatic brain injury. Brain Res Bull 162:84–93

    Article  CAS  Google Scholar 

  77. Wang J et al (2021) Estrogen attenuates traumatic brain injury by inhibiting the activation of microglia and astrocyte-mediated neuroinflammatory responses. Mol Neurobiol 58(3):1052–1061

    Article  CAS  Google Scholar 

  78. Wentz CT, Magavi SS (2009) Caffeine alters proliferation of neuronal precursors in the adult hippocampus. Neuropharmacology 56(6–7):994–1000

    Article  CAS  Google Scholar 

  79. Sahu S et al (2013) Caffeine and modafinil promote adult neuronal cell proliferation during 48 h of total sleep deprivation in rat dentate gyrus. Exp Neurol 248:470–481

    Article  CAS  Google Scholar 

  80. Sahu S et al (2013) Caffeine and modafinil promote adult neuronal cell proliferation during 48h of total sleep deprivation in rat dentate gyrus. Exp Neurol 248:470–481

    Article  CAS  Google Scholar 

  81. Endesfelder S et al (2018) Caffeine protects against anticonvulsant-induced impaired neurogenesis in the developing rat brain. Neurotox Res 34(2):173–187

    Article  CAS  Google Scholar 

  82. Endesfelder S et al (2017) Caffeine protects against anticonvulsant-induced neurotoxicity in the developing rat brain. Neurotox Res 32(3):460–472

    Article  CAS  Google Scholar 

  83. Mao ZF et al (2020) New insights into the effects of caffeine on adult hippocampal neurogenesis in stressed mice: inhibition of CORT-induced microglia activation. FASEB J 34(8):10998–11014

    Article  CAS  Google Scholar 

  84. Ikonomidou C, Turski L (2010) Antiepileptic drugs and brain development. Epilepsy Res 88(1):11–22

    Article  CAS  Google Scholar 

  85. Ma L et al (2012) Aspirin attenuates spontaneous recurrent seizures and inhibits hippocampal neuronal loss, mossy fiber sprouting and aberrant neurogenesis following pilocarpine-induced status epilepticus in rats. Brain Res 1469:103–113

    Article  CAS  Google Scholar 

  86. Jameie SB et al (2019) Neuroprotective effect of exogenous melatonin on the noradrenergic neurons of adult male rats’ locus coeruleus nucleus following REM sleep deprivation. J Chem Neuroanat 100:101656

    Article  CAS  Google Scholar 

  87. Tyagi E et al (2010) Effect of melatonin on neuroinflammation and acetylcholinesterase activity induced by LPS in rat brain. Eur J Pharmacol 640(1):206–210

    Article  CAS  Google Scholar 

  88. Vega-Rivera NM et al (2020) Melatonin reverses the depression-associated behaviour and regulates microglia, fractalkine expression and neurogenesis in adult mice exposed to chronic mild stress. Neuroscience 440:316–336

    Article  CAS  Google Scholar 

  89. López-Armas G et al (2016) Prophylactic role of oral melatonin administration on neurogenesis in adult Balb/C mice during REM sleep deprivation. Oxid Med Cell Longev 2016:2136902

    Article  Google Scholar 

  90. Khodaverdiloo A et al (2021) Neurogenesis in the rat neonate’s hippocampus with maternal short-term REM sleep deprivation restores by royal jelly treatment. Brain Behav 11(12):e2423

    Article  Google Scholar 

  91. Zhang J et al (2017) Salvianolic acid B promotes microglial M2-polarization and rescues neurogenesis in stress-exposed mice. Brain Behav Immun 66:111–124

    Article  CAS  Google Scholar 

  92. Sayed AS, El Sayed NS (2016) Co-administration of 3-acetyl-11-keto-beta-boswellic acid potentiates the protective effect of celecoxib in lipopolysaccharide-induced cognitive impairment in mice: possible implication of anti-inflammatory and antiglutamatergic pathways. J Mol Neurosci 59(1):58–67

    Article  CAS  Google Scholar 

  93. Rotelli AE et al (2003) Comparative study of flavonoids in experimental models of inflammation. Pharmacol Res 48(6):601–606

    Article  CAS  Google Scholar 

  94. Elyasi L et al (2021) 6-OHDA mediated neurotoxicity in SH-SY5Y cellular model of Parkinson disease suppressed by pretreatment with hesperidin through activating L-type calcium channels. J Basic Clin Physiol Pharmacol 32(2):11–17

    Article  CAS  Google Scholar 

  95. Hasebe K et al (2022) Exploring interleukin-6, lipopolysaccharide-binding protein and brain-derived neurotrophic factor following 12 weeks of adjunctive minocycline treatment for depression. Acta Neuropsychiatr 34(4):220–227

    Article  Google Scholar 

  96. Yang X et al (2019) The diabetes drug semaglutide reduces infarct size, inflammation, and apoptosis, and normalizes neurogenesis in a rat model of stroke. Neuropharmacology 158:107748

    Article  CAS  Google Scholar 

  97. Bassett B et al (2021) Minocycline alleviates depression-like symptoms by rescuing decrease in neurogenesis in dorsal hippocampus via blocking microglia activation/phagocytosis. Brain Behav Immun 91:519–530

    Article  CAS  Google Scholar 

  98. Kodali M et al (2021) Metformin treatment in late middle age improves cognitive function with alleviation of microglial activation and enhancement of autophagy in the hippocampus. Aging Cell 20(2):e13277

    Article  CAS  Google Scholar 

  99. Ayoub R et al (2020) Assessment of cognitive and neural recovery in survivors of pediatric brain tumors in a pilot clinical trial using metformin. Nat Med 26(8):1285–1294

    Article  CAS  Google Scholar 

  100. Curtis E et al (2018) A first-in-human, phase I study of neural stem cell transplantation for chronic spinal cord injury. Cell Stem Cell 22(6):941-950.e6

    Article  CAS  Google Scholar 

  101. Panizzutti B et al (2018) Mediator effects of parameters of inflammation and neurogenesis from a N-acetyl cysteine clinical-trial for bipolar depression. Acta Neuropsychiatr 30(6):334–341

    Article  Google Scholar 

  102. Hernandez GD et al (2020) Safety, tolerability, and pharmacokinetics of allopregnanolone as a regenerative therapeutic for Alzheimer’s disease: A single and multiple ascending dose phase 1b/2a clinical trial. Alzheimers Dement (N Y) 6(1):e12107

    Google Scholar 

  103. Malhotra K et al (2018) Minocycline for acute stroke treatment: a systematic review and meta-analysis of randomized clinical trials. J Neurol 265(8):1871–1879

    Article  CAS  Google Scholar 

  104. Switzer JA et al (2011) Matrix metalloproteinase-9 in an exploratory trial of intravenous minocycline for acute ischemic stroke. Stroke 42(9):2633–2635

    Article  CAS  Google Scholar 

  105. Zhang L et al (2021) Fluoxetine may enhance VEGF, BDNF and cognition in patients with vascular cognitive impairment no dementia: an open-label randomized clinical study. Neuropsychiatr Dis Treat 17:3819–3825

    Article  CAS  Google Scholar 

  106. Jäkel S, Dimou L (2017) Glial cells and their function in the adult brain: a journey through the history of their ablation. Front Cell Neurosci 11:24

    Article  Google Scholar 

  107. Vainchtein ID, Molofsky AV (2020) Astrocytes and microglia: in sickness and in health. Trends Neurosci 43(3):144–154

    Article  CAS  Google Scholar 

  108. Araki T, Ikegaya Y, Koyama R (2021) The effects of microglia- and astrocyte-derived factors on neurogenesis in health and disease. Eur J Neurosci 54(5):5880–5901

    Article  CAS  Google Scholar 

  109. Borsini A et al (2015) The role of inflammatory cytokines as key modulators of neurogenesis. Trends Neurosci 38(3):145–157

    Article  CAS  Google Scholar 

  110. Das S, Basu A (2008) Inflammation: a new candidate in modulating adult neurogenesis. J Neurosci Res 86(6):1199–1208

    Article  CAS  Google Scholar 

  111. Tran PB, Miller RJ (2005) HIV-1, chemokines and neurogenesis. Neurotox Res 8(1–2):149–158

    Article  CAS  Google Scholar 

  112. Shabab T et al (2017) Neuroinflammation pathways: a general review. Int J Neurosci 127(7):624–633

    Article  CAS  Google Scholar 

  113. Lull ME, Block ML (2010) Microglial activation and chronic neurodegeneration. Neurotherapeutics 7(4):354–365

    Article  CAS  Google Scholar 

  114. Dheen ST, Kaur C, Ling EA (2007) Microglial activation and its implications in the brain diseases. Curr Med Chem 14(11):1189–1197

    Article  CAS  Google Scholar 

  115. Kato H et al (1996) Progressive expression of immunomolecules on activated microglia and invading leukocytes following focal cerebral ischemia in the rat. Brain Res 734(1–2):203–212

    Article  CAS  Google Scholar 

  116. Flynn G et al (2003) Regulation of chemokine receptor expression in human microglia and astrocytes. J Neuroimmunol 136(1–2):84–93

    Article  CAS  Google Scholar 

  117. Ransohoff RM (2016) A polarizing question: do M1 and M2 microglia exist? Nat Neurosci 19(8):987–991

    Article  CAS  Google Scholar 

  118. Cherry JD, Olschowka JA, O’Banion MK (2014) Neuroinflammation and M2 microglia: the good, the bad, and the inflamed. J Neuroinflammation 11:98

    Article  Google Scholar 

  119. Hernandez-Ontiveros DG et al (2013) Microglia activation as a biomarker for traumatic brain injury. Front Neurol 4:30

    Article  Google Scholar 

  120. Gemma C, Bachstetter AD (2013) The role of microglia in adult hippocampal neurogenesis. Front Cell Neurosci 7:229

    Article  CAS  Google Scholar 

  121. Ekdahl CT et al (2003) Inflammation is detrimental for neurogenesis in adult brain. Proc Natl Acad Sci U S A 100(23):13632–13637

    Article  CAS  Google Scholar 

  122. Gyengesi E et al (2019) Chronic microglial activation in the GFAP-IL6 mouse contributes to age-dependent cerebellar volume loss and impairment in motor function. Front Neurosci 13:303

    Article  Google Scholar 

  123. Ziv Y et al (2006) Immune cells contribute to the maintenance of neurogenesis and spatial learning abilities in adulthood. Nat Neurosci 9(2):268–275

    Article  CAS  Google Scholar 

  124. Walton NM et al (2006) Microglia instruct subventricular zone neurogenesis. Glia 54(8):815–825

    Article  Google Scholar 

  125. Schmidt SI et al (2021) Microglia-secreted factors enhance dopaminergic differentiation of tissue- and iPSC-derived human neural stem cells. Stem Cell Reports 16(2):281–294

    Article  CAS  Google Scholar 

  126. Lorenzen K et al (2021) Microglia induce neurogenic protein expression in primary cortical cells by stimulating PI3K/AKT intracellular signaling in vitro. Mol Biol Rep 48(1):563–584

    Article  CAS  Google Scholar 

  127. Koh SH, Lo EH (2015) The role of the PI3K pathway in the regeneration of the damaged brain by neural stem cells after cerebral infarction. J Clin Neurol 11(4):297–304

    Article  Google Scholar 

  128. Matsui TK, Mori E (2018) Microglia support neural stem cell maintenance and growth. Biochem Biophys Res Commun 503(3):1880–1884

    Article  CAS  Google Scholar 

  129. Li Y et al (2021) Ultrasound controlled anti-inflammatory polarization of platelet decorated microglia for targeted ischemic stroke therapy. Angew Chem Int Ed Engl 60(10):5083–5090

    Article  CAS  Google Scholar 

  130. Mantovani A et al (2013) Macrophage plasticity and polarization in tissue repair and remodelling. J Pathol 229(2):176–185

    Article  CAS  Google Scholar 

  131. Yuan J et al (2017) M2 microglia promotes neurogenesis and oligodendrogenesis from neural stem/progenitor cells via the PPARγ signaling pathway. Oncotarget 8(12):19855–19865

    Article  Google Scholar 

  132. Ghaddar B et al (2021) Cellular mechanisms participating in brain repair of adult zebrafish and mammals after injury. Cells 10(2):391

    Article  CAS  Google Scholar 

  133. Ekdahl CT, Kokaia Z, Lindvall O (2009) Brain inflammation and adult neurogenesis: the dual role of microglia. Neuroscience 158(3):1021–1029

    Article  CAS  Google Scholar 

  134. Augusto-Oliveira M et al (2019) What do microglia really do in healthy adult brain? Cells 8(10):1293

    Article  CAS  Google Scholar 

  135. Sato K (2015) Effects of microglia on neurogenesis. Glia 63(8):1394–1405

    Article  Google Scholar 

  136. Song H, Stevens CF, Gage FH (2002) Astroglia induce neurogenesis from adult neural stem cells. Nature 417(6884):39–44

    Article  CAS  Google Scholar 

  137. Cassé F, Richetin K, Toni N (2018) Astrocytes’ contribution to adult neurogenesis in physiology and Alzheimer’s disease. Front Cell Neurosci 12:432

    Article  Google Scholar 

  138. Cao X et al (2013) Astrocytic adenosine 5’-triphosphate release regulates the proliferation of neural stem cells in the adult hippocampus. Stem Cells 31(8):1633–1643

    Article  CAS  Google Scholar 

  139. Kirby ED et al (2013) Acute stress enhances adult rat hippocampal neurogenesis and activation of newborn neurons via secreted astrocytic FGF2. Elife 2:e00362

    Article  Google Scholar 

  140. Woodbury ME, Ikezu T (2014) Fibroblast growth factor-2 signaling in neurogenesis and neurodegeneration. J Neuroimmune Pharmacol 9(2):92–101

    Article  Google Scholar 

  141. Raballo R et al (2000) Basic fibroblast growth factor (Fgf2) is necessary for cell proliferation and neurogenesis in the developing cerebral cortex. J Neurosci 20(13):5012–5023

    Article  CAS  Google Scholar 

  142. Guo Y et al (2013) The effects of astrocytes on differentiation of neural stem cells are influenced by knock-down of the glutamate transporter, GLT-1. Neurochem Int 63(5):498–506

    Article  CAS  Google Scholar 

  143. Lu Z, Kipnis J (2010) Thrombospondin 1–a key astrocyte-derived neurogenic factor. Faseb j 24(6):1925–1934

    Article  CAS  Google Scholar 

  144. Ueki T et al (2003) A novel secretory factor, Neurogenesin-1, provides neurogenic environmental cues for neural stem cells in the adult hippocampus. J Neurosci 23(37):11732–11740

    Article  CAS  Google Scholar 

  145. Yanagisawa M et al (2001) Fate alteration of neuroepithelial cells from neurogenesis to astrocytogenesis by bone morphogenetic proteins. Neurosci Res 41(4):391–396

    Article  CAS  Google Scholar 

  146. Barkho BZ et al (2006) Identification of astrocyte-expressed factors that modulate neural stem/progenitor cell differentiation. Stem Cells Dev 15(3):407–421

    Article  CAS  Google Scholar 

  147. Griffiths BB, Bhutani A, Stary CM (2020) Adult neurogenesis from reprogrammed astrocytes. Neural Regen Res 15(6):973–979

    Article  CAS  Google Scholar 

  148. Sultan S et al (2015) Synaptic integration of adult-born hippocampal neurons is locally controlled by astrocytes. Neuron 88(5):957–972

    Article  CAS  Google Scholar 

  149. Chen Z, Palmer TD (2013) Differential roles of TNFR1 and TNFR2 signaling in adult hippocampal neurogenesis. Brain Behav Immun 30:45–53

    Article  CAS  Google Scholar 

  150. MacEwan DJ (2002) TNF ligands and receptors–a matter of life and death. Br J Pharmacol 135(4):855–875

    Article  CAS  Google Scholar 

  151. Covacu R et al (2009) TLR activation induces TNF-alpha production from adult neural stem/progenitor cells. J Immunol 182(11):6889–6895

    Article  CAS  Google Scholar 

  152. Pan W et al (1997) Tumor necrosis factor-alpha: a neuromodulator in the CNS. Neurosci Biobehav Rev 21(5):603–613

    Article  CAS  Google Scholar 

  153. Wu JP et al (2000) Tumor necrosis factor-alpha modulates the proliferation of neural progenitors in the subventricular/ventricular zone of adult rat brain. Neurosci Lett 292(3):203–206

    Article  CAS  Google Scholar 

  154. Bernardino L et al (2008) Tumor necrosis factor-alpha modulates survival, proliferation, and neuronal differentiation in neonatal subventricular zone cell cultures. Stem Cells 26(9):2361–2371

    Article  CAS  Google Scholar 

  155. Iosif RE et al (2006) Tumor necrosis factor receptor 1 is a negative regulator of progenitor proliferation in adult hippocampal neurogenesis. J Neurosci 26(38):9703–9712

    Article  CAS  Google Scholar 

  156. Yang S et al (2018) Role of TNF-TNF receptor 2 signal in regulatory T cells and its therapeutic implications. Front Immunol 9:784

    Article  Google Scholar 

  157. Cacci E, Claasen JH, Kokaia Z (2005) Microglia-derived tumor necrosis factor-alpha exaggerates death of newborn hippocampal progenitor cells in vitro. J Neurosci Res 80(6):789–797

    Article  CAS  Google Scholar 

  158. Wong G, Goldshmit Y, Turnley AM (2004) Interferon-gamma but not TNF alpha promotes neuronal differentiation and neurite outgrowth of murine adult neural stem cells. Exp Neurol 187(1):171–177

    Article  CAS  Google Scholar 

  159. Yli-Karjanmaa M et al (2019) TNF deficiency causes alterations in the spatial organization of neurogenic zones and alters the number of microglia and neurons in the cerebral cortex. Brain Behav Immun 82:279–297

    Article  CAS  Google Scholar 

  160. Hiyama A et al (2013) A complex interaction between Wnt signaling and TNF-α in nucleus pulposus cells. Arthritis Res Ther 15(6):R189

    Article  Google Scholar 

  161. Hayden MS, Ghosh S (2014) Regulation of NF-κB by TNF family cytokines. Semin Immunol 26(3):253–266

    Article  CAS  Google Scholar 

  162. Kim M et al (2018) TNF-α induces human neural progenitor cell survival after oxygen-glucose deprivation by activating the NF-κB pathway. Exp Mol Med 50(4):1–14

    Article  Google Scholar 

  163. Belenguer G et al (2021) Adult neural stem cells are alerted by systemic inflammation through TNF-α receptor signaling. Cell Stem Cell 28(2):285-299.e9

    Article  CAS  Google Scholar 

  164. Wu MD et al (2013) Sustained IL-1β expression impairs adult hippocampal neurogenesis independent of IL-1 signaling in nestin+ neural precursor cells. Brain Behav Immun 32:9–18

    Article  CAS  Google Scholar 

  165. Ryan SM et al (2013) Negative regulation of TLX by IL-1β correlates with an inhibition of adult hippocampal neural precursor cell proliferation. Brain Behav Immun 33:7–13

    Article  CAS  Google Scholar 

  166. Gemma C et al (2007) Blockade of caspase-1 increases neurogenesis in the aged hippocampus. Eur J Neurosci 26(10):2795–2803

    Article  Google Scholar 

  167. Pawley LC et al (2020) Chronic intrahippocampal interleukin-1β overexpression in adolescence impairs hippocampal neurogenesis but not neurogenesis-associated cognition. Brain Behav Immun 83:172–179

    Article  CAS  Google Scholar 

  168. Wu MD et al (2012) Adult murine hippocampal neurogenesis is inhibited by sustained IL-1β and not rescued by voluntary running. Brain Behav Immun 26(2):292–300

    Article  CAS  Google Scholar 

  169. Hueston CM et al (2018) Chronic interleukin-1β in the dorsal hippocampus impairs behavioural pattern separation. Brain Behav Immun 74:252–264

    Article  CAS  Google Scholar 

  170. Monje ML, Toda H, Palmer TD (2003) Inflammatory blockade restores adult hippocampal neurogenesis. Science 302(5651):1760–1765

    Article  CAS  Google Scholar 

  171. Park S-Y, Kang M-J, Han J-S (2018) Interleukin-1 beta promotes neuronal differentiation through the Wnt5a/RhoA/JNK pathway in cortical neural precursor cells. Mol Brain 11(1):39

    Article  Google Scholar 

  172. Koo JW, Duman RS (2008) IL-1beta is an essential mediator of the antineurogenic and anhedonic effects of stress. Proc Natl Acad Sci U S A 105(2):751–756

    Article  CAS  Google Scholar 

  173. Wang X et al (2007) Interleukin-1beta mediates proliferation and differentiation of multipotent neural precursor cells through the activation of SAPK/JNK pathway. Mol Cell Neurosci 36(3):343–354

    Article  Google Scholar 

  174. Rolls A et al (2007) Toll-like receptors modulate adult hippocampal neurogenesis. Nat Cell Biol 9(9):1081–1088

    Article  CAS  Google Scholar 

  175. Hirano T et al (1985) Purification to homogeneity and characterization of human B-cell differentiation factor (BCDF or BSFp-2). Proc Natl Acad Sci U S A 82(16):5490–5494

    Article  CAS  Google Scholar 

  176. Erta M, Quintana A, Hidalgo J (2012) Interleukin-6, a major cytokine in the central nervous system. Int J Biol Sci 8(9):1254–1266

    Article  CAS  Google Scholar 

  177. Vallières L et al (2002) Reduced hippocampal neurogenesis in adult transgenic mice with chronic astrocytic production of interleukin-6. J Neurosci 22(2):486–492

    Article  Google Scholar 

  178. Bowen KK, Dempsey RJ, Vemuganti R (2011) Adult interleukin-6 knockout mice show compromised neurogenesis. NeuroReport 22(3):126–130

    Article  CAS  Google Scholar 

  179. Bongartz H et al (2021) Glucocorticoids attenuate interleukin-6-induced c-Fos and Egr1 expression and impair neuritogenesis in PC12 cells. J Neurochem 157(3):532–549

    Article  CAS  Google Scholar 

  180. Islam O et al (2009) Interleukin-6 and neural stem cells: more than gliogenesis. Mol Biol Cell 20(1):188–199

    Article  CAS  Google Scholar 

  181. Turnbull AV, Rivier CL (1999) Regulation of the hypothalamic-pituitary-adrenal axis by cytokines: actions and mechanisms of action. Physiol Rev 79(1):1–71

    Article  CAS  Google Scholar 

  182. Zarković M et al (2008) Cortisol response to ACTH stimulation correlates with blood interleukin 6 concentration in healthy humans. Eur J Endocrinol 159(5):649–652

    Article  Google Scholar 

  183. Gould E et al (1992) Adrenal hormones suppress cell division in the adult rat dentate gyrus. J Neurosci 12(9):3642–3650

    Article  CAS  Google Scholar 

  184. Odaka H, Adachi N, Numakawa T (2017) Impact of glucocorticoid on neurogenesis. Neural Regen Res 12(7):1028–1035

    Article  CAS  Google Scholar 

  185. Kong X et al (2019) JAK2/STAT3 signaling mediates IL-6-inhibited neurogenesis of neural stem cells through DNA demethylation/methylation. Brain Behav Immun 79:159–173

    Article  CAS  Google Scholar 

  186. Oh J et al (2010) Astrocyte-derived interleukin-6 promotes specific neuronal differentiation of neural progenitor cells from adult hippocampus. J Neurosci Res 88(13):2798–2809

    CAS  Google Scholar 

  187. Burmeister AR, Marriott I (2018) The interleukin-10 family of cytokines and their role in the CNS. Front Cell Neurosci 12:458

    Article  CAS  Google Scholar 

  188. Lobo-Silva D et al (2016) Balancing the immune response in the brain: IL-10 and its regulation. J Neuroinflammation 13(1):297

    Article  Google Scholar 

  189. Perez-Asensio FJ et al (2013) Interleukin-10 regulates progenitor differentiation and modulates neurogenesis in adult brain. J Cell Sci 126(Pt 18):4208–4219

    CAS  Google Scholar 

  190. Pereira L et al (2015) IL-10 regulates adult neurogenesis by modulating ERK and STAT3 activity. Front Cell Neurosci 9:57

    Article  Google Scholar 

  191. Kiyota T et al (2012) AAV serotype 2/1-mediated gene delivery of anti-inflammatory interleukin-10 enhances neurogenesis and cognitive function in APP+PS1 mice. Gene Ther 19(7):724–733

    Article  CAS  Google Scholar 

  192. Li Z et al (2013) Inhibitory effect of IL-17 on neural stem cell proliferation and neural cell differentiation. BMC Immunol 14:20

    Article  CAS  Google Scholar 

  193. Liu Q et al (2014) Interleukin-17 inhibits adult hippocampal neurogenesis. Sci Rep 4:7554

    Article  CAS  Google Scholar 

  194. Cui L et al (2019) Sleep deprivation inhibits proliferation of adult hippocampal neural progenitor cells by a mechanism involving IL-17 and p38 MAPK. Brain Res 1714:81–87

    Article  CAS  Google Scholar 

  195. Cha H et al (2007) A functional role for p38 MAPK in modulating mitotic transit in the absence of stress. J Biol Chem 282(31):22984–22992

    Article  CAS  Google Scholar 

  196. Zhang Y et al (2018) Enriched environment promotes post-stroke neurogenesis through NF-κB-mediated secretion of IL-17A from astrocytes. Brain Res 1687:20–31

    Article  CAS  Google Scholar 

  197. Tfilin M, Turgeman G (2019) Interleukine-17 administration modulates adult hippocampal neurogenesis and improves spatial learning in mice. J Mol Neurosci 69(2):254–263

    Article  CAS  Google Scholar 

  198. Chisholm SP et al (2012) Interleukin-17A increases neurite outgrowth from adult postganglionic sympathetic neurons. J Neurosci 32(4):1146–1155

    Article  CAS  Google Scholar 

  199. Habash T et al (2015) The proinflammatory cytokine, interleukin-17A, augments mitochondrial function and neurite outgrowth of cultured adult sensory neurons derived from normal and diabetic rats. Exp Neurol 273:177–189

    Article  CAS  Google Scholar 

  200. Choi P, Reiser H (1998) IL-4: role in disease and regulation of production. Clin Exp Immunol 113(3):317–319

    Article  CAS  Google Scholar 

  201. Gadani SP et al (2012) IL-4 in the brain: a cytokine to remember. J Immunol 189(9):4213–4219

    Article  CAS  Google Scholar 

  202. Spittau B (2017) Interleukin 4-induced neuroprotection and regulation of microglia activation as a therapeutic approach in the MPTP model of Parkinson’s disease. Neural Regen Res 12(9):1433–1434

    Article  CAS  Google Scholar 

  203. Chao CC, Molitor TW, Hu S (1993) Neuroprotective role of IL-4 against activated microglia. J Immunol 151(3):1473–1481

    Article  CAS  Google Scholar 

  204. Zhao X et al (2015) Neuronal interleukin-4 as a modulator of microglial pathways and ischemic brain damage. J Neurosci 35(32):11281–11291

    Article  CAS  Google Scholar 

  205. Zhang J et al (2021) IL4-driven microglia modulate stress resilience through BDNF-dependent neurogenesis. Sci Adv 7(12):eabb9888

  206. Bhattarai P et al (2016) IL4/STAT6 signaling activates neural stem cell proliferation and neurogenesis upon amyloid-β42 aggregation in adult zebrafish brain. Cell Rep 17(4):941–948

    Article  CAS  Google Scholar 

  207. Nunan R et al (2014) Microglial VPAC1R mediates a novel mechanism of neuroimmune-modulation of hippocampal precursor cells via IL-4 release. Glia 62(8):1313–1327

    Article  Google Scholar 

  208. Lu M, Grove EA, Miller RJ (2002) Abnormal development of the hippocampal dentate gyrus in mice lacking the CXCR4 chemokine receptor. Proc Natl Acad Sci U S A 99(10):7090–7095

    Article  CAS  Google Scholar 

  209. Imitola J et al (2004) Directed migration of neural stem cells to sites of CNS injury by the stromal cell-derived factor 1alpha/CXC chemokine receptor 4 pathway. Proc Natl Acad Sci U S A 101(52):18117–18122

    Article  CAS  Google Scholar 

  210. Wang Y et al (2016) CXCR7 participates in CXCL12-mediated cell cycle and proliferation regulation in mouse neural progenitor cells. Curr Mol Med 16(8):738–746

    Article  CAS  Google Scholar 

  211. Kolodziej A et al (2008) Tonic activation of CXC chemokine receptor 4 in immature granule cells supports neurogenesis in the adult dentate gyrus. J Neurosci 28(17):4488–4500

    Article  CAS  Google Scholar 

  212. Wu Y et al (2009) CXCL12 increases human neural progenitor cell proliferation through Akt-1/FOXO3a signaling pathway. J Neurochem 109(4):1157–1167

    Article  CAS  Google Scholar 

  213. Schmidt M et al (2002) Cell cycle inhibition by FoxO forkhead transcription factors involves downregulation of cyclin D. Mol Cell Biol 22(22):7842–7852

    Article  CAS  Google Scholar 

  214. Hauck L et al (2007) Critical role for FoxO3a-dependent regulation of p21CIP1/WAF1 in response to statin signaling in cardiac myocytes. Circ Res 100(1):50–60

    Article  CAS  Google Scholar 

  215. Rathbone CR, Booth FW, Lees SJ (2008) FoxO3a preferentially induces p27Kip1 expression while impairing muscle precursor cell-cycle progression. Muscle Nerve 37(1):84–89

    Article  CAS  Google Scholar 

  216. Merino JJ et al (2015) CXCR4/CXCR7 molecular involvement in neuronal and neural progenitor migration: focus in CNS repair. J Cell Physiol 230(1):27–42

    Article  CAS  Google Scholar 

  217. Chen Q et al (2015) CXCR7 mediates neural progenitor cells migration to CXCL12 independent of CXCR4. Stem Cells 33(8):2574–2585

    Article  CAS  Google Scholar 

  218. Molyneaux KA et al (2003) The chemokine SDF1/CXCL12 and its receptor CXCR4 regulate mouse germ cell migration and survival. Development 130(18):4279–4286

    Article  CAS  Google Scholar 

  219. Burns JM et al (2006) A novel chemokine receptor for SDF-1 and I-TAC involved in cell survival, cell adhesion, and tumor development. J Exp Med 203(9):2201–2213

    Article  CAS  Google Scholar 

  220. Zhu B et al (2012) CXCL12 enhances human neural progenitor cell survival through a CXCR7- and CXCR4-mediated endocytotic signaling pathway. Stem Cells 30(11):2571–2583

    Article  CAS  Google Scholar 

  221. Widera D et al (2004) MCP-1 induces migration of adult neural stem cells. Eur J Cell Biol 83(8):381–387

    Article  CAS  Google Scholar 

  222. Belmadani A et al (2006) Chemokines regulate the migration of neural progenitors to sites of neuroinflammation. J Neurosci 26(12):3182–3191

    Article  CAS  Google Scholar 

  223. Lee H et al (2013) Bone-marrow-derived mesenchymal stem cells promote proliferation and neuronal differentiation of Niemann-Pick type C mouse neural stem cells by upregulation and secretion of CCL2. Hum Gene Ther 24(7):655–669

    Article  CAS  Google Scholar 

  224. Liu XS et al (2007) Chemokine ligand 2 (CCL2) induces migration and differentiation of subventricular zone cells after stroke. J Neurosci Res 85(10):2120–2125

    Article  CAS  Google Scholar 

  225. Yan YP et al (2007) Monocyte chemoattractant protein-1 plays a critical role in neuroblast migration after focal cerebral ischemia. J Cereb Blood Flow Metab 27(6):1213–1224

    Article  CAS  Google Scholar 

  226. Lee SW et al (2013) Absence of CCL2 is sufficient to restore hippocampal neurogenesis following cranial irradiation. Brain Behav Immun 30:33–44

    Article  CAS  Google Scholar 

  227. Mizuno T et al (2003) Production and neuroprotective functions of fractalkine in the central nervous system. Brain Res 979(1–2):65–70

    Article  CAS  Google Scholar 

  228. Harrison JK et al (1998) Role for neuronally derived fractalkine in mediating interactions between neurons and CX3CR1-expressing microglia. Proc Natl Acad Sci U S A 95(18):10896–10901

    Article  CAS  Google Scholar 

  229. Kozareva DA et al (2019) A role for the orphan nuclear receptor TLX in the interaction between neural precursor cells and microglia. Neuronal Signal 3(1):Ns20180177

    Article  CAS  Google Scholar 

  230. Sellner S et al (2016) Microglial CX3CR1 promotes adult neurogenesis by inhibiting Sirt 1/p65 signaling independent of CX3CL1. Acta Neuropathol Commun 4(1):102

    Article  Google Scholar 

  231. Bachstetter AD et al (2011) Fractalkine and CX 3 CR1 regulate hippocampal neurogenesis in adult and aged rats. Neurobiol Aging 32(11):2030–2044

    Article  CAS  Google Scholar 

  232. Rogers JT et al (2011) CX3CR1 deficiency leads to impairment of hippocampal cognitive function and synaptic plasticity. J Neurosci 31(45):16241–16250

    Article  CAS  Google Scholar 

  233. Islam MM, Zhang CL (2015) TLX: A master regulator for neural stem cell maintenance and neurogenesis. Biochim Biophys Acta 1849(2):210–216

    Article  CAS  Google Scholar 

  234. Kozareva DA et al (2019) Absence of the neurogenesis-dependent nuclear receptor TLX induces inflammation in the hippocampus. J Neuroimmunol 331:87–96

    Article  CAS  Google Scholar 

  235. Heidari A, Rostam-Abadi Y, Rezaei N (2021) The immune system and autism spectrum disorder: association and therapeutic challenges. Acta Neurobiol Exp (Wars) 81(3):249–263

    Article  Google Scholar 

  236. Zhu S et al (2021) Tumor-associated macrophages: role in tumorigenesis and immunotherapy implications. J Cancer 12(1):54–64

    Article  CAS  Google Scholar 

  237. Heidari A, Sharif PM, Rezaei N (2021) The association between tumor-associated macrophages and glioblastoma: a potential target for therapy. Curr Pharm Des 27(46):4650–4662

    Article  CAS  Google Scholar 

  238. Morisse MC et al (2018) Interactions between tumor-associated macrophages and tumor cells in glioblastoma: unraveling promising targeted therapies. Expert Rev Neurother 18(9):729–737

    Article  CAS  Google Scholar 

  239. Ponomarev ED et al (2007) CNS-derived interleukin-4 is essential for the regulation of autoimmune inflammation and induces a state of alternative activation in microglial cells. J Neurosci 27(40):10714–10721

    Article  CAS  Google Scholar 

  240. Orihuela R, McPherson CA, Harry GJ (2016) Microglial M1/M2 polarization and metabolic states. Br J Pharmacol 173(4):649–665

    Article  CAS  Google Scholar 

  241. Yao K, Zu H-B (2020) Microglial polarization: novel therapeutic mechanism against Alzheimer’s disease. Inflammopharmacology 28(1):95–110

    Article  Google Scholar 

  242. Boche D et al (2006) TGFβ1 regulates the inflammatory response during chronic neurodegeneration. Neurobiol Dis 22(3):638–650

    Article  CAS  Google Scholar 

  243. Suh H-S et al (2013) Insulin-like growth factor 1 and 2 (IGF1, IGF2) expression in human microglia: differential regulation by inflammatory mediators. J Neuroinflammation 10(1):1–12

    Article  Google Scholar 

  244. Mosser DM (2003) The many faces of macrophage activation. J Leukoc Biol 73(2):209–212

    Article  CAS  Google Scholar 

  245. Mosser DM, Edwards JP (2008) Exploring the full spectrum of macrophage activation. Nat Rev Immunol 8(12):958–969

    Article  CAS  Google Scholar 

  246. Peng H et al (2017) Increased expression of M1 and M2 phenotypic markers in isolated microglia after four-day binge alcohol exposure in male rats. Alcohol 62:29–40

    Article  CAS  Google Scholar 

  247. Sofroniew MV, Vinters HV (2010) Astrocytes: biology and pathology. Acta Neuropathol 119(1):7–35

    Article  Google Scholar 

  248. Zhao S et al (2021) Astrocyte-derived extracellular vesicles: a double-edged sword in central nervous system disorders. Neurosci Biobehav Rev 125:148–159

    Article  CAS  Google Scholar 

  249. Luarte A et al (2017) Astrocytes at the hub of the stress response: potential modulation of neurogenesis by miRNAs in astrocyte-derived exosomes. Stem Cells Int 2017:1719050

    Article  Google Scholar 

  250. Zhang Y et al (2020) Exosome: a review of its classification, isolation techniques, storage, diagnostic and targeted therapy applications. Int J Nanomedicine 15:6917–6934

    Article  CAS  Google Scholar 

  251. Zhao C et al (2009) A feedback regulatory loop involving microRNA-9 and nuclear receptor TLX in neural stem cell fate determination. Nat Struct Mol Biol 16(4):365–371

    Article  CAS  Google Scholar 

  252. Neo WH et al (2014) MicroRNA miR-124 controls the choice between neuronal and astrocyte differentiation by fine-tuning Ezh2 expression. J Biol Chem 289(30):20788–20801

    Article  CAS  Google Scholar 

  253. Han J et al (2016) Functional implications of miR-19 in the migration of newborn neurons in the adult brain. Neuron 91(1):79–89

    Article  CAS  Google Scholar 

  254. Santos MCT et al (2015) miR-124, -128, and -137 orchestrate neural differentiation by acting on overlapping gene sets containing a highly connected transcription factor network. Stem Cells 34(1):220–232

    Article  Google Scholar 

  255. Morteau O (2006) CHEMOKINES. In: Laurent GJ, Shapiro SD (eds) Encyclopedia of respiratory medicine. Academic Press, Oxford, pp 356–365

    Chapter  Google Scholar 

  256. Glick D, Barth S, Macleod KF (2010) Autophagy: cellular and molecular mechanisms. J Pathol 221(1):3–12

    Article  CAS  Google Scholar 

  257. Ghavami S et al (2014) Autophagy and apoptosis dysfunction in neurodegenerative disorders. Prog Neurobiol 112:24–49

    Article  CAS  Google Scholar 

  258. Eshraghi M et al (2021) Alzheimer’s disease pathogenesis: role of autophagy and mitophagy focusing in microglia. Int J Mol Sci 22(7):3330

    Article  CAS  Google Scholar 

  259. Shi RY et al (2014) BNIP3 interacting with LC3 triggers excessive mitophagy in delayed neuronal death in stroke. CNS Neurosci Ther 20(12):1045–1055

    Article  CAS  Google Scholar 

  260. Wu Q et al (2018) Mdivi-1 alleviates blood-brain barrier disruption and cell death in experimental traumatic brain injury by mitigating autophagy dysfunction and mitophagy activation. Int J Biochem Cell Biol 94:44–55

    Article  CAS  Google Scholar 

  261. Eshraghi M et al (2022) Enhancing autophagy in Alzheimer’s disease through drug repositioning. Pharmacol Ther 237:108171

    Article  CAS  Google Scholar 

  262. Ponpuak M et al (2015) Secretory autophagy. Curr Opin Cell Biol 35:106–116

    Article  CAS  Google Scholar 

  263. Jiang S et al (2013) Secretory versus degradative autophagy: unconventional secretion of inflammatory mediators. J Innate Immun 5(5):471–479

    Article  CAS  Google Scholar 

  264. Martinelli S et al (2021) Stress-primed secretory autophagy promotes extracellular BDNF maturation by enhancing MMP9 secretion. Nat Commun 12(1):1–17

    Article  Google Scholar 

  265. Yeganeh B et al (2015) Chapter 5 - Induction of autophagy: role of endoplasmic reticulum stress and unfolded protein response. In: Hayat MA (ed) Autophagy: Cancer, Other Pathologies, Inflammation, Immunity, Infection, and Aging. Academic Press, Amsterdam, pp 91–101

    Chapter  Google Scholar 

  266. Wang FM, Chen YJ, Ouyang HJ (2011) Regulation of unfolded protein response modulator XBP1s by acetylation and deacetylation. Biochem J 433(1):245–252

    Article  CAS  Google Scholar 

  267. Tavernier SJ et al (2017) Regulated IRE1-dependent mRNA decay sets the threshold for dendritic cell survival. Nat Cell Biol 19(6):698–710

    Article  CAS  Google Scholar 

  268. Gilhus NE, Deuschl G (2019) Neuroinflammation — a common thread in neurological disorders. Nat Rev Neurol 15(8):429–430

    Article  Google Scholar 

  269. Chintamen S, Imessadouene F, Kernie SG (2020) Immune regulation of adult neurogenic niches in health and disease. Front Cell Neurosci 14:571071

    Article  CAS  Google Scholar 

  270. Simon DW et al (2017) The far-reaching scope of neuroinflammation after traumatic brain injury. Nat Rev Neurol 13(3):171–191

    Article  Google Scholar 

  271. Mishra A et al (2021) Neuroinflammation in neurological disorders: pharmacotherapeutic targets from bench to bedside. Metab Brain Dis 36(7):1591–1626

    Article  Google Scholar 

  272. Hensley K (2010) Neuroinflammation in Alzheimer’s disease: mechanisms, pathologic consequences, and potential for therapeutic manipulation. J Alzheimers Dis 21(1):1–14

    Article  CAS  Google Scholar 

  273. Leng F, Edison P (2021) Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here? Nat Rev Neurol 17(3):157–172

    Article  Google Scholar 

  274. Heneka MT et al (2015) Neuroinflammation in Alzheimer’s disease. Lancet Neurol 14(4):388–405

    Article  CAS  Google Scholar 

  275. Wen PH et al (2004) The presenilin-1 familial Alzheimer disease mutant P117L impairs neurogenesis in the hippocampus of adult mice. Exp Neurol 188(2):224–237

    Article  CAS  Google Scholar 

  276. Choi SH et al (2008) Non-cell-autonomous effects of presenilin 1 variants on enrichment-mediated hippocampal progenitor cell proliferation and differentiation. Neuron 59(4):568–580

    Article  CAS  Google Scholar 

  277. Donovan MH et al (2006) Decreased adult hippocampal neurogenesis in the PDAPP mouse model of Alzheimer’s disease. J Comp Neurol 495(1):70–83

    Article  Google Scholar 

  278. López-Toledano MA, Shelanski ML (2007) Increased neurogenesis in young transgenic mice overexpressing human APP(Sw, Ind). J Alzheimers Dis 12(3):229–240

    Article  Google Scholar 

  279. Jin K et al (2004) Increased hippocampal neurogenesis in Alzheimer’s disease. Proc Natl Acad Sci U S A 101(1):343–347

    Article  CAS  Google Scholar 

  280. Ghosal K, Stathopoulos A, Pimplikar SW (2010) APP intracellular domain impairs adult neurogenesis in transgenic mice by inducing neuroinflammation. PLoS ONE 5(7):e11866

    Article  Google Scholar 

  281. Zhang Y et al (2020) Depletion of NK cells improves cognitive function in the Alzheimer disease mouse model. J Immunol 205(2):502–510

    Article  CAS  Google Scholar 

  282. Komleva YK et al (2022) Expression of NLRP3 inflammasomes in neurogenic niche contributes to the effect of spatial learning in physiological conditions but not in Alzheimer’s type neurodegeneration. Cell Mol Neurobiol 42(5):1355–1371

    Article  CAS  Google Scholar 

  283. Bassani TB et al (2018) Decrease in adult neurogenesis and neuroinflammation are involved in spatial memory impairment in the streptozotocin-induced model of sporadic Alzheimer’s disease in rats. Mol Neurobiol 55(5):4280–4296

    CAS  Google Scholar 

  284. Mishra SK et al (2018) Intracerebroventricular streptozotocin impairs adult neurogenesis and cognitive functions via regulating neuroinflammation and insulin signaling in adult rats. Neurochem Int 113:56–68

    Article  CAS  Google Scholar 

  285. Baker SA, Baker KA, Hagg T (2004) Dopaminergic nigrostriatal projections regulate neural precursor proliferation in the adult mouse subventricular zone. Eur J Neurosci 20(2):575–579

    Article  Google Scholar 

  286. Höglinger GU et al (2004) Dopamine depletion impairs precursor cell proliferation in Parkinson disease. Nat Neurosci 7(7):726–735

    Article  Google Scholar 

  287. Worlitzer MM et al (2012) Anti-inflammatory treatment induced regenerative oligodendrogenesis in parkinsonian mice. Stem Cell Res Ther 3(4):33

    Article  CAS  Google Scholar 

  288. McGeer PL et al (1988) Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology 38(8):1285–1291

    Article  CAS  Google Scholar 

  289. Lim J, Bang Y, Choi HJ (2018) Abnormal hippocampal neurogenesis in Parkinson’s disease: relevance to a new therapeutic target for depression with Parkinson’s disease. Arch Pharm Res 41(10):943–954

    Article  CAS  Google Scholar 

  290. Calabrese V et al (2018) Aging and Parkinson’s disease: inflammaging, neuroinflammation and biological remodeling as key factors in pathogenesis. Free Radic Biol Med 115:80–91

    Article  CAS  Google Scholar 

  291. Gerhard A et al (2006) In vivo imaging of microglial activation with [11C](R)-PK11195 PET in idiopathic Parkinson’s disease. Neurobiol Dis 21(2):404–412

    Article  CAS  Google Scholar 

  292. Vawter MP et al (1996) TGFβ1 and TGFβ2 concentrations are elevated in Parkinson’s disease in ventricular cerebrospinal fluid. Exp Neurol 142(2):313–322

    Article  CAS  Google Scholar 

  293. William Langston J (1985) MPTP and parkinson’s disease. Trends Neurosci 8:79–83

    Article  Google Scholar 

  294. Kurkowska-Jastrzebska I et al (1999) The inflammatory reaction following 1-methyl-4-phenyl-1,2,3, 6-tetrahydropyridine intoxication in mouse. Exp Neurol 156(1):50–61

    Article  CAS  Google Scholar 

  295. Klein C et al (2016) Physical exercise counteracts MPTP-induced changes in neural precursor cell proliferation in the hippocampus and restores spatial learning but not memory performance in the water maze. Behav Brain Res 307:227–238

    Article  CAS  Google Scholar 

  296. Zhang T et al (2016) MPTP impairs dopamine D1 receptor-mediated survival of newborn neurons in ventral hippocampus to cause depressive-like behaviors in adult mice. Front Mol Neurosci 9:101

    Article  Google Scholar 

  297. Chen JF et al (2018) Intracerebroventricularly-administered 1-methyl-4-phenylpyridinium ion and brain-derived neurotrophic factor affect catecholaminergic nerve terminals and neurogenesis in the hippocampus, striatum and substantia nigra. Neural Regen Res 13(4):717–726

    Article  CAS  Google Scholar 

  298. Park JH, Enikolopov G (2010) Transient elevation of adult hippocampal neurogenesis after dopamine depletion. Exp Neurol 222(2):267–276

    Article  CAS  Google Scholar 

  299. Singh S et al (2019) Enhanced neuroinflammation and oxidative stress are associated with altered hippocampal neurogenesis in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine treated mice. Behav Pharmacol 30(8):689–699

    Article  CAS  Google Scholar 

  300. He XJ et al (2006) Evidence of apoptosis in the subventricular zone and rostral migratory stream in the MPTP mouse model of Parkinson disease. J Neuropathol Exp Neurol 65(9):873–882

    Article  CAS  Google Scholar 

  301. Minger SL et al (2007) Endogenous neurogenesis in the human brain following cerebral infarction. Regen Med 2(1):69–74

    Article  Google Scholar 

  302. Wang X et al (2012) Conditional depletion of neurogenesis inhibits long-term recovery after experimental stroke in mice. PLoS ONE 7(6):e38932

    Article  CAS  Google Scholar 

  303. Sun C et al (2013) Conditional ablation of neuroprogenitor cells in adult mice impedes recovery of poststroke cognitive function and reduces synaptic connectivity in the perforant pathway. J Neurosci 33(44):17314–17325

    Article  CAS  Google Scholar 

  304. Tang H et al (2009) Effect of neural precursor proliferation level on neurogenesis in rat brain during aging and after focal ischemia. Neurobiol Aging 30(2):299–308

    Article  Google Scholar 

  305. Zhang RL et al (2006) Reduction of the cell cycle length by decreasing G1 phase and cell cycle reentry expand neuronal progenitor cells in the subventricular zone of adult rat after stroke. J Cereb Blood Flow Metab 26(6):857–863

    Article  Google Scholar 

  306. Jin K et al (2003) Directed migration of neuronal precursors into the ischemic cerebral cortex and striatum. Mol Cell Neurosci 24(1):171–189

    Article  CAS  Google Scholar 

  307. Arvidsson A et al (2002) Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med 8(9):963–970

    Article  CAS  Google Scholar 

  308. Iosif RE et al (2008) Suppression of stroke-induced progenitor proliferation in adult subventricular zone by tumor necrosis factor receptor 1. J Cereb Blood Flow Metab 28(9):1574–1587

    Article  CAS  Google Scholar 

  309. Wen SJ et al (2021) Effects of primary microglia and astrocytes on neural stem cells in in vitro and in vivo models of ischemic stroke. Neural Regen Res 16(9):1677–1685

    Article  CAS  Google Scholar 

  310. Jia C et al (2020) Vitronectin mitigates stroke-increased neurogenesis only in female mice and through FAK-regulated IL-6. Exp Neurol 323:113088

    Article  CAS  Google Scholar 

  311. Pradillo JM et al (2017) Reparative effects of interleukin-1 receptor antagonist in young and aged/co-morbid rodents after cerebral ischemia. Brain Behav Immun 61:117–126

    Article  CAS  Google Scholar 

  312. Ng SY and Lee AYW (2019) Traumatic brain injuries: pathophysiology and potential therapeutic targets. Front Cell Neurosci 13:528

  313. Schimmel SJ, Acosta S, Lozano D (2017) Neuroinflammation in traumatic brain injury: a chronic response to an acute injury. Brain Circ 3(3):135–142

    Article  Google Scholar 

  314. Lotocki G et al (2009) Alterations in blood-brain barrier permeability to large and small molecules and leukocyte accumulation after traumatic brain injury: effects of post-traumatic hypothermia. J Neurotrauma 26(7):1123–1134

    Article  Google Scholar 

  315. van Vliet EA et al (2020) Long-lasting blood-brain barrier dysfunction and neuroinflammation after traumatic brain injury. Neurobiol Dis 145:105080

    Article  Google Scholar 

  316. Manivannan S et al (2021) Neurogenesis after traumatic brain injury - the complex role of HMGB1 and neuroinflammation. Neuropharmacology 183:108400

    Article  CAS  Google Scholar 

  317. Braun H, Schäfer K, Höllt V (2002) BetaIII tubulin-expressing neurons reveal enhanced neurogenesis in hippocampal and cortical structures after a contusion trauma in rats. J Neurotrauma 19(8):975–983

    Article  Google Scholar 

  318. Ramaswamy S et al (2005) Cellular proliferation and migration following a controlled cortical impact in the mouse. Brain Res 1053(1–2):38–53

    Article  CAS  Google Scholar 

  319. Willis EF et al (2020) Repopulating microglia promote brain repair in an IL-6-dependent manner. Cell 180(5):833-846.e16

    Article  CAS  Google Scholar 

  320. Wofford KL, Loane DJ, Cullen DK (2019) Acute drivers of neuroinflammation in traumatic brain injury. Neural Regen Res 14(9):1481–1489

    Article  Google Scholar 

  321. Patterson ZR, Holahan MR (2012) Understanding the neuroinflammatory response following concussion to develop treatment strategies. Front Cell Neurosci 6:58

    Article  Google Scholar 

  322. Xiong Y, Mahmood A, Chopp M (2018) Current understanding of neuroinflammation after traumatic brain injury and cell-based therapeutic opportunities. Chin J Traumatol 21(3):137–151

    Article  Google Scholar 

  323. Jin X et al (2012) Temporal changes in cell marker expression and cellular infiltration in a controlled cortical impact model in adult male C57BL/6 mice. PLoS ONE 7(7):e41892

    Article  CAS  Google Scholar 

  324. Gao X, Chen J (2013) Moderate traumatic brain injury promotes neural precursor proliferation without increasing neurogenesis in the adult hippocampus. Exp Neurol 239:38–48

    Article  CAS  Google Scholar 

  325. Acosta SA et al (2013) Long-term upregulation of inflammation and suppression of cell proliferation in the brain of adult rats exposed to traumatic brain injury using the controlled cortical impact model. PLoS ONE 8(1):e53376

    Article  CAS  Google Scholar 

  326. Bye N et al (2011) Neurogenesis and glial proliferation are stimulated following diffuse traumatic brain injury in adult rats. J Neurosci Res 89(7):986–1000

    Article  CAS  Google Scholar 

  327. Pun RY et al (2012) Excessive activation of mTOR in postnatally generated granule cells is sufficient to cause epilepsy. Neuron 75(6):1022–1034

    Article  CAS  Google Scholar 

  328. De Simoni MG et al (2000) Inflammatory cytokines and related genes are induced in the rat hippocampus by limbic status epilepticus. Eur J Neurosci 12(7):2623–2633

    Article  Google Scholar 

  329. Lehtimäki KA et al (2003) Expression of cytokines and cytokine receptors in the rat brain after kainic acid-induced seizures. Brain Res Mol Brain Res 110(2):253–260

    Article  Google Scholar 

  330. Bernardino L et al (2005) Inflammation and neurogenesis in temporal lobe epilepsy. Curr Drug Targets CNS Neurol Disord 4(4):349–360

    Article  CAS  Google Scholar 

  331. Zhu X et al (2020) Seizure-induced neuroinflammation contributes to ectopic neurogenesis and aggressive behavior in pilocarpine-induced status epilepticus mice. Neuropharmacology 170:108044

    Article  CAS  Google Scholar 

  332. Mo M et al (2019) Microglial P2Y12 receptor regulates seizure-induced neurogenesis and immature neuronal projections. J Neurosci 39(47):9453–9464

    Article  CAS  Google Scholar 

  333. Eyo UB et al (2014) Neuronal hyperactivity recruits microglial processes via neuronal NMDA receptors and microglial P2Y12 receptors after status epilepticus. J Neurosci 34(32):10528–10540

    Article  Google Scholar 

  334. Matsuda T et al (2015) TLR9 signalling in microglia attenuates seizure-induced aberrant neurogenesis in the adult hippocampus. Nat Commun 6:6514

    Article  CAS  Google Scholar 

  335. Trevejo JM et al (2001) TNF-α-dependent maturation of local dendritic cells is critical for activating the adaptive immune response to virus infection. Proc Natl Acad Sci 98(21):12162–12167

    Article  CAS  Google Scholar 

  336. Yang F et al (2010) Roles of astrocytes and microglia in seizure-induced aberrant neurogenesis in the hippocampus of adult rats. J Neurosci Res 88(3):519–529

    CAS  Google Scholar 

  337. Kalueff AV et al (2004) Intranasal administration of human IL-6 increases the severity of chemically induced seizures in rats. Neurosci Lett 365(2):106–110

    Article  CAS  Google Scholar 

  338. Campbell IL et al (1993) Neurologic disease induced in transgenic mice by cerebral overexpression of interleukin 6. Proc Natl Acad Sci U S A 90(21):10061–10065

    Article  CAS  Google Scholar 

  339. Kumar A, Singh A, Ekavali (2015) A review on Alzheimer’s disease pathophysiology and its management: an update. Pharmacol Rep 67(2):195–203

    Article  CAS  Google Scholar 

  340. Dos Santos Picanco LC et al (2018) Alzheimer’s disease: a review from the pathophysiology to diagnosis, new perspectives for pharmacological treatment. Curr Med Chem 25(26):3141–3159

    Article  Google Scholar 

  341. Lazarov O, Marr RA (2010) Neurogenesis and Alzheimer’s disease: at the crossroads. Exp Neurol 223(2):267–281

    Article  CAS  Google Scholar 

  342. Efferth T, Oesch F (2022) Anti-inflammatory and anti-cancer activities of frankincense: targets, treatments and toxicities. Semin Cancer Biol 80:39–57

    Article  CAS  Google Scholar 

  343. National Center for Biotechnology Information (2022). PubChem Compound Summary for CID 5318517, Andrographolide. Retrieved June 19, 2022 from https://pubchem.ncbi.nlm.nih.gov/compound/Andrographolide

  344. Balestrino R, Schapira AHV (2020) Parkinson disease. Eur J Neurol 27(1):27–42

    Article  CAS  Google Scholar 

  345. Heidari A, Yazdanpanah N, Rezaei N (2022) The role of Toll-like receptors and neuroinflammation in Parkinson’s disease. J Neuroinflammation 19(1):135

    Article  CAS  Google Scholar 

  346. Todorova A, Jenner P, Ray Chaudhuri K (2014) Non-motor Parkinson’s: integral to motor Parkinson’s, yet often neglected. Pract Neurol 14(5):310–22

    Article  Google Scholar 

  347. Hirsch EC, Vyas S, Hunot S (2012) Neuroinflammation in Parkinson’s disease. Parkinsonism Relat Disord 18(Suppl 1):S210–S212

    Article  Google Scholar 

  348. Tansey MG, McCoy MK, Frank-Cannon TC (2007) Neuroinflammatory mechanisms in Parkinson’s disease: potential environmental triggers, pathways, and targets for early therapeutic intervention. Exp Neurol 208(1):1–25

    Article  CAS  Google Scholar 

  349. Sawada M, Imamura K, Nagatsu T (2006) Role of cytokines in inflammatory process in Parkinson’s disease. J Neural Transm Suppl 70:373–381

    CAS  Google Scholar 

  350. Whitney NP et al (2009) Inflammation mediates varying effects in neurogenesis: relevance to the pathogenesis of brain injury and neurodegenerative disorders. J Neurochem 108(6):1343–1359

    Article  CAS  Google Scholar 

  351. Handa S, Chawla A, Sharma A (1992) Plants with antiinflammatory activity. Fitoterapia 63(3):192

    Google Scholar 

  352. Hurley MJ et al (2013) Parkinson’s disease is associated with altered expression of CaV1 channels and calcium-binding proteins. Brain 136(7):2077–2097

    Article  Google Scholar 

  353. Anusha C, Sumathi T, Joseph LD (2017) Protective role of apigenin on rotenone induced rat model of Parkinson’s disease: suppression of neuroinflammation and oxidative stress mediated apoptosis. Chem Biol Interact 269:67–79

    Article  CAS  Google Scholar 

  354. Jameie SB et al (2021) β-amyloid formation, memory, and learning decline following long-term ovariectomy and its inhibition by systemic administration of apigenin and β-estradiol. Basic Clin Neurosci 12(3):383

    CAS  Google Scholar 

  355. Virani SS et al (2021) Heart disease and stroke statistics-2021 update: a report from the American Heart Association. Circulation 143(8):e254–e743

    Article  Google Scholar 

  356. Dillen Y et al (2020) Adult neurogenesis in the subventricular zone and its regulation after ischemic stroke: implications for therapeutic approaches. Transl Stroke Res 11(1):60–79

    Article  CAS  Google Scholar 

  357. Cuartero MI et al (2021) Post-stroke Neurogenesis: Friend or Foe? Front Cell Dev Biol 9:657846

    Article  Google Scholar 

  358. Tobin MK et al (2014) Neurogenesis and inflammation after ischemic stroke: what is known and where we go from here. J Cereb Blood Flow Metab 34(10):1573–1584

    Article  Google Scholar 

  359. Galgano M et al (2017) Traumatic brain injury: current treatment strategies and future endeavors. Cell Transplant 26(7):1118–1130

    Article  Google Scholar 

  360. Bramlett HM, Dietrich WD (2015) Long-term consequences of traumatic brain injury: current status of potential mechanisms of injury and neurological outcomes. J Neurotrauma 32(23):1834–1848

    Article  Google Scholar 

  361. Persidsky Y et al (2006) Blood–brain barrier: structural components and function under physiologic and pathologic conditions. J Neuroimmune Pharmacol 1(3):223–236

    Article  Google Scholar 

  362. Giunta B et al (2012) The immunology of traumatic brain injury: a prime target for Alzheimer’s disease prevention. J Neuroinflammation 9:185

    Article  Google Scholar 

  363. Gao X, Chen J (2011) Mild traumatic brain injury results in extensive neuronal degeneration in the cerebral cortex. J Neuropathol Exp Neurol 70(3):183–191

    Article  Google Scholar 

  364. Stafstrom CE, Carmant L (2015) Seizures and epilepsy: an overview for neuroscientists. Cold Spring Harb Perspect Med 5(6):a022426

  365. Navidhamidi M, Ghasemi M, Mehranfard N (2017) Epilepsy-associated alterations in hippocampal excitability. Rev Neurosci 28(3):307–334

    Article  Google Scholar 

  366. Jung KH et al (2004) Continuous cytosine-b-D-arabinofuranoside infusion reduces ectopic granule cells in adult rat hippocampus with attenuation of spontaneous recurrent seizures following pilocarpine-induced status epilepticus. Eur J Neurosci 19(12):3219–3226

    Article  Google Scholar 

  367. Luo C, Koyama R, Ikegaya Y (2016) Microglia engulf viable newborn cells in the epileptic dentate gyrus. Glia 64(9):1508–1517

    Article  Google Scholar 

  368. Luo C, Ikegaya Y, Koyama R (2016) Microglia and neurogenesis in the epileptic dentate gyrus. Neurogenesis (Austin) 3(1):e1235525

    Article  Google Scholar 

  369. Shapiro LA, Korn MJ, Ribak CE (2005) Newly generated dentate granule cells from epileptic rats exhibit elongated hilar basal dendrites that align along GFAP-immunolabeled processes. Neuroscience 136(3):823–831

    Article  CAS  Google Scholar 

  370. Hui L et al (2007) Effects of sleep and sleep deprivation on immunoglobulins and complement in humans. Brain Behav Immun 21(3):308–310

    Article  Google Scholar 

  371. Guzman-Marin R et al (2005) Sleep deprivation suppresses neurogenesis in the adult hippocampus of rats. Eur J Neurosci 22(8):2111–2116

    Article  Google Scholar 

  372. Navarro-Sanchis C et al (2017) Modulation of adult hippocampal neurogenesis by sleep: impact on mental health. Front Neural Circuits 11:74

  373. Wadhwa M et al (2019) Complement activation sustains neuroinflammation and deteriorates adult neurogenesis and spatial memory impairment in rat hippocampus following sleep deprivation. Brain Behav Immun 82:129–144

    Article  CAS  Google Scholar 

  374. Mueller AD et al (2014) The inhibitory effect of sleep deprivation on cell proliferation in the hippocampus of adult mice is eliminated by corticosterone clamp combined with interleukin-1 receptor 1 knockout. Brain Behav Immun 35:182–188

    Article  CAS  Google Scholar 

  375. Wadhwa M et al (2017) Inhibiting the microglia activation improves the spatial memory and adult neurogenesis in rat hippocampus during 48 h of sleep deprivation. J Neuroinflammation 14(1):222

    Article  Google Scholar 

  376. Nieto-Quero A et al (2021) Do changes in microglial status underlie neurogenesis impairments and depressive-like behaviours induced by psychological stress? A systematic review in animal models. Neurobiology of Stress 15:100356

    Article  CAS  Google Scholar 

  377. Ma L, Tang L, Yi Q (2019) Salvianolic acids: potential source of natural drugs for the treatment of fibrosis disease and cancer. Front Pharmacol 10:97

  378. Maiese K (2020) Cognitive impairment with diabetes mellitus and metabolic disease: innovative insights with the mechanistic target of rapamycin and circadian clock gene pathways. Expert Rev Clin Pharmacol 13(1):23–34

    Article  CAS  Google Scholar 

  379. Hollands C et al (2017) Depletion of adult neurogenesis exacerbates cognitive deficits in Alzheimer’s disease by compromising hippocampal inhibition. Mol Neurodegener 12(1):64

    Article  Google Scholar 

  380. Dinel AL et al (2014) Inflammation early in life is a vulnerability factor for emotional behavior at adolescence and for lipopolysaccharide-induced spatial memory and neurogenesis alteration at adulthood. J Neuroinflammation 11:155

    Article  Google Scholar 

  381. Sahab-Negah S et al (2020) The impact of estradiol on neurogenesis and cognitive functions in Alzheimer’s disease. Cell Mol Neurobiol 40(3):283–299

    Article  CAS  Google Scholar 

  382. Gupta N et al (2012) Neural stem cell engraftment and myelination in the human brain. Sci Transl Med 4(155):155ra137

    Article  Google Scholar 

  383. Michaluk P, Kaczmarek L (2007) Matrix metalloproteinase-9 in glutamate-dependent adult brain function and dysfunction. Cell Death Differ 14(7):1255–1258

    Article  CAS  Google Scholar 

  384. Rossi C et al (2006) Brain-derived neurotrophic factor (BDNF) is required for the enhancement of hippocampal neurogenesis following environmental enrichment. Eur J Neurosci 24(7):1850–1856

    Article  Google Scholar 

  385. Fabel K et al (2003) VEGF is necessary for exercise-induced adult hippocampal neurogenesis. Eur J Neurosci 18(10):2803–2812

    Article  Google Scholar 

  386. Sorrells SF et al (2018) Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults. Nature 555(7696):377–381

    Article  CAS  Google Scholar 

  387. Boldrini M et al (2018) Human hippocampal neurogenesis persists throughout aging. Cell Stem Cell 22(4):589-599.e5

    Article  CAS  Google Scholar 

  388. Moreno-Jiménez EP et al (2019) Adult hippocampal neurogenesis is abundant in neurologically healthy subjects and drops sharply in patients with Alzheimer’s disease. Nat Med 25(4):554–560

    Article  Google Scholar 

  389. Kempermann G et al (2018) Human adult neurogenesis: evidence and remaining questions. Cell Stem Cell 23(1):25–30

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

M.A., M. J., and A. H. substantially contributed to drafting the article; A.H and N.R revised the article critically for important intellectual content; and N.R approved the version to be published.

Corresponding author

Correspondence to Nima Rezaei.

Ethics declarations

Ethics Approval

Not applicable as this is a review article.

Consent to Participate

Not applicable as this is a review article.

Consent for Publication

Not applicable as this is a review article.

Research Involving Human Participants and/or Animals

Not applicable as this is a review article.

Informed Consent

Not applicable as this is a review article.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amanollahi, M., Jameie, M., Heidari, A. et al. The Dialogue Between Neuroinflammation and Adult Neurogenesis: Mechanisms Involved and Alterations in Neurological Diseases. Mol Neurobiol 60, 923–959 (2023). https://doi.org/10.1007/s12035-022-03102-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-022-03102-z

Keywords

Navigation