Skip to main content
Log in

In vitro induction of tetraploids in Arachis paraguariensis

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

In this study, an efficient procedure was established for successful induction of tetraploid Arachis paraguariensis by treating diploid explants with colchicine. Quartered-seed, callus and shoot-tips were treated with colchicine at concentrations of 0.05, 0.1, 0.2 and 0.5 % (w/v) for 4, 8, 16, 20 and 24 h before they were transferred unto modified Murashige and Skoog medium for either callus induction or shoot regeneration. Results showed that quartered-seed displayed the highest frequency of in vitro plantlet regeneration and tetraploid induction, as well as the lowest mortality rate. Flow cytometric analysis also confirmed that the induced tetraploids from quartered-seed were true-to-type. The 0.5 % colchicine treatment for 4 to 8 h gave the best results with 39 and 43 % of the explants yielding tetraploid plants, respectively. Two months following transfer to ex vitro environment, morphological and growth characteristics of the induced tetraploids were measured. Overall, increasing the ploidy level from 2× to 4× resulted in fewer stomata but more trichomes per unit leaf area. Tetraploid plants obtained in this study should expand the genetic base of Arachis, and can also be used in overcoming the existing hybridization barriers that may be due to ploidy differences within the genus Arachis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adaniya S, Shirai D (2001) In vitro induction of tetraploid ginger (Zingiber officinale Roscoe) and its pollen fertility and germinability. Sci Hortic 88:277–287. doi:10.1016/S0304-4238(00)00212-0

    Article  Google Scholar 

  • Aina O, Quesenberry K, Gallo M (2012) Thidiazuron-induced tissue culture regeneration from quartered-seed explants of Arachis Paraguariensis. Crop Sci 52:1076–1083. doi:10.2135/cropsci2011.07.0367

    CAS  Google Scholar 

  • Burns SP, Gallo M, Tillman BL (2011) Expansion of a direct shoot organogenesis system in peanut (Arachis hypogaea L.) to include US cultivars. In Vitro Cell Dev-Pl 48:58–66. doi:10.1007/s11627-011-9384-1

  • Dewey DR (1980) Some application and misapplication of induced polyploidy to plant breeding. In: Lewis WH (ed) Polyploidy: biological relevance, vol 13. Plenum Press, New York, pp 445–470. doi:10.1007/978-1-4613-3069-1_23

  • Dhooghe E, Van Laere K, Eeckhaut T, Leus L, Van Huylenbroeck J (2011) Mitotic chromosome doubling of plant tissues in vitro. Plant Cell Tiss Organ Cult 104:359–373. doi:10.1007/s11240-010-9786-5

    Article  Google Scholar 

  • Doležel J, Greilhuber J, Suda J (2007) Flow cytometry with plants: an overview. In: Doležel J, Greilhuber J, Suda J (eds) Flow cytometry with plant cells. Wiley, Weinheim, pp 41–65. doi:10.1002/9783527610921.ch3

  • Eigsti O, Dustin P (1955) Colchicine in agriculture, medicine, biology, chemistry. Iowa University Press, Ames. doi:10.5962/bhl.title.5991

  • Ewald D, Ulrich K, Naujoks G, Schröder MB (2009) Induction of tetraploid poplar and black locust plants using colchicine: chloroplast number as an early marker for selecting polyploids in vitro. Plant Cell Tissue Organ Cult 99:353–357. doi:10.1007/s11240-009-9601-3

    Article  Google Scholar 

  • Gamborg O, Miller R, Ojima K (1968) Nutrient requirement suspensions cultures of soybean root cells. Exp Cell Res 50:151–158. doi:10.1016/0014-4827(68)90403-5

    Article  PubMed  CAS  Google Scholar 

  • Lema-Ruminska J (2011) Flow cytometric analysis of somatic embryos, shoots, and calli of the cactus Copiapoa tenuissima Ritt. forma monstruosa. Plant Cell Tiss Organ Cult 106:531–535. doi:10.1007/s11240-011-9941-7

    Article  CAS  Google Scholar 

  • Leus L, Van Laere K, Dewitte A, Van Huylenbroeck J (2009) Flow cytometry for plant breeding. Acta Hort 836:221–226

    Google Scholar 

  • Li Z, Jarret RL, Pittman RN et al (1993) Efficient plant regeneration from protoplasts of Arachis paraguariensis Chodat & Hassl. Using a nurse culture method. Plant Cell Tiss Organ Cult 4:83–90. doi:10.1007/BF00048467

    Article  Google Scholar 

  • Li WD, Biswas DK, Xu H, Xu CQ, Wang XZ, Liu JK, Jiang GM (2009) Photosynthetic responses to chromosome doubling in relation to leaf anatomy in Lonicera japonica subjected to water stress. Funct Plant Biol 36:783–792. doi:10.1071/FP09022

    Google Scholar 

  • Meyer EM, Touchell DH, Ranney TG (2009) In vitro shoot regeneration and polyploid induction from leaves of Hypericum species. Hortic Sci 44(7):1957–1961

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497. doi:10.1111/j.1399-3054.1962.tb08052.x

    Article  CAS  Google Scholar 

  • Nielen S, Vidigal BS, Leal-Bertioli SCM, Ratnaparkhe M, Paterson AH, Garsmeur O, D’Hont A, Guimarães PM, BertioliMatita DJ (2012) A new retroelement from peanut: characterization and evolutionary context in the light of the Arachis A-B genome divergence. Mol Genet Genomics 287:21–38. doi:10.1007/s00438-011-0656-6

    Article  PubMed  CAS  Google Scholar 

  • Ochatt SJ, Patat-Ochatt EM, Moessner A (2011) Ploidy level determination within the context of in vitro breeding. Plant Cell Tiss Organ Cult 104:329–341. doi:10.1007/s11240-011-9918-6

    Article  Google Scholar 

  • Quesenberry K, Dampier J, Lee Y, Smith R, Acuña C (2010) Doubling the chromosome number of bahiagrass via tissue culture. Euphytica 175:43–50. doi:10.1007/s10681-010-0165-4

    Article  Google Scholar 

  • Sellars RM, Southward GM, Phillips GC (1990) Adventitious somatic embryogenesis from cultured immature zygotic embryos of peanut and soybean. Crop Sci 30:408–414. doi:10.2135/cropsci1990.0011183X003000020035x

    Article  CAS  Google Scholar 

  • Sharma KK, Anjaiah V (2000) An efficient method for the production of transgenic plants of peanut (Arachis hypogaea L.) through Agrobacterium tumefaciens-mediated genetic transformation. Plant Sci 159:7–19. doi:10.1016/S0168-9452(00)00294-6

    Article  PubMed  CAS  Google Scholar 

  • Simpson CE (2001) Use of wild Arachis species/introgression of genes into A. hypogaea L. Peanut Sci 28:114–116. doi:10.3146/i0095-3679-28-2-12

    Article  CAS  Google Scholar 

  • Singh AK (1986) Utilization of wild relatives in the genetic improvement of Arachis hypogaea L. 8. Sythetic amphidiploids and their importance in interspecific breeding. Theor Appl Genet 72:433–439. doi:10.1007/BF00289523

    Article  Google Scholar 

  • Singh AK (1998) Hybridization barriers among the species of Arachis L., namely of the sections Arachis (including the groundnut) and Erectoides. Genet Resour Crop Evol 45:41–45. doi:10.1023/A:1008681020851

    Article  Google Scholar 

  • Singh AK, Moss JP (1982) Utilization of wild relatives in genetic improvement of Arachis hypogaea L. Part 2. Chromosome complements of species in section Arachis. Theor Appl Genet 61:305–314. doi:10.1007/BF00272846

    Google Scholar 

  • Stalker HT, Wynne JC (1979) Cytology of interspecific hybrids in section Arachis of peanuts. Peanut Sci 6:110–114. doi:10.3146/i0095-3679-6-2-12

    Article  Google Scholar 

  • Still PE, Plata MI, Campbell RJ, Bueno LC, Chichester EA, Niblett CL (1987) Regeneration of fertile Arachis paraguariensis plants from callus and suspension cultures. Plant Cell Tiss Organ Cult 9:37–43. doi:10.1007/BF00046077

    Article  Google Scholar 

  • Subrahmanyam P, Moss JP, McDonald D, Rao PV, Rao VR (1985) Resistance to Cercosporidium personatum leafspot in wild Arachis species. Plant Dis 69:951–954. doi:10.1094/PD-69-951

    Article  Google Scholar 

  • Sun Q, Sun H, Bell RL, Li H, Xin L (2011) Variation of phenotype, ploidy level, and organogenic potential of in vitro regenerated polyploids of Pyrus communis. Plant Cell Tiss Organ Cult 107:131–140. doi:10.1007/s11240-011-9965-z

    Article  Google Scholar 

  • Yu Z, Haage Z, Streit VE, Gierl A, Ruiz RAT (2009) A large number of tetraploid Arabidopsis thaliana lines, generated by a rapid strategy, reveal high stability of neo-tetraploids during consecutive generations. Theor Appl Genet 118:1107–1119. doi:10.1007/s00122-009-0966-9

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Dai H, Xiao M, Liu X (2008) In vitro induction of tetraploids in Phlox subulata L. Euphytica 159:59–65. doi:10.1007/s10681-007-9457-8

    Article  Google Scholar 

  • Zhang XY, Hu CG, Yao JL (2010) Tetraploidization of diploid Dioscorea results in activation of the antioxidant defense system and increased heat tolerance. J Plant Physiol 167:88–94. doi:10.1016/j.jplph.2009.07.006

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olubunmi Aina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aina, O., Quesenberry, K. & Gallo, M. In vitro induction of tetraploids in Arachis paraguariensis . Plant Cell Tiss Organ Cult 111, 231–238 (2012). https://doi.org/10.1007/s11240-012-0191-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-012-0191-0

Keywords

Navigation