Skip to main content

Crop Wild Relatives of Grape (Vitis vinifera L.) Throughout North America

  • Chapter
  • First Online:
North American Crop Wild Relatives, Volume 2

Abstract

Although cultivated grapevines (Vitis vinifera L.) were domesticated from their closest relative in Central Asia, grape wild relatives from North America are vital due to their use as grafted rootstocks. Rootstocks derived from North American Vitis species are critical to the global wine, table, and raisin grape industries for resistance to the root pest phylloxera (Daktulosphaira vitifoliae). These rootstocks can also provide other benefits such as cold and drought tolerance, nematode and disease resistance, and control over vigor and phenology. Phylogenetic studies of the many Vitis species native to North America often disagree on the number of species and their boundaries, specifically in the Southwestern United States and Mexico. The wild vines are all dioecious and, with the exception of subgenus Muscadinia Planchon, interfertile – allowing for interspecific hybridization wherever ranges overlap. A better understanding of the relationships between North American Vitis species is needed to identify gaps in the current ex situ germplasm collections. Additionally, efforts must be made to safeguard dwindling populations of some species in their native environments. Conservation of these valuable genetic resources will ensure that grape breeders throughout the world have the necessary diversity to adapt to a changing environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alkhalaf M (2007) Resveratrol-induced apoptosis is associated with activation of p53 and inhibition of protein translation in T47D human breast cancer cells. Pharmacology 80:134–143

    Article  CAS  Google Scholar 

  • Alleweldt G (1980) The breeding of fungus-and phylloxera-resistant grapevine varieties. In: Proceedings of the 3rd international symposium on grape breeding, Davis, 15–18 June 1980

    Google Scholar 

  • Alleweldt G, Spiegel-Roy P, Reisch B (1990) Grapes (Vitis). In: Moore JN, Ballington, Jr JR (eds) Genetic resources of temperate fruit and nut crops, pp. 291–337. Acta Hort 290

    Google Scholar 

  • Amerine MA, Singleton VL (1977) Wine: an introduction. University of California Press, Berkeley/Los Angeles

    Google Scholar 

  • Aradhya M, Wang Y, Walker MA et al (2013) Genetic diversity, structure, and patterns of differentiation in the genus Vitis. Plant Syst Evol 299:317–330. https://doi.org/10.1007/s00606-012-0723-4

    Article  CAS  Google Scholar 

  • Arnold C, Gillet F, Gobat JM (1998) Occurrence of the wild vine Vitis vinifera ssp. silvestris in Europe. Vitis 37:159–170

    Google Scholar 

  • Arroyo-García R, Ruiz-García L, Bolling L et al (2006) Multiple origins of cultivated grapevine (Vitis vinifera L. ssp. sativa) based on chloroplast DNA polymorphisms. Mol Ecol 15:3707–3714. https://doi.org/10.1111/j.1365-294X.2006.03049.x

    Article  CAS  PubMed  Google Scholar 

  • Bailey LH (1934) The species of grapes peculiar to North America, Ithaca

    Google Scholar 

  • Barba P, Cadle-Davidson L, Harriman J et al (2014) Grapevine powdery mildew resistance and susceptibility loci identified on a high-resolution SNP map. Theor Appl Genet 127:73–84. https://doi.org/10.1007/s00122-013-2202-x

    Article  CAS  PubMed  Google Scholar 

  • Bioletti FT, Flossfeder FCH, Way AE (1921) Phylloxera-resistant stocks. Agricultural Experiment Station, Berkeley

    Google Scholar 

  • Blanc S, Wiedemann-Merdinoglu S, Dumas V et al (2012) A reference genetic map of Muscadinia rotundifolia and identification of Ren5, a new major locus for resistance to grapevine powdery mildew. Theor Appl Genet 125:1663–1675. https://doi.org/10.1007/s00122-012-1942-3

    Article  CAS  PubMed  Google Scholar 

  • Bouquet A (1980) Vitis x Muscadinia hybridization: A new way in grape breeding for disease resistance in France. In: Proceedings of the 3rd international symposium on grape breeding, Davis, 15–18 June 1980

    Google Scholar 

  • Brizicky GK (1965) The genera of Vitaceae in the southeastern United States. Arnold Arboretum of Harvard University, Cambridge, MA

    Google Scholar 

  • Cadle-Davidson L (2008) Variation within and between Vitis spp. for foliar resistance to the downy mildew pathogen Plasmopara viticola. Plant Dis 92:1577–1584. https://doi.org/10.1094/PDIS-92-11-1577

    Article  PubMed  Google Scholar 

  • Campbell C (2006) The botanist and the vintner: how wine was saved for the world. Algonquin Books, Chapel Hill

    Google Scholar 

  • Catling PM, Mitrow G (2005) The dune race of Vitis riparia in Ontario: taxonomy, conservation and biogeography. Can J Plant Sci 85:407–415

    Article  Google Scholar 

  • Chataigner C (1995) La Transcaucasie au néolithique et au chalcolithique. British Archaeological Reports Limited

    Google Scholar 

  • Clark JR, Barchenger DW (2014) Breeding Muscadine grapes in Arkansas, USA: a new initiative. In: XI international conference on grapevine breeding and genetics 1082. pp 95–98

    Google Scholar 

  • Clark JR, Moore JN (2015) “Faith”, gratitude’, “hope”, and “joy” seedless table grapes from Arkansas, USA. Acta Hortic 1082:87–94

    Article  Google Scholar 

  • Cline B, Fisk C (2006) Overview of muscadine grape acreage, cultivars and production areas in the southeastern U.S. Muscadine Workshop for Cooperative Extension Agents. Kenansville, 13–15 September 2006. http://www.smallfruits.org/CoAgentTraining/Sept06Training/No1Muscadine_acres_and_cultivars.pdf

  • Comeaux BL (1984) Taxonomic studies on certain native grapes of eastern North Carolina. Dissertation, North Carolina State University

    Google Scholar 

  • Comeaux B (1987) Studies on Vitis champinii. In: Proceedings of the Texas Grape Growers Association 11th Annual Conference. San Antonio, pp 158–162

    Google Scholar 

  • Connecticut Department of Environmental Protection (1998) Endangered, threatened and special concern plants (20 October 2002). State of Connecticut, Connecticut

    Google Scholar 

  • Conner PJ (2010) A century of muscadine grape (Vitis rotundifolia Michx.) breeding at the University of Georgia. J Am Pomol Soc 64:78–82

    Google Scholar 

  • Dalbó MA, Ye GN, Weeden NF et al (2001) Marker-assisted selection for powdery mildew resistance in grapes. J Am Soc Hortic Sci 126:83–89

    Article  Google Scholar 

  • Dangl GS, Mendum ML, Yang J et al (2015) Hybridization of cultivated Vitis vinifera with wild V. Californica and V. girdiana in California. Ecol Evol 5:5671–5684

    Article  Google Scholar 

  • Dearing C (1917) Muscadine grape breeding: the native grape of the Southeastern United States has been hybridized successfully with the European grape—valuable self-fertile varieties produced.—a new possibility for the cut-over pine lands of the south. J Hered 8:409–424

    Article  Google Scholar 

  • Department of Environmental Conservation (2000) Protected native plants (20 October 2002). Division of Land and Forests, New York

    Google Scholar 

  • Di Gaspero G, Copetti D, Coleman C et al (2012) Selective sweep at the Rpv3 locus during grapevine breeding for downy mildew resistance. Theor Appl Genet 124:277–286

    Article  Google Scholar 

  • Division of Nature Preserves (2002) Endangered, threatened, and rare vascular plant species documented from Indiana (20 October 2002). Indiana Department of Natural Resources, Indiana

    Google Scholar 

  • Dodson Peterson JC, Walker MA (2017) Grapevine rootstock influence on scion development and initiation of senescence. Catalyst 1:48–54

    Google Scholar 

  • Doyle JT (1894) Report of the Board of state Viticultural Commissioners for 1893–94. 208p

    Google Scholar 

  • Dunstan RT (1962) Some fertile hybrids of bunch and muscadine grapes. J Hered 53:299–303

    Article  Google Scholar 

  • Esmenjaud D, Bouquet A (2009) Selection and application of resistant germplasm for grapevine nematodes management. In: Ciancio A, Mukerji KG (eds) Integrated management of fruit crops nematodes. Springer, Dordercht, pp 195–214

    Chapter  Google Scholar 

  • Fischer BM, Salakhutdinov I, Akkurt M et al (2004) Quantitative trait locus analysis of fungal disease resistance factors on a molecular map of grapevine. Theor Appl Genet 108:501–515

    Article  CAS  Google Scholar 

  • Fisher KH (1980) Interspecific hybrids used in breeding wine grapes for southern Ontario, Canada (43 degrees North Latitude). In: Proceedings of the 3rd international symposium on grape breeding, Davis, 15–18 June 1980

    Google Scholar 

  • Fort KP, Heinitz CC, Walker MA (2015) Chloride exclusion patterns in six grapevine populations. Aust J Grape Wine Res 21:147–155. https://doi.org/10.1111/ajgw.12125

    Article  CAS  Google Scholar 

  • Fort K, Fraga J, Grossi D, Walker MA (2017) Early measures of drought tolerance in four grape rootstocks. J Am Soc Hortic Sci 142:36–46

    Article  Google Scholar 

  • Franco-Mora O, Cruz-Castillo JG (2012) La vid silvestre en México. Toluca, Estado de México, Universidad Autónoma del Estado de México

    Google Scholar 

  • Franco-Mora O, Salomon-Castaño J, Morales P et al (2015) Acidos grasos y parametros de calidad del aceite de semilla de uva silvestre (Vitis spp.). Sci Agropecu 6:271–278

    Article  Google Scholar 

  • Fung RWM, Gonzalo M, Fekete C et al (2008) Powdery mildew induces defense-oriented reprogramming of the transcriptome in a susceptible but not in a resistant grapevine. Plant Physiol 146:236–249. https://doi.org/10.1104/pp.107.108712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galet P (1988) Cépages et vignobles de France Tome 1. Les Vignes Américaines, 2nd edn. C. Déhan, Montpellier [France]

    Google Scholar 

  • Granett J, Timper P, L a L (1985) Grape Phylloxera (Daktulosphaira vitifoliae) (Homoptera: Phylloxeridae) biotypes in California. J Econ Entomol 78:1463–1467

    Article  Google Scholar 

  • Granett J, Goheen AC, Lider LA, White JJ (1987) Evaluation of grape rootstocks for resistance to type A and type B grape phylloxera. Am J Enol Vitic 38:298–300

    Google Scholar 

  • Grassi F, Labra M, Imazio S et al (2003) Evidence of a secondary grapevine domestication Centre detected by SSR analysis. Theor Appl Genet 107:1315–1320

    Article  CAS  Google Scholar 

  • Hatch SL, Gandhi KN, Brown LE (1990) Checklist of the Vascular Plants of Texas, publication MP-1655 of the Texas Agricultural Experiment Station. Texas A&M University, College Station, TX

    Google Scholar 

  • Hay WT, Vaughn SF, Byars JA et al (2017) Physical, rheological, functional, and film properties of a novel emulsifier: frost grape polysaccharide from Vitis riparia Michx. J Agric Food Chem 65:8754–8762

    Article  CAS  Google Scholar 

  • Hedrick UP, Booth NO, Dorsey MJ et al (1908) The grapes of New York. JB Lyon Company, State printers, Albany

    Google Scholar 

  • Heinitz C (2016) Characterization of Vitis Species from the Southwest United States and Mexico for breeding and conservation. Dissertation, University of California, Davis

    Google Scholar 

  • Heinitz CC, Fort K, Walker MA (2015) Developing drought and salt resistant grape rootstocks. Acta Hortic 1082:305–312

    Article  Google Scholar 

  • Hemstad PR, Luby JJ (2000) Utilization of vitis riparia for the development of new wine varieties with resistance to disease and extreme cold. Acta Hortic 528:487–490

    Article  Google Scholar 

  • Hengl T, de Jesus JM, Heuvelink GBM et al (2017) SoilGrids250m: global gridded soil information based on machine learning. PLoS One 12:e0169748

    Article  Google Scholar 

  • Hijmans R, Cameron S, Parra J et al (2005) WORLDCLIM--a set of global climate layers (climate grids). Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • Huber F, Röckel F, Schwander F et al (2016) A view into American grapevine history: Vitis vinifera cv. “Sémillon” is an ancestor of “Catawba” and “Concord.”. Vitis 55:53–56. https://doi.org/10.5073/vitis.2016.55.53-56

    Article  Google Scholar 

  • Jang M, Cai L, Udeani GO et al (1997) Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science (80- ) 275:218–220

    Article  CAS  Google Scholar 

  • Jelenkovic G, Olmo HP (1968) Cytogenetics of Vitis. III. Partially fertile F1 diploid hybrids between V. vinifera L. and V. rotundifolia Michx. Vitis 7:8–18

    Google Scholar 

  • Jiménez-Martinez JH, Gutiérrez-Martinez MG, Franco-Mora O et al (2013) Micropropagacion de vides silvestres (Vitis spp.) del centro de México. Phyton (Buenos Aires) 82:107–112

    Google Scholar 

  • Kentucky State Nature Preserves Commission (2000) Endangered, threatened, and special concern species (20 October 2002). Kentucky State Nature Preserves Commission, Kentucky

    Google Scholar 

  • Ketsa S. Verheij EWM (1992) Vitis vinifera L. In Plant resources of south-east asia 2:Edible fruits and nuts (ed. EWM Verheij & RE Coronel), pp. 304–310. Bogor, Indonesia:ROSEA

    Google Scholar 

  • Kirchheimer F (1939) Rhamnales. I. Vitaceae Fossilium catalogues, Vol. 2 (Plantae). Jongmans Faller, Neubrandenburg, pp 1–153

    Google Scholar 

  • Knipfer T, Eustis A, Brodersen C, Walker AM, McElrone AJ (2015) Grapevine species from varied native habitats exhibit differences in embolism formation/repair associated with leaf gas exchange and root pressure. Plant, Cell & Environment 38(8):1503–1513

    Google Scholar 

  • Leathers TD, Price NPJ, Vaughn SF, Nunnally MS (2017) Reduced-molecular-weight derivatives of frost grape polysaccharide. Int. J. Biol. Macromol 105:1166–1170

    Article  CAS  Google Scholar 

  • Levadoux LD (1956) Wild and cultivated populations of Vitis vinifera L. Annales de l’Amelioration des Plantes. 6:59–118 

    Google Scholar 

  • Lider LA (1958) Phylloxera-resistant grape rootstocks for the coastal valleys of California. California Agricultural Experiment Station, Berkeley

    Book  Google Scholar 

  • Londo J, Martinson T (2015) Geographic trend of bud hardiness response in Vitis riparia. Acta Hortic 1082:299–304

    Article  Google Scholar 

  • Lu J, Schell L, Ramming DW (2000) Interspecific hybridization between Vitis rotundifolia and Vitis vinifera and evaluation of the hybrids. Acta Hortic 528:481–486

    Article  Google Scholar 

  • Luby JJ (1991) Breeding cold-hardy fruit crops in Minnesota. Hortscience 26:507–512

    Article  Google Scholar 

  • Luna-Gaona G, Castillo JGC, Portilla EP et al (2010) Distribucion geografica y aprovechamiento de las uvas silvestres (Vitis spp.) de la region totonaca en la Sierra Norte de Puebla. Rev Geogr Agric 45:39–47

    Google Scholar 

  • Mahanil S, Reisch BI, Owens CL, et al (2007) Resistance gene analogs from Vitis cinerea, Vitis rupestris, and Vitis hybrid Horizon. Am J Enol Vitic 58:484–493

    Google Scholar 

  • Maine Natural Areas Program (1999) Maine’s rare, threatened, and endangered plants (20 October 2002). Maine Department of Conservation, Maine

    Google Scholar 

  • Marguerit E, Boury C, Manicki A et al (2009) Genetic dissection of sex determinism, inflorescence morphology and downy mildew resistance in grapevine. Theor Appl Genet 118:1261–1278. https://doi.org/10.1007/s00122-009-0979-4

    Article  PubMed  Google Scholar 

  • Maryland Natural Heritage Program (1997) Rare, threatened and endangered plants of Maryland (20 October 2002). Maryland Department of Natural Resources, Maryland

    Google Scholar 

  • McGovern PE (2013) Ancient wine: the search for the origins of viniculture. Princeton University Press, Princeton

    Book  Google Scholar 

  • McGovern PE, Michel RH (1995) The analytical and archaeological challenge of detecting ancient wine: two case studies from the ancient near east. In: McGovern PE, Fleming SJ, Katz S (eds) The origins and ancient history of wine. Gordon and Breach, New York, pp 57–67

    Google Scholar 

  • McGovern PE, Glusker DL, Exner LJ, Voigt MM (1996) Neolithic resinated wine. Nature 381:480. https://doi.org/10.1038/381480a0

    Article  CAS  Google Scholar 

  • Merdinoglu D, Wiedeman-Merdinoglu S, Coste P et al (2003) Genetic analysis of downy mildew resistance derived from Muscadinia rotundifolia. Proceedings of the eighth international conference on grape genetics and breeding. Acta Hortic 603:451–456

    Article  CAS  Google Scholar 

  • Michigan Natural Features Inventory (1999) Michigan’s special plants (20 October 2002). Michigan Department of Natural Resources, Michigan

    Google Scholar 

  • Moore MO (1991) Classification and systematics of eastern north American Vitis L. Vitaceae north of Mexico. SIDA Contrib Bot 14:339–367

    Google Scholar 

  • Morano L, Kliewer WM (1994) Root distribution of three grapevine rootstocks grafted to cabernet sauvignon grown on a very gravelly clay loam soil in Oakville, California. Am J Enol Vitic 45:345–348

    Google Scholar 

  • Morano LD, Walker MA (1995) Soils and plant communities associated with three Vitis species. Am Midl Nat 134:254–263

    Article  Google Scholar 

  • Mortensen JA (1981) Sources and inheritance of resistance to anthracnose in Vitis. J Hered 72:423–426

    Article  Google Scholar 

  • Mullins MG, Bouquet A, Williams LE (1992) Biology of the grapevine. Cambridge University Press, Cambridge

    Google Scholar 

  • Munson TV (1909) Foundations of American grape culture. Orange Judd Company, New York

    Book  Google Scholar 

  • NC State Extension (2016) Muscadine grapes. North Carolina Cooperative Extension. https://grapes.ces.ncsu.edu. Accessed 8 Feb 2017

  • Olien WC (1990) The muscadine grape: botany, viticulture, history, and current industry. HortSci (USA) 25:732–739

    Article  Google Scholar 

  • Olmo HP (1971) Vinifera rotundifolia hybrids as wine grapes. Am J Enol Vitic 22:87–91

    Google Scholar 

  • Padgett-Johnson M, Williams LE, Walker MA (2003) Vine water relations, gas exchange, and vegetative growth of seventeen Vitis species grown under irrigated and nonirrigated conditions in California. J Am Soc Hortic Sci 128:269–276

    Article  Google Scholar 

  • Pap D, Miller AJ, Londo JP, Kovakcs LG (2015) Population structure of Vitis rupestris, an important resource for viticulture. Am J Enol Vitic 66:403–410. https://doi.org/10.5344/ajev.2015.15012

    Article  CAS  Google Scholar 

  • Patel GI, Olmo HP (1955) Cytogenetics of Vitis: I. The hybrid V. vinifera x V. rotundifolia. Am J Bot 42:141–159

    Article  Google Scholar 

  • Pauquet J, Bouquet A, This P, Adam-Blondon A-F (2001) Establishment of a local map of AFLP markers around the powdery mildew resistance gene run 1 in grapevine and assessment of their usefulness for marker assisted selection. Theor Appl Genet 103:1201–1210. https://doi.org/10.1007/s001220100664

    Article  CAS  Google Scholar 

  • Pavek DS, Lamboy WF, Garvey EJ (2000) In situ conservation of America’s wild grapes. Hortscience 36:232–235

    Article  Google Scholar 

  • Pavek DS, Lamboy WF, Garvey EJ (2003) Selecting in situ conservation sites for grape genetic resources in the USA. Genet Resour Crop Evol 50:165–173

    Article  CAS  Google Scholar 

  • Pearson RC, Goheen AC (1988) Compendium of grape diseases. APS Press, St. Paul

    Google Scholar 

  • Peros JP, Berger G, Portemont A et al (2011) Genetic variation and biogeography of the disjunct Vitis subg. Vitis (Vitaceae). J Biogeogr 38:471–486. https://doi.org/10.1111/j.1365-2699.2010.02410.x

    Article  Google Scholar 

  • Pierquet P, Stushnoff C (1980) Relationship of low temperature exotherms to cold injury in Vitis riparia Michx. Am J Enol Vitic 31:1–6

    Google Scholar 

  • Pongracz DP (1983) Rootstocks for grape-vines. David Philip, Cape Town

    Google Scholar 

  • Price NPJ, Vermillion KE, Eller FJ, Vaughn SF (2015) Frost grape polysaccharide (FGP), an emulsion-forming Arabinogalactan gum from the stems of native north American grape species Vitis riparia Michx. J Agric Food Chem 63:7286–7293

    Article  CAS  Google Scholar 

  • Rahemi A, Dale A, Fisher H et al (2016) A report on Vitis riparia in Ontario, Canada. Acta Hortic 1136:33–38

    Article  Google Scholar 

  • Ramming DW (2010) Greenhouse screening of grape rootstock populations to determine inheritance of resistance to phylloxera. Am J Enol Vitic 61:234–239

    Google Scholar 

  • Reimer FC (1909) Scuppernong and other muscadine grapes: origin and importance. North Carolina Agricultural Experiment Station of the College of Agriculture and Mechanic Arts

    Google Scholar 

  • Reisch BI, Pratt C (1996) Grapes. In: Janick J, Moore JN (eds) Fruit breeding, vol. II: vine and small fruit crops. Wiley, New York, pp 297–369

    Google Scholar 

  • Reisch B, Pool R, Peterson D, et al (1993) Wine and juice grape varieties for cool climates. A Cornell Coop Ext Publ 2:6. doi: https://doi.org/10.1007/s13398-014-0173-7.2

  • Reisch BI, Owens CL, Cousins PS (2012) Grape. In: Fruit breeding. Springer, New York, pp 225–262

    Chapter  Google Scholar 

  • Riaz S, Krivanek AF, Xu K, Walker MA (2006) Refined mapping of the Pierce’s disease resistance locus, PdR1, and Sex on an extended genetic map of Vitis rupestris × V. arizonica. Theor Appl Genet 113:1317–1329. https://doi.org/10.1007/s00122-006-0385-0

  • Riaz S, Tenscher AC, Ramming DW, Walker MA (2011) Using a limited mapping strategy to identify major QTLs for resistance to grapevine powdery mildew (Erysiphe necator) and their use in marker-assisted breeding. Theor Appl Genet 122:1059–1073. https://doi.org/10.1007/s00122-010-1511-6

    Article  CAS  PubMed  Google Scholar 

  • Robinson J, Harding J, Vouillamoz J (2012) Wine grapes. Allen Lane, London

    Google Scholar 

  • Rühl EH (1991) Effect of potassium supply on cation uptake and distribution in grafted vitis champinii and vitis berlandieri x vitis rupestris rootstocks. Aust J Exp Agric 31:687–691. https://doi.org/10.1071/EA9910687

    Article  Google Scholar 

  • Rühl EH (1992) Effect of K supply and relative humidity on ion uptake and distribution on two grapevine rootstock varieties. Vitis 31:23–33

    Google Scholar 

  • Sabas-Chavez CC, Mora OF, Rubi-Arriaga M et al (2016) Tamaño y dulzor del fruto de ocho accesiones de Vitis spp. en tres años continuos. Nova Sci 8:233–248

    Article  Google Scholar 

  • Sauer MR (1968) Effects of grape-vine rootstocks on chloride concentration in sultana scions. Vitis 7:223–226

    Google Scholar 

  • Schmid J, Manty F, Cousins P (2009) Collecting vitis berlandieri from native habitat sites. Acta Hortic 827:151–154

    Article  Google Scholar 

  • Smith BP, Clingeleffer PR, Morales NB, et al (2014) Development of Australian rootstocks with root-knot nematode resistance and low potassium transport. Acta Horticulturae (1046):231–240

    Google Scholar 

  • Staudt G, Kassemeyer H (1995) Evaluation of downy mildew resistance in various accessions of wild Vitis species. Vitis 34:225–228

    Google Scholar 

  • Stein JH, Keevil JG, Wiebe DA et al (1999) Purple grape juice improves endothelial function and reduces the susceptibility of LDL cholesterol to oxidation in patients with coronary artery disease. Circulation 100:1050–1055

    Article  CAS  Google Scholar 

  • Stover E, Aradhya M, Yang J, Bautista J, Dangl GS (2009) Investigations into the origin of “Norton” grape using SSR markers. Proc Fla State Hort Soc 122:14–24

    Google Scholar 

  • Tennessee Natural Heritage Program (2002) Rare plant list (20 October 2002). Department of Environment and Conservation, Tennessee

    Google Scholar 

  • Thompson SA (1997) Vascular plants: review of status in Pennsylvania (20 October 2002). Department of Conservation and Natural Resources, Pennsylvania

    Google Scholar 

  • Tiffney BH, Barghoorn ES (1976) Fruits and seeds of the Brandon lignite. I. Vitaceae. Rev Palaeobot Palynol 22:169–191

    Article  Google Scholar 

  • Tobar-Reyes JR, Franco-Mora O, Morales-Rosales EJ, Cruz-Castillo JG (2009) Contenido de resveratrol en hojas de vides silvestres (Vitis spp.) mexicanas. Rev la Fac Ciencias Agrar 41:127–137

    Google Scholar 

  • Tregeagle JM, Tisdall JM, Blackmore DH, Walker RR (2006) A diminished capacity for chloride exclusion by grapevine rootstocks following long-term saline irrigation in an inland versus a coastal region of Australia. Aust J Grape Wine Res 12:178–191

    Article  CAS  Google Scholar 

  • Trondle D, Schroder S, Kassemeyer HH et al (2010) Molecular phylogeny of the genus Vitis (Vitaceae) based on plastid markers. Am J Bot 97:1168–1178. https://doi.org/10.3732/ajb.0900218

    Article  CAS  PubMed  Google Scholar 

  • USDA (2013) Agricultural overview – California agricultural statistics, crop year 2013. United States Dep Agric (USDA), Natl Agric Stat Serv 1–10

    Google Scholar 

  • USDA (2016) Non-Citrus Fruits and Nuts 2015 Summary. http://usda.mannlib.cornell.edu/MannUsda/viewDocumentInfo.do?documentID=1113

  • Viala P, Ravaz L (1903) American vines (resistant stock): their adaptation, culture, grafting and propagation. Press of Freygang-Leary Company, San Francisco

    Google Scholar 

  • Wada EB (2008) Systematics and evolution of Vitis. Dissertation, University of California, Davis

    Google Scholar 

  • Walker MA, Jin Y (2000) Breeding Vitis rupestris x Muscadinia rotundifolia rootstocks to control Xiphinema index and fanleaf degeneration. Acta Hortic 528:517–522

    Article  Google Scholar 

  • Walker MA, Lider LA, Goheen AC, Olmo HP (1991) VR O39-16. Hortscience 26:1224–1225

    Article  Google Scholar 

  • Wan Y, Schwaninger HR, Baldo AM et al (2013) A phylogenetic analysis of the grape genus (Vitis L.) reveals broad reticulation and concurrent diversification during neogene and quaternary climate change. BMC Evol Biol 13:141. https://doi.org/10.1186/1471-2148-13-141

    Article  PubMed  PubMed Central  Google Scholar 

  • Wells JM, Raju BC, Hung H-Y et al (1987) Xylella fastidiosa gen. nov., sp. nov: gram-negative, xylem-limited, fastidious plant bacteria related to Xanthomonas spp. Int J Syst Evol Microbiol 37:136–143

    CAS  Google Scholar 

  • Wolpert JA, Smart DR, Anderson M (2005) Lower petiole potassium concentration at bloom in rootstocks with Vitis berlandieri genetic backgrounds. Am J Enol Vitic 56:163–169

    Google Scholar 

  • Xie X, Agüero CB, Wang Y, Walker MA (2015) In vitro induction of tetraploids in Vitis X Muscadinia hybrids. Plant Cell Tissue Organ Cult 122:675–683. https://doi.org/10.1007/s11240-012-0191-0

    Article  CAS  Google Scholar 

  • Xu K, Riaz S, Roncoroni NC, et al (2008) Genetic and QTL analysis of resistance to Xiphinema index in a grapevine cross. Theoretical and Applied Genetics 116(2):305–311

    Google Scholar 

  • Zhang J, Hausmann L, Eibach R, et al (2009) A framework map from grapevine V3125 (Vitis vinifera `Schiava grossa’ x `Riesling’) x rootstock cultivar `Börner’ (Vitis riparia x Vitis cinerea) to localize genetic determinants of phylloxera root resistance. Theor Appl Genet 119:1039–1051. https://doi.org/10.1007/s00122-009-1107-1

  • Zohary D (1996) The mode of domestication of the founder crops of the southwest Asian agriculture. In: Harris DR (ed) The origin and spread of agriculture and pastoralism in Eurasia. University College London Press, London, pp 142–158

    Google Scholar 

  • Zohary D, Hopf M (2000) Domestication of plants in the old world, 3rd edn. Oxford University Press, New York, pp 151–159

    Google Scholar 

  • Zohary D, Spiegel-Roy P (1975) Beginnings of fruit growing in the old world. Science (80- ) 187:319–327. https://doi.org/10.1080/07929978.2015.1007718

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claire C. Heinitz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 This is a U.S. Government work and not under copyright protection in the U.S.; foreign copyright protection may apply

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Heinitz, C.C., Uretsky, J., Dodson Peterson, J.C., Huerta-Acosta, K.G., Walker, M.A. (2019). Crop Wild Relatives of Grape (Vitis vinifera L.) Throughout North America. In: Greene, S., Williams, K., Khoury, C., Kantar, M., Marek, L. (eds) North American Crop Wild Relatives, Volume 2. Springer, Cham. https://doi.org/10.1007/978-3-319-97121-6_10

Download citation

Publish with us

Policies and ethics