Skip to main content

Abstract

The medical device industry faces a ubiquitous threat of biofouling, generally leading to reduced efficacy or outright failure of implanted devices combined with increased healthcare cost. The use of polymers to make medical device surfaces nonadhesive to bacteria and other foulants in general is increasingly becoming a more attractive strategy in combatting this threat than active killing of bacteria. This chapter first introduces typical surface modification techniques that have been effectively used in medical devices, including physical adsorption, chemical attachment, chemical vapor deposition (CVD), and plasma-enhanced CVD. Then, specific anti-fouling surface chemistries and their respective anti-fouling mechanisms are overviewed, focusing on hydrophilic polymers, hydrophobic polymers, featured surfaces, and superhydrophobic surfaces. The current and potential medical applications of these anti-fouling modifications, in particular the distinctively versatile zwitterionic polybetaines, are therein also reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Perera-Costa, J.M. Bruque, M.L. González-Martín, A.C. Gómez-García, V. Vadillo-Rodríguez, Studying the influence of surface topography on bacterial adhesion using spatially organized microtopographic surface patterns. Langmuir 30, 4633–4641 (2014)

    Article  Google Scholar 

  2. F.M. Luis, F. Hans-Curt, in The Science and Technology of Industrial Water Treatment, Mechanistic Aspects of Heat Exchanger and Membrane Biofouling and Prevention, (CRC Press, 2010), pp. 365–380

    Google Scholar 

  3. A.S. Lynch, G.T. Robertson, Bacterial and fungal biofilm infections. Annu. Rev. Med. 59, 415–428 (2008)

    Article  Google Scholar 

  4. P. Chaignon, I. Sadovskaya, C. Ragunah, N. Ramasubbu, J.B. Kaplan, S. Jabbouri, Susceptibility of staphylococcal biofilms to enzymatic treatments depends on their chemical composition. Appl. Microbiol. Biotechnol. 75, 125–132 (2007)

    Article  Google Scholar 

  5. J.L. Harding, M.M. Reynolds, Combating medical device fouling. Trends Biotechnol. 32, 140–146 (2014)

    Article  Google Scholar 

  6. A.K. Zimmermann, N. Weber, H. Aebert, G. Ziemer, H.P. Wendel, Effect of biopassive and bioactive surface-coatings on the hemocompatibility of membrane oxygenators. J. Biomed. Mater. Res. B Appl. Biomater. 80B, 433–439 (2007)

    Article  Google Scholar 

  7. M.C. Tanzi, Bioactive technologies for hemocompatibility. Expert Rev. Med. Devices 2, 473–492 (2005)

    Article  Google Scholar 

  8. D. Campoccia, L. Montanaro, C.R. Arciola, A review of the biomaterials technologies for infectionresistant surfaces. Biomaterials 34, 8533–8554 (2013)

    Article  Google Scholar 

  9. F. Hui, C. Debiemme-Chouvy, Antimicrobial N-halamine polymers and coatings: a review of their synthesis, characterization, and applications. Biomacromolecules 14, 585–601 (2013)

    Article  Google Scholar 

  10. M. Charnley, M. Textor, C. Acikgoz, Designed polymer structures with antifouling–antimicrobial properties. React. Funct. Polym. 71, 329–334 (2011)

    Article  Google Scholar 

  11. F. Siedenbiedel, J.C. Tiller, Antimicrobial polymers in solution and on surfaces: overview and functional principles. Polymers 4, 46 (2012)

    Article  Google Scholar 

  12. R. Kumar, H. Münstedt, Silver ion release from antimicrobial polyamide/silver composites. Biomaterials 26, 2081–2088 (2005)

    Article  Google Scholar 

  13. E.M. Hetrick, M.H. Schoenfisch, Antibacterial nitric oxide-releasing xerogels: cell viability and parallel plate flow cell adhesion studies. Biomaterials 28, 1948–1956 (2007)

    Article  Google Scholar 

  14. K. Takahashi, in Ecotoxicology of Antifouling Biocides, ed. by T. Arai, H. Harino, M. Ohji, W.J. Langston. Release Rate of Biocides from Antifouling Paints (Springer Japan: Tokyo, 2009), p. 3–22

    Google Scholar 

  15. R.S. Schwalbe, J.T. Stapleton, P.H. Gilligan, Emergence of vancomycin resistance in coagulase- negative staphylococci. N. Engl. J. Med. 316, 927–931 (1987)

    Article  Google Scholar 

  16. K. Hiramatsu, H. Hanaki, T. Ino, K. Yabuta, T. Oguri, F.C. Tenover, Methicillin-resistant Staphylococcus aureus clinical strain with reduced vancomycin susceptibility. J. Antimicrob. Chemother. 40, 135–136 (1997)

    Article  Google Scholar 

  17. P. Vaudaux, P. Francois, B. Berger-Bächi, D.P. Lew, J. Antimicrob. Chemother. 47, 163–170 (2001)

    Article  Google Scholar 

  18. R. Klevens, M.A. Morrison, J. Nadle, et al., Invasive methicillin-resistant staphylococcus aureus infections in the United States. JAMA 298, 1763–1771 (2007)

    Article  Google Scholar 

  19. G. Rahul, M. Vivek, D. Bruce, Bioinspired living skins for fouling mitigation. Smart Mater. Struct. 18, 104027 (2009)

    Article  Google Scholar 

  20. C. Blaszykowski, S. Sheikh, M. Thompson, Surface chemistry to minimize fouling from blood-based fluids. Chem. Soc. Rev. 41, 5599–5612 (2012)

    Article  Google Scholar 

  21. S. Franz, S. Rammelt, D. Scharnweber, J.C. Simon, Immune responses to implants – a review of the implications for the design of immunomodulatory biomaterials. Biomaterials 32, 6692–6709 (2011)

    Article  Google Scholar 

  22. B.D. Ratner, S.J. Bryant, Biomaterials: where we have been and where we are going. Annu. Rev. Biomed. Eng. 6, 41–75 (2004)

    Article  Google Scholar 

  23. J.M. Anderson, A. Rodriguez, D.T. Chang, Foreign body reaction to biomaterials. Semin. Immunol. 20, 86–100 (2008)

    Article  Google Scholar 

  24. R.H. Tredgold, Langmuir-Blodgett films made from preformed polymers. Thin Solid Films 152, 223–230 (1987)

    Article  Google Scholar 

  25. D.B. Hall, P. Underhill, J.M. Torkelson, Spin coating of thin and ultrathin polymer films. Polym. Eng. Sci. 38, 2039–2045 (1998)

    Article  Google Scholar 

  26. H.S. Sundaram, X. Han, A.K. Nowinski, J.-R. Ella-Menye, C. Wimbish, P. Marek, K. Senecal, S. Jiang, One-step dip coating of zwitterionic sulfobetaine polymers on hydrophobic and hydrophilic surfaces. ACS Appl. Mater. Interfaces 6, 6664–6671 (2014)

    Article  Google Scholar 

  27. J.R. Smith, D.A. Lamprou, Polymer coatings for biomedical applications: a review. Trans. IMF 92, 9–19 (2014)

    Article  Google Scholar 

  28. B. Wessling, Synth. Met. 93, 143–154 (1998)

    Article  Google Scholar 

  29. T. Tamai, M. Watanabe, K. Mitamura, Modification of PEN and PET film surfaces by plasma treatment and layer-by-layer assembly of polyelectrolyte multilayer thin films. Colloid Polym. Sci. 293, 1349–1356 (2015)

    Article  Google Scholar 

  30. J.E. Raynor, J.R. Capadona, D.M. Collard, T.A. Petrie, A.J. García, Polymer brushes and self-assembled monolayers: versatile platforms to control cell adhesion to biomaterials (Review). Biointerphases 4, FA3–FA16 (2009)

    Article  Google Scholar 

  31. S. Minko, in Polymer Surfaces and Interfaces: Characterization, Modification and Applications, ed. by M. Stamm. Grafting on Solid Surfaces: “Grafting to” and “Grafting from” Methods Plasma Modification of Polymer Surfaces and Plasma Polymerization (Springer Berlin Heidelberg: Berlin, Heidelberg, 2008), p. 215–234

    Google Scholar 

  32. J. Li, X. Chen, Y.-C. Chang, Preparation of end-grafted polymer brushes by nitroxide-mediated free radical polymerization of vaporized vinyl monomers. Langmuir 21, 9562–9567 (2005)

    Article  Google Scholar 

  33. Y. Uyama, Y. Ikada, Graft polymerization of acrylamide onto UV-irradiated films. J. Appl. Polym. Sci. 36, 1087–1096 (1988)

    Article  Google Scholar 

  34. M. Mori, Y. Uyama, Y. Ikada, Surface modification of polyethylene fiber by graft polymerization. J. Polym. Sci. A Polym. Chem. 32, 1683–1690 (1994)

    Article  Google Scholar 

  35. J. Zhang, K. Kato, Y. Uyama, Y. Ikada, Surface graft polymerization of glycidyl methacrylate onto polyethylene and the adhesion with epoxy resin. J. Polym. Sci. A Polym. Chem. 33, 2629–2638 (1995)

    Article  Google Scholar 

  36. J. Li, M. Zhai, M. Yi, H. Gao, H. Ha, Radiation grafting of thermo-sensitive poly(NIPAAm) onto silicone rubber1. Radiat. Phys. Chem. 55, 173–178 (1999)

    Article  Google Scholar 

  37. H. Sun, A. Wirsén, A.-C. Albertsson, Electron beam-induced graft polymerization of acrylic acid and immobilization of arginine−glycine−aspartic acid-containing peptide onto nanopatterned polycaprolactone. Biomacromolecules 5, 2275–2280 (2004)

    Article  Google Scholar 

  38. A. Taniike, R. Nakamura, S. Kusaka, Y. Hirooka, N. Nakanishi, Y. Furuyama, Application of the ion beam graft polymerization method to the thin film diagnosis. Phys. Procedia 80, 151–154 (2015)

    Article  Google Scholar 

  39. O. Burtovyy, V. Klep, T. Turel, Y. Gowayed, I. Luzinov, in Nanoscience and Nanotechnology for Chemical and Biological Defense, Polymeric Membranes: Surface Modification by “Grafting to” Method and Fabrication of Multilayered Assemblies, vol 1016 (American Chemical Society, 2009), pp. 289–305

    Google Scholar 

  40. Y. Liu, V. Klep, B. Zdyrko, I. Luzinov, Polymer grafting via ATRP initiated from macroinitiator synthesized on surface. Langmuir 20, 6710–6718 (2004)

    Article  Google Scholar 

  41. K. Matyjaszewski, H. Dong, W. Jakubowski, J. Pietrasik, A. Kusumo, Grafting from surfaces for “everyone”: ARGET ATRP in the presence of air. Langmuir 23, 4528–4531 (2007)

    Article  Google Scholar 

  42. G.A. Koohmareh, M. Hajian, H. Fahhahi, Graft copolymerization of styrene from poly(vinyl alcohol) via RAFT process. Int. J. Polym.Sci. 2011, 90349, 1–7 (2011)

    Google Scholar 

  43. C.J. Hawker, D. Mecerreyes, E. Elce, J. Dao, J.L. Hedrick, I. Barakat, P. Dubois, R. Jérôme, W. Volksen, “Living” free radical polymerization of macromonomers: preparation of well defined graft copolymers. Macromol. Chem. Phys. 198, 155–166 (1997)

    Article  Google Scholar 

  44. S. Ito, R. Goseki, T. Ishizone, A. Hirao, Synthesis of well-controlled graft polymers by living anionic polymerization towards exact graft polymers. Polym. Chem. 5, 5523–5534 (2014)

    Article  Google Scholar 

  45. R. Jordan, A. Ulman, Surface initiated living cationic polymerization of 2-oxazolines. J. Am. Chem. Soc. 120, 243–247 (1998)

    Article  Google Scholar 

  46. K.K. Gleason, in CVD Polymers, Overview of Chemically Vapor Deposited (CVD) Polymers (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2015), pp. 1–11

    Google Scholar 

  47. N. Chen, D.H. Kim, P. Kovacik, H. Sojoudi, M. Wang, K.K. Gleason, Polymer thin films and surface modification by chemical vapor deposition: recent progress. Ann. Rev. Chem. Biomol. Eng. 7, 373–393 (2016)

    Article  Google Scholar 

  48. A.M. Coclite, R.M. Howden, D.C. Borrelli, C.D. Petruczok, R. Yang, J.L. Yagüe, A. Ugur, N. Chen, S. Lee, W.J. Jo, A. Liu, X. Wang, K.K. Gleason, 25th anniversary article: CVD polymers: a new paradigm for surface modification and device fabrication. Adv. Mater. 25, 5392–5423 (2013)

    Article  Google Scholar 

  49. A.M. Coclite, K.K. Gleason, Initiated PECVD of organosilicon coatings: a new strategy to enhance monomer structure retention. Plasma Process. Polym. 9, 425–434 (2012)

    Article  Google Scholar 

  50. N.A. Bullett, R.A. Talib, R.D. Short, S.L. McArthur, A.G. Shard, Chemical and thermo-responsive characterisation of surfaces formed by plasma polymerisation of N-isopropyl acrylamide. Surf. Interface Anal. 38, 1109–1116 (2006)

    Article  Google Scholar 

  51. J.P. Lock, S.G. Im, K.K. Gleason, Oxidative chemical vapor deposition of electrically conducting poly(3,4-ethylenedioxythiophene) films. Macromolecules 39, 5326–5329 (2006)

    Article  Google Scholar 

  52. B. Winther-Jensen, K. West, Vapor-phase polymerization of 3, 4-ethylenedioxythiophene: a route to highly conducting polymer surface layers. Macromolecules 37, 4538–4543 (2004)

    Article  Google Scholar 

  53. H. Zhou, S.F. Bent, Fabrication of organic interfacial layers by molecular layer deposition: present status and future opportunities. J. Vac. Sci. Technol. A 31, 040801 (2013)

    Article  Google Scholar 

  54. S.E. Atanasov, M.D. Losego, B. Gong, E. Sachet, J.-P. Maria, P.S. Williams, G.N. Parsons, Highly conductive and conformal poly(3,4-ethylenedioxythiophene) (PEDOT) thin films via oxidative molecular layer deposition. Chem. Mater. 26, 3471–3478 (2014)

    Article  Google Scholar 

  55. I.S. Bae, S.H. Cho, S.B. Lee, Y. Kim, J.H. Boo, Growth of plasma-polymerized thin films by PECVD method and study on their surface and optical characteristics. Surf. Coat. Technol. 193, 142–146 (2005)

    Article  Google Scholar 

  56. Y. Chang, W.-J. Chang, Y.-J. Shih, T.-C. Wei, G.-H. Hsiue, Zwitterionic sulfobetaine-grafted poly(vinylidene fluoride) membrane with highly effective blood compatibility via atmospheric plasma-induced surface copolymerization. ACS Appl. Mater. Interfaces 3, 1228–1237 (2011)

    Article  Google Scholar 

  57. J.P. Lens, P.F.H. Harmsen, E.M. Ter Schegget, J.G.A. Terlingen, G.H.M. Engbers, J. Feijen, Immobilization of functionalized alkyl-poly(ethylene oxide) surfactants on poly(ethylene) surfaces by means of an argon plasma treatment. J. Biomater. Sci. Polym. Ed. 8, 963–982 (1997)

    Article  Google Scholar 

  58. D. Schmaljohann, D. Beyerlein, M. Nitschke, C. Werner, Thermo-reversible swelling of thin hydrogel films immobilized by low-pressure plasma. Langmuir 20, 10107–10114 (2004)

    Article  Google Scholar 

  59. X. Zhao, H. Xuan, A. Qin, D. Liu, C. He, Improved antifouling property of PVDF ultrafiltration membrane with plasma treated PVDF powder. RSC Adv. 5, 64526–64533 (2015)

    Article  Google Scholar 

  60. Zubaidi, T. Hirotsu, Graft polymerization of hydrophilic monomers onto textile fibers treated by glow discharge plasma. J. Appl. Polym. Sci. 61, 1579–1584 (1996)

    Article  Google Scholar 

  61. C. Elvira, F. Yi, M.C. Azevedo, L. Rebouta, A.M. Cunha, J.S. Román, R.L. Reis, Plasma- and chemical-induced graft polymerization on the surface of starch-based biomaterials aimed at improving cell adhesion and proliferation. J. Mater. Sci. Mater. Med. 14, 187–194 (2003)

    Article  Google Scholar 

  62. Y.M. Lee, J.K. Shim, Preparation of pH/temperature responsive polymer membrane by plasma polymerization and its riboflavin permeation. Polymer 38, 1227–1232 (1997)

    Article  Google Scholar 

  63. S. Chen, L. Li, C. Zhao, J. Zheng, Surface hydration: principles and applications toward low-fouling/nonfouling biomaterials. Polymer 51, 5283–5293 (2010)

    Article  Google Scholar 

  64. S.I. Jeon, J.H. Lee, J.D. Andrade, P.G. De Gennes, Protein—surface interactions in the presence of polyethylene oxide. J. Colloid Interface Sci. 142, 149–158 (1991)

    Article  Google Scholar 

  65. T. McPherson, A. Kidane, I. Szleifer, K. Park, Prevention of protein adsorption by tethered poly(ethylene oxide) layers: experiments and single-chain mean-field analysis. Langmuir 14, 176–186 (1998)

    Article  Google Scholar 

  66. K.L. Prime, G.M. Whitesides, Adsorption of proteins onto surfaces containing end-attached oligo(ethylene oxide): a model system using self-assembled monolayers. J. Am. Chem. Soc. 115, 10714–10721 (1993)

    Article  Google Scholar 

  67. H. Shintani, Modification of polymer surfaces of medical devices to prevent infections. Biocontrol Sci. 10, 3–11 (2005)

    Article  Google Scholar 

  68. P. Francois, P. Vaudaux, N. Nurdin, H.J. Mathieu, P. Descouts, D.P. Lew, Physical and biological effects of a surface coating procedure on polyurethane catheters. Biomaterials 17, 667–678 (1996)

    Article  Google Scholar 

  69. A.M. Telford, M. James, L. Meagher, C. Neto, Thermally cross-linked PNVP films as antifouling coatings for biomedical applications. ACS Appl. Mater. Interfaces 2, 2399–2408 (2010)

    Article  Google Scholar 

  70. X. Liu, K. Sun, Z. Wu, J. Lu, B. Song, W. Tong, X. Shi, H. Chen, Facile synthesis of thermally stable poly(N-vinylpyrrolidone)-modified gold surfaces by surface-initiated atom transfer radical polymerization. Langmuir 28, 9451–9459 (2012)

    Article  Google Scholar 

  71. Z. Wu, H. Chen, X. Liu, Y. Zhang, D. Li, H. Huang, Protein adsorption on poly(N-vinylpyrrolidone)-modified silicon surfaces prepared by surface-initiated atom transfer radical polymerization. Langmuir 25, 2900–2906 (2009)

    Article  Google Scholar 

  72. I. Cringus-Fundeanu, J. Luijten, H.C. van der Mei, H.J. Busscher, A.J. Schouten, Synthesis and characterization of surface-grafted polyacrylamide brushes and their inhibition of microbial adhesion. Langmuir 23, 5120–5126 (2007)

    Article  Google Scholar 

  73. Q. Liu, A. Singh, R. Lalani, L. Liu, Ultralow fouling polyacrylamide on gold surfaces via surface-initiated atom transfer radical polymerization. Biomacromolecules 13, 1086–1092 (2012)

    Article  Google Scholar 

  74. P. Harder, M. Grunze, R. Dahint, G.M. Whitesides, P.E. Laibinis, Molecular conformation in oligo(ethylene glycol)-terminated self-assembled monolayers on gold and silver surfaces determines their ability to resist protein adsorption. J. Phys. Chem. B 102, 426–436 (1998)

    Article  Google Scholar 

  75. L. Li, S. Chen, J. Zheng, B.D. Ratner, S. Jiang, Protein adsorption on oligo(ethylene glycol)-terminated alkanethiolate self-assembled monolayers: the molecular basis for nonfouling behavior. J. Phys. Chem. B 109, 2934–2941 (2005)

    Article  Google Scholar 

  76. J. Zheng, L. Li, S. Chen, S. Jiang, Molecular simulation study of water interactions with oligo (ethylene glycol)-terminated alkanethiol self-assembled monolayers. Langmuir 20, 8931–8938 (2004)

    Article  Google Scholar 

  77. Y. He, Y. Chang, J.C. Hower, J. Zheng, S. Chen, S. Jiang, Origin of repulsive force and structure/dynamics of interfacial water in OEG-protein interactions: a molecular simulation study. Phys. Chem. Chem. Phys. 10, 5539–5544 (2008)

    Article  Google Scholar 

  78. P. Kingshott, J. Wei, D. Bagge-Ravn, N. Gadegaard, L. Gram, Covalent attachment of poly(ethylene glycol) to surfaces, critical for reducing bacterial adhesion. Langmuir 19, 6912–6921 (2003)

    Article  Google Scholar 

  79. G.M. Harbers, K. Emoto, C. Greef, S.W. Metzger, H.N. Woodward, J.J. Mascali, D.W. Grainger, M.J. Lochhead, Functionalized poly(ethylene glycol)-based bioassay surface chemistry that facilitates bio-immobilization and inhibits nonspecific protein, bacterial, and mammalian cell adhesion. Chem. Mater. 19, 4405–4414 (2007)

    Article  Google Scholar 

  80. K. Prime, G. Whitesides, Self-assembled organic monolayers: model systems for studying adsorption of proteins at surfaces. Science 252, 1164–1167 (1991)

    Article  Google Scholar 

  81. N.P. Desai, J.A. Hubbell, Biological responses to polyethylene oxide modified polyethylene terephthalate surfaces. J. Biomed. Mater. Res. 25, 829–843 (1991)

    Article  Google Scholar 

  82. W.R. Gombotz, W. Guanghui, T.A. Horbett, A.S. Hoffman, Protein adsorption to poly(ethylene oxide) surfaces. J. Biomed. Mater. Res. 25, 1547–1562 (1991)

    Article  Google Scholar 

  83. K. Bergström, K. Holmberg, A. Safranj, A.S. Hoffman, M.J. Edgell, A. Kozlowski, B.A. Hovanes, J.M. Harris, Reduction of fibrinogen adsorption on PEG-coated polystyrene surfaces. J. Biomed. Mater. Res. 26, 779–790 (1992)

    Article  Google Scholar 

  84. I. Szleifer, Protein adsorption on surfaces with grafted polymers. Biophys. J. 72, 595–612 (1997)

    Article  Google Scholar 

  85. A. Hucknall, S. Rangarajan, A. Chilkoti, In pursuit of zero: polymer brushes that resist the adsorption of proteins. Adv. Mater. 21, 2441–2446 (2009)

    Article  Google Scholar 

  86. H. Ma, J. Hyun, P. Stiller, A. Chilkoti, “Non-fouling” oligo(ethylene glycol)- functionalized polymer brushes synthesized by surface-initiated atom transfer radical polymerization. Adv. Mater. 16, 338–341 (2004)

    Article  Google Scholar 

  87. J.L. Dalsin, B.-H. Hu, B.P. Lee, P.B. Messersmith, Mussel adhesive protein mimetic polymers for the preparation of nonfouling surfaces. J. Am. Chem. Soc. 125, 4253–4258 (2003)

    Article  Google Scholar 

  88. J.L. Dalsin, L. Lin, S. Tosatti, J. Vörös, M. Textor, P.B. Messersmith, Protein resistance of titanium oxide surfaces modified by biologically inspired mPEG−DOPA. Langmuir 21, 640–646 (2005)

    Article  Google Scholar 

  89. T.L. Clare, B.H. Clare, B.M. Nichols, N.L. Abbott, R.J. Hamers, Functional monolayers for improved resistance to protein adsorption: oligo(ethylene glycol)-modified silicon and diamond surfaces. Langmuir 21, 6344–6355 (2005)

    Article  Google Scholar 

  90. V. Zoulalian, S. Zürcher, S. Tosatti, M. Textor, S. Monge, J.-J. Robin, Langmuir 26, 74–82 (2010)

    Article  Google Scholar 

  91. D. Beyer, W. Knoll, H. Ringsdorf, J.-H. Wang, R.B. Timmons, P. Sluka, Reduced protein adsorption on plastics via direct plasma deposition of triethylene glycol monoallyl ether. J. Biomed. Mater. Res. 36, 181–189 (1997)

    Article  Google Scholar 

  92. Z. Ademovic, B. Holst, R.A. Kahn, I. Jørring, T. Brevig, J. Wei, X. Hou, B. Winter-Jensen, P. Kingshott, The method of surface PEGylation influences leukocyte adhesion and activation. J. Mater. Sci. Mater. Med. 17, 203–211 (2006)

    Article  Google Scholar 

  93. Z. Ademovic, J. Wei, B. Winther-Jensen, X. Hou, P. Kingshott, Surface modification of PET films using pulsed AC plasma polymerisation aimed at preventing protein adsorption. Plasma Process. Polym. 2, 53–63 (2005)

    Article  Google Scholar 

  94. A.R. Denes, E.B. Somers, A.C.L. Wong, F. Denes, 12-crown-4–ether and tri(ethylene glycol) dimethyl–ether plasma-coated stainless steel surfaces and their ability to reduce bacterial biofilm deposition. J. App. Polym. Sci. 81, 3425–3438 (2001.) John Wiley & Sons, Inc

    Article  Google Scholar 

  95. E.E. Johnston, J.D. Bryers, B.D. Ratner, Plasma deposition and surface characterization of oligoglyme, dioxane, and crown ether nonfouling films. Langmuir 21, 870–881 (2005)

    Article  Google Scholar 

  96. Y.J. Wu, A.J. Griggs, J.S. Jen, S. Manolache, F.S. Denes, R.B. Timmons, Pulsed plasma polymerization of cyclic ethers: production of biologically nonfouling surfaces. Plasmas Polym. 6, 123–144 (2001)

    Article  Google Scholar 

  97. P. Favia, M. Vulpio, R. Marino, R. d’Agostino, R.P. Mota, M. Catalano, Plasma-deposition of Ag-containing polyethyleneoxide-like coatings. Plasmas Polym. 5, 1–14 (2000)

    Article  Google Scholar 

  98. D.J. Menzies, B. Cowie, C. Fong, J.S. Forsythe, T.R. Gengenbach, K.M. McLean, L. Puskar, M. Textor, L. Thomsen, M. Tobin, B.W. Muir, One-step method for generating PEG-like plasma polymer gradients: chemical characterization and analysis of protein interactions. Langmuir 26, 13987–13994 (2010)

    Article  Google Scholar 

  99. F. Brétagnol, A. Valsesia, G. Ceccone, P. Colpo, D. Gilliland, L. Ceriotti, M. Hasiwa, F. Rossi, Surface functionalization and patterning techniques to design interfaces for biomedical and biosensor applications. Plasma Process. Polym. 3, 443–455 (2006)

    Article  Google Scholar 

  100. F. Palumbo, P. Favia, M. Vulpio, R. d’Agostino, RF plasma deposition of PEO-like films: diagnostics and process control. Plasmas Polym. 6, 163–174 (2001)

    Article  Google Scholar 

  101. G.P. Löpez, B.D. Ratner, C.D. Tidwell, C.L. Haycox, R.J. Rapoza, T.A. Horbett, Glow discharge plasma deposition of tetraethylene glycol dimethyl ether for foulingresistant biomaterial surfaces. J. Biomed. Mater. Res. 26, 415–439 (1992)

    Article  Google Scholar 

  102. M. Wyszogrodzka, R. Haag, Synthesis and characterization of glycerol dendrons, self-assembled monolayers on gold: a detailed study of their protein resistance. Biomacromolecules 10, 1043–1054 (2009)

    Article  Google Scholar 

  103. G. Gunkel, M. Weinhart, T. Becherer, R. Haag, W.T.S. Huck, Effect of polymer brush architecture on antibiofouling properties. Biomacromolecules 12, 4169–4172 (2011)

    Article  Google Scholar 

  104. N.B. Holland, Y. Qiu, M. Ruegsegger, R.E. Marchant, Biomimetic engineering of non-adhesive glycocalyx-like surfaces using oligosaccharide surfactant polymers. Nature 392, 799–801 (1998)

    Article  Google Scholar 

  105. Y.-Y. Luk, M. Kato, M. Mrksich, Self-assembled monolayers of alkanethiolates presenting mannitol groups are inert to protein adsorption and cell attachment. Langmuir 16, 9604–9608 (2000)

    Article  Google Scholar 

  106. R. Konradi, B. Pidhatika, A. Mühlebach, M. Textor, Poly-2-methyl-2-oxazoline: a peptide-like polymer for protein-repellent surfaces. Langmuir 24, 613–616 (2008)

    Article  Google Scholar 

  107. A.A. Cavallaro, M.N. Macgregor-Ramiasa, K. Vasilev, Antibiofouling properties of plasma-deposited oxazoline-based thin films. ACS Appl. Mater. Interfaces 8, 6354–6362 (2016)

    Article  Google Scholar 

  108. D.A. Tomalia, D.P. Sheetz, Homopolymerization of 2-alkyl- and 2-aryl-2-oxazolines. J. Polym. Sci. Part A-1: Polymer Chemistry 4, 2253–2265 (1966)

    Article  Google Scholar 

  109. W. Seeliger, E. Aufderhaar, W. Diepers, R. Feinauer, R. Nehring, W. Thier, H. Hellmann, Recent syntheses and reactions of cyclic imidic esters. Angew. Chem. Int. Ed. Engl. 5, 875–888 (1966)

    Article  Google Scholar 

  110. T. Kagiya, S. Narisawa, T. Maeda, K. Fukui, Ring-opening polymerization of 2-substituted 2-oxazolines. J. Polym. Sci. Part B: Polymer Letters 4, 441–445 (1966)

    Article  Google Scholar 

  111. T.G. Bassiri, A. Levy, M. Litt, Polymerization of cyclic imino ethers. I. Oxazolines. J. Polym. Sci. Part B: Polymer Letters 5, 871–879 (1967)

    Article  Google Scholar 

  112. R. Hoogenboom, Poly(2-oxazoline)s: a polymer class with numerous potential applications. Angew. Chem. Int. Ed. 48, 7978–7994 (2009)

    Article  Google Scholar 

  113. R. Hoogenboom, H. Schlaad, Bioinspired poly(2-oxazoline)s. Polymers 3, 467 (2011)

    Article  Google Scholar 

  114. R. Luxenhofer, Y. Han, A. Schulz, J. Tong, Z. He, A.V. Kabanov, R. Jordan, Poly(2-oxazoline)s as polymer therapeutics. Macromol. Rapid Commun. 33, 1613–1631 (2012)

    Article  Google Scholar 

  115. O. Sedlacek, B.D. Monnery, S.K. Filippov, R. Hoogenboom, M. Hruby, Poly(2-oxazoline)s – are they more advantageous for biomedical applications than other polymers? Macromol. Rapid Commun. 33, 1648–1662 (2012)

    Article  Google Scholar 

  116. V.R. de la Rosa, Poly(2-oxazoline)s as materials for biomedical applications. J. Mater. Sci. Mater. Med. 25, 1211–1225 (2014)

    Article  Google Scholar 

  117. C. Diehl, H. Schlaad, Thermo-responsive polyoxazolines with widely tuneable LCST. Macromol. Biosci. 9, 157–161 (2009)

    Article  Google Scholar 

  118. T.X. Viegas, M.D. Bentley, J.M. Harris, Z. Fang, K. Yoon, B. Dizman, R. Weimer, A. Mero, G. Pasut, F.M. Veronese, Polyoxazoline: chemistry, properties, and applications in drug delivery. Bioconjug. Chem. 22, 976–986 (2011)

    Article  Google Scholar 

  119. Y. Chen, B. Pidhatika, T. von Erlach, R. Konradi, M. Textor, H. Hall, T. Lühmann, Comparative assessment of the stability of nonfouling poly(2-methyl-2-oxazoline) and poly(ethylene glycol) surface films: an in vitro cell culture study. Biointerphases 9, 031003 (2014)

    Article  Google Scholar 

  120. B. Pidhatika, M. Rodenstein, Y. Chen, E. Rakhmatullina, A. Mühlebach, C. Acikgöz, M. Textor, R. Konradi, Comparative stability studies of poly(2-methyl-2-oxazoline) and poly(ethylene glycol) brush coatings. Biointerphases 7, 1–15 (2012)

    Article  Google Scholar 

  121. T. He, D. Jańczewski, S. Jana, A. Parthiban, S. Guo, X. Zhu, S.S.-C. Lee, F.J. Parra-Velandia, S.L.-M. Teo, G.J. Vancso, Efficient and robust coatings using poly(2-methyl-2-oxazoline) and its copolymers for marine and bacterial fouling prevention. J. Polym. Sci. A Polym. Chem. 54, 275–283 (2016)

    Article  Google Scholar 

  122. R. Konradi, C. Acikgoz, M. Textor, Polyoxazolines for nonfouling surface coatings — a direct comparison to the gold standard PEG. Macromol. Rapid Commun. 33, 1663–1676 (2012)

    Article  Google Scholar 

  123. H. Wang, L. Li, Q. Tong, M. Yan, Evaluation of photochemically immobilized poly(2-ethyl-2-oxazoline) thin films as protein- resistant surfaces. ACS Appl. Mater. Interfaces 3, 3463–3471 (2011)

    Article  Google Scholar 

  124. D. Seebach, A.K. Beck, D.J. Bierbaum, The world of β- and γ-peptides comprised of homologated proteinogenic amino acids and other components. Chem. Biodivers. 1, 1111–1239 (2004)

    Article  Google Scholar 

  125. H.P.C. Van Kuringen, J. Lenoir, E. Adriaens, J. Bender, B.G. De Geest, R. Hoogenboom, Partial hydrolysis of poly(2-ethyl-2-oxazoline) and potential implications for biomedical applications? Macromol. Biosci. 12, 1114–1123 (2012)

    Article  Google Scholar 

  126. M.S. Bretscher, M.C. Raff, Mammalian plasma membranes. Nature 258, 43–49 (1975)

    Article  Google Scholar 

  127. J.B. Schlenoff, Zwitteration: coating surfaces with zwitterionic functionality to reduce nonspecific adsorption. Langmuir 30, 9625–9636 (2014)

    Article  Google Scholar 

  128. K. Yamauchi, E. Masuhara, Y. Kadoma, N. Nakabayashi, 2-Methacryloxyethylphosphorylcholine. Jpn. Patent JP, 54063025 (1977)

    Google Scholar 

  129. K. Ishihara, T. Ueda, N. Nakabayashi, Preparation of phospholipid polylners and their properties as polymer hydrogel membranes. Polym. J. 22, 355–360 (1990)

    Article  Google Scholar 

  130. A.L. Lewis, A.W. LIoyd, in Biomimetic. Bioresponsive, and Bioactive Materials: An Introduction to Integrating Materials with Tissues, (Hoboken, NJ, Wiley 2012), pp. 95–140

    Google Scholar 

  131. T. Ueda, A. Watanabe, K. Ishihara, N. Nakabayashi, Protein adsorption on biomedical polymers with a phosphorylcholine moiety adsorbed with phospholipid. J. Biomater. Sci. Polym. Ed. 3, 185–194 (1992)

    Article  Google Scholar 

  132. K. Ishihara, H. Nomura, T. Mihara, K. Kurita, Y. Iwasaki, N. Nakabayashi, Why do phospholipid polymers reduce protein adsorption? J. Biomed. Mater. Res. 39, 323–330 (1998)

    Article  Google Scholar 

  133. H. Kitano, K. Sudo, K. Ichikawa, M. Ide, K. Ishihara, Raman spectroscopic study on the structure of water in aqueous polyelectrolyte solutions. J. Phys. Chem. B 104, 11425–11429 (2000)

    Article  Google Scholar 

  134. H. Kitano, K. Takaha, M. Gemmei-Ide, Raman spectroscopic study of the structure of water in aqueous solutions of amphoteric polymers. Phys. Chem. Chem. Phys. 8, 1178–1185 (2006)

    Article  Google Scholar 

  135. H. Kitano, M. Imai, T. Mori, M. Gemmei-Ide, Y. Yokoyama, K. Ishihara, Structure of water in the vicinity of phospholipid analogue copolymers as studied by vibrational spectroscopy. Langmuir 19, 10260–10266 (2003)

    Article  Google Scholar 

  136. H. Kitano, T. Mori, Y. Takeuchi, S. Tada, M. Gemmei-Ide, Y. Yokoyama, M. Tanaka, Structure of water incorporated in sulfobetaine polymer films as studied by ATR-FTIR. Macromol. Biosci. 5, 314–321 (2005)

    Article  Google Scholar 

  137. K. Morisaku, K. Ikehara, J. Watanabe, M. Takai, K. Ishihara, Design of biocompatible hydrogels with attention to structure of water surrounding polar groups in polymer chains. Trans. Mater. Res. Soc. Jpn. 30, 835–838 (2005)

    Google Scholar 

  138. K. Ishihara, N. Nakabayashi, K. Nishida, M. Sakakida, M. Shichiri, Application for implantable glucose sensor. ACS Symp. Ser. 556, 194–210 (2009)

    Article  Google Scholar 

  139. A.L. Lewis, Z.L. Cumming, H.H. Goreish, L.C. Kirkwood, L.A. Tolhurst, P.W. Stratford, Crosslinkable coatings from phosphorylcholine-based polymers. Biomaterials 22, 99–111 (2001)

    Article  Google Scholar 

  140. A.L. Lewis, L.A. Tolhurst, P.W. Stratford, Analysis of a phosphorylcholine-based polymer coating on a coronary stent pre- and post-implantation. Biomaterials 23, 1697–1706 (2002)

    Article  Google Scholar 

  141. A.L. Lewis, S.L. Willis, S.A. Small, S.R. Hunt, V. O’Byrne, P.W. Stratford, Drug loading and elution from a phosphorylcholine polymer-coated coronary stent does not affect long-term stability of the coating in vivo. Biomed. Mater. Eng. 14, 355–370 (2004)

    Google Scholar 

  142. G. Young, R. Bowers, B. Hall, M. Port, Clinical comparison of omafilcon a with four control materials. Eye Contact Lens 23, 249–258 (1997)

    Google Scholar 

  143. S.L. Willis, J.L. Court, R.P. Redman, J.-H. Wang, S.W. Leppard, V.J. O’Byrne, S.A. Small, A.L. Lewis, S.A. Jones, P.W. Stratford, A novel phosphorylcholine-coated contact lens for extended wear use. Biomaterials 22, 3261–3272 (2001)

    Article  Google Scholar 

  144. K.S. Lim et al., Cell and protein adhesion studies in glaucoma drainage device development. Br. J. Ophthalmol. 83, 1168–1171 (1999)

    Article  Google Scholar 

  145. K.S. Lim, Corneal endothelial cell damage from glaucoma drainage device materials. Cornea 22, 352–354 (2003)

    Article  Google Scholar 

  146. M. Shigeta, T. Tanaka, N. Koike, N. Yamakawa, M. Usui, Suppression of fibroblast and bacterial adhesion by MPC coating on acrylic intraocular lenses. J Cataract Refract Surg 32, 859–866 (2006)

    Article  Google Scholar 

  147. Y. Okajima, S. Kobayakawa, A. Tsuji, T. Tochikubo, Biofilm formation by Staphylococcus epidermidis on intraocular lens material. Invest. Ophthalmol. Vis. Sci. 47, 2971–2975 (2006)

    Article  Google Scholar 

  148. A. Abizaid, A.J. Lansky, P.J. Fitzgerald, L.F. Tanajura, F. Feres, R. Staico, L. Mattos, A. Abizaid, A. Chaves, M. Centemero, A.G.M.R. Sousa, J.E. Sousa, M.J. Zaugg, L.B. Schwartz, Percutaneous coronary revascularization using a trilayer metal phosphorylcholine- coated zotarolimus-eluting stent. Am. J. Cardiol. 99, 1403–1408 (2007)

    Article  Google Scholar 

  149. S.I. Kihara, K. Yramazaki, K.N. Litwak, P. Litwak, M.V. Kameneva, H. Ushiyama, T. Tokuno, D.C. Borzelleca, M. Umezu, J. Tomioka, O. Tagusari, T. Akimoto, H. Koyanagi, H. Kurosawa, R.L. Kormos, B.P. Griffith, In vivo evaluation of a MPC polymer coated continuous flow left ventricular assist system. Artif. Organs 27, 188–192 (2003)

    Article  Google Scholar 

  150. T.A. Snyder, H. Tsukui, S.I. Kihara, T. Akimoto, K.N. Litwak, M.V. Kameneva, K. Yamazaki, W.R. Wagner, Preclinical biocompatibility assessment of the EVAHEART ventricular assist device: coating comparison and platelet activation. J. Biomed. Mater. Res. A 81A, 85–92 (2007)

    Article  Google Scholar 

  151. C. Chen, A.B. Lumsden, J.C. Ofenloch, B. Noe, E.J. Campbell, P.W. Stratford, Y.P. Yianni, A.S. Taylor, S.R. Hanson, Phosphorylcholine coating of ePTFE grafts reduces neointimal hyperplasia in canine model. Ann. Vasc. Surg. 11, 74–79 (1997)

    Article  Google Scholar 

  152. C. Chen, J.C. Ofenloch, Y.P. Yianni, S.R. Hanson, A.B. Lumsden, J. Surg. Res. 77, 119–125 (1998)

    Article  Google Scholar 

  153. P. Chevallier, R. Janvier, D. Mantovani, G. Laroche, In vitro biological performances of phosphorylcholine-grafted ePTFE prostheses through RFGD plasma techniques. Macromol. Biosci. 5, 829–839 (2005)

    Article  Google Scholar 

  154. F. De Somer, K. François, W. van Oeveren, J. Poelaert, D. De Wolf, T. Ebels, G. Van Nooten, Phosphorylcholine coating of extracorporeal circuits provides natural protection against blood activation by the material surface. Eur. J. Cardiothorac. Surg. 18, 602–606 (2000)

    Article  Google Scholar 

  155. R. Lorusso, G. De Cicco, P. Totaro, S. Gelsomino, Effects of phosphorylcholine coating on extracorporeal circulation management and postoperative outcome: a double-blind randomized study. Interact. Cardiovasc. Thorac. Surg. 8, 7–11 (2009)

    Article  Google Scholar 

  156. G.J. Myers, K. Gardiner, S.N. Ditmore, W.J. Swyer, C. Squires, D.R. Johnstone, C.V. Power, L.B. Mitchell, J.E. Ditmore, B. Cook, Clinical evaluation of the Sorin Synthesis oxygenator with integrated arterial filter. J. Extra Corpor. Technol. 37, 201–206 (2005)

    Google Scholar 

  157. T. Moro, Y. Takatori, K. Ishihara, K. Nakamura, H. Kawaguchi, Frank Stinchfield Award: grafting of biocompatible polymer for longevity of artificial hip joints. Clin. Orthop. Relat. Res. 453, 58–63 (2006)

    Article  Google Scholar 

  158. T. Moro, H. Kawaguchi, K. Ishihara, M. Kyomoto, T. Karita, H. Ito, K. Nakamura, Y. Takatori, Wear resistance of artificial hip joints with poly(2-methacryloyloxyethyl phosphorylcholine) grafted polyethylene: comparisons with the effect of polyethylene cross-linking and ceramic femoral heads. Biomaterials 30, 2995–3001 (2009)

    Article  Google Scholar 

  159. T. Moro, Y. Takatori, K. Ishihara, T. Konno, Y. Takigawa, T. Matsushita, U.-i. Chung, K. Nakamura, H. Kawaguchi, Surface grafting of artificial joints with a biocompatible polymer for preventing periprosthetic osteolysis. Nat. Mater. 3, 829–836 (2004)

    Article  Google Scholar 

  160. S. Zhang, Y. Benmakroha, P. Rolfe, T. Shinobu, I. Kazuhiko, Biosens. Bioelectron. 11, 1019–1029 (1996)

    Article  Google Scholar 

  161. C.-Y. Chen, E. Tamiya, K. Ishihara, Y. Kosugi, Y.-C. Su, N. Nakabayashi, I. Karube, A biocompatible needle-type glucose sensor based on platinum-electroplated carbon electrode. Appl. Biochem. Biotechnol. 36, 211–226 (1992)

    Article  Google Scholar 

  162. C.-Y. Chen, K. Ishihara, N. Nakabayashi, E. Tamiya, I. Karube, Multifunctional biocompatible membrane and its application to fabricate a miniaturized glucose sensor with potential for use in vivo. Biomed. Microdevices 1, 155–166 (1999)

    Article  Google Scholar 

  163. H. Kudo, T. Yagi, M.X. Chu, H. Saito, N. Morimoto, Y. Iwasaki, K. Akiyoshi, K. Mitsubayashi, Glucose sensor using a phospholipid polymer-based enzyme immobilization method. Anal. Bioanal. Chem. 391, 1269–1274 (2008)

    Article  Google Scholar 

  164. J.C. Russell, Bacteria, biofilms, and devices: the possible protective role of phosphorylcholine materials. J. Endourol. 14, 39–42 (2000)

    Article  Google Scholar 

  165. Z. Zhang, S. Chen, Y. Chang, S. Jiang, Surface grafted sulfobetaine polymers via atom transfer radical polymerization as superlow fouling coatings. J. Phys. Chem. B 110, 10799–10804 (2006)

    Article  Google Scholar 

  166. Z. Zhang, M. Zhang, S. Chen, T.A. Horbett, B.D. Ratner, S. Jiang, Blood compatibility of surfaces with superlow protein adsorption. Biomaterials 29, 4285–4291 (2008)

    Article  Google Scholar 

  167. Z. Zhang, T. Chao, L. Liu, G. Cheng, B.D. Ratner, S. Jiang, Zwitterionic hydrogels: an in vivo implantation study. J. Biomater. Sci. Polym. Ed. 20, 1845–1859 (2009)

    Article  Google Scholar 

  168. L. Zhang, Z. Cao, T. Bai, L. Carr, J.-R. Ella-Menye, C. Irvin, B.D. Ratner, S. Jiang, Zwitterionic hydrogels implanted in mice resist the foreign-body reaction. Nat. Biotechnol. 31, 553–556 (2013)

    Article  Google Scholar 

  169. Y.L. Yuan, F. Ai, J. Zhang, X.B. Zang, J. Shen, S.C. Lin, Grafting sulfobetaine monomer onto the segmented poly(ether-urethane) surface to improve hemocompatibility. J. Biomater. Sci. Polym. Ed. 13, 1081–1092 (2002)

    Article  Google Scholar 

  170. Z. Jun, Y. Youling, W. Kehua, S. Jian, L. Sicong, Surface modification of segmented poly(ether urethane) by grafting sulfo ammonium zwitterionic monomer to improve hemocompatibilities. Colloids Surf. B: Biointerfaces 28, 1–9 (2003)

    Article  Google Scholar 

  171. J. Zhang, J. Yuan, Y. Yuan, J. Shen, S. Lin, Chemical modification of cellulose membranes with sulfo ammonium zwitterionic vinyl monomer to improve hemocompatibility. Colloids Surf. B: Biointerfaces 30, 249–257 (2003)

    Article  Google Scholar 

  172. Z. Zhang, T. Chao, S. Chen, S. Jiang, Superlow fouling sulfobetaine and carboxybetaine polymers on glass slides. Langmuir 22, 10072–10077 (2006)

    Article  Google Scholar 

  173. G. Cheng, Z. Zhang, S. Chen, J.D. Bryers, S. Jiang, Inhibition of bacterial adhesion and biofilm formation on zwitterionic surfaces. Biomaterials 28, 4192–4199 (2007)

    Article  Google Scholar 

  174. W. Yang, S. Chen, G. Cheng, H. Vaisocherová, H. Xue, W. Li, J. Zhang, S. Jiang, Inhibition of bacterial adhesion and biofilm formation on zwitterionic surfaces. Langmuir 24, 9211–9214 (2008)

    Article  Google Scholar 

  175. J. de Grooth, M. Dong, W.M. de Vos, K. Nijmeijer, Building polyzwitterion-based multilayers for responsive membranes. Langmuir 30, 5152–5161 (2014)

    Article  Google Scholar 

  176. D. Min, Z. Li, J. Shen, S. Lin, Research and synthesis of organosilicon nonthrombogenic materials containing sulfobetaine group. Colloids Surf. B Biointerfaces 79, 415–420 (2010)

    Article  Google Scholar 

  177. L. Wu, J. Jasinski, S. Krishnan, Carboxybetaine, sulfobetaine, and cationic block copolymer coatings: a comparison of the surface properties and antibiofouling behavior. J. Appl. Polym. Sci. 124, 2154–2170 (2012)

    Article  Google Scholar 

  178. R.S. Smith, Z. Zhang, M. Bouchard, J. Li, H.S. Lapp, G.R. Brotske, D.L. Lucchino, D. Weaver, L.A. Roth, A. Coury, J. Biggerstaff, S. Sukavaneshvar, R. Langer, C. Loose, Vascular catheters with a nonleaching poly-sulfobetaine surface modification reduce thrombus formation and microbial attachment. Sci. Transl. Med. 4, 153ra132–153ra132 (2012)

    Google Scholar 

  179. J. Yuan, J. Zhang, J. Zhou, Y.L. Yuan, J. Shen, S.C. Lin, Platelet adhesion onto segmented polyurethane surfaces modified by carboxybetaine. J. Biomater. Sci. Polym. Ed. 14, 1339–1349 (2003)

    Article  Google Scholar 

  180. Z. Zhang, S. Chen, S. Jiang, Dual-functional biomimetic materials: nonfouling poly(carboxybetaine) with active functional groups for protein immobilization. Biomacromolecules 7, 3311–3315 (2006)

    Article  Google Scholar 

  181. Z. Zhang, G. Cheng, L.R. Carr, H. Vaisocherová, S. Chen, S. Jiang, The hydrolysis of cationic polycarboxybetaine esters to zwitterionic polycarboxybetaines with controlled properties. Biomaterials 29, 4719–4725 (2008)

    Article  Google Scholar 

  182. M.T. Bernards, G. Cheng, Z. Zhang, S. Chen, S. Jiang, Nonfouling polymer brushes via surface-initiated, two-component atom transfer radical polymerization. Macromolecules 41, 4216–4219 (2008)

    Article  Google Scholar 

  183. G. Li, H. Xue, C. Gao, F. Zhang, S. Jiang, Nonfouling polyampholytes from an ion-pair comonomer with biomimetic adhesive groups. Macromolecules 43, 14–16 (2010)

    Article  Google Scholar 

  184. S. Chen, Z. Cao, S. Jiang, Ultra-low fouling peptide surfaces derived from natural amino acids. Biomaterials 30, 5892–5896 (2009)

    Article  Google Scholar 

  185. J.F. Schumacher, C.J. Long, M.E. Callow, J.A. Finlay, J.A. Callow, A.B. Brennan, Engineered nanoforce gradients for inhibition of settlement (attachment) of swimming algal spores. Langmuir 24, 4931–4937 (2008)

    Article  Google Scholar 

  186. E.E. Mann, C.M. Magin, M.R. Mettetal, R.M. May, M.M. Henry, H. DeLoid, J. Prater, L. Sullivan, J.G. Thomas, M.D. Twite, A.E. Parker, A.B. Brennan, S.T. Reddy, Micropatterned endotracheal tubes reduce secretion-related lumen occlusion. Ann. Biomed. Eng. 44(12):3645–3654 (2016)

    Google Scholar 

  187. S.H.T. Nguyen, H.K. Webb, J. Hasan, M.J. Tobin, R.J. Crawford, E.P. Ivanova, Dual role of outer epicuticular lipids in determining the wettability of dragonfly wings. Colloids Surf. B: Biointerfaces 106, 126–134 (2013)

    Article  Google Scholar 

  188. G.S. Watson, B.W. Cribb, J.A. Watson, How micro/nanoarchitecture facilitates anti-wetting: an elegant hierarchical design on the termite wing. ACS Nano 4, 129–136 (2010)

    Article  Google Scholar 

  189. E. Hüger, H. Rothe, M. Frant, S. Grohmann, G. Hildebrand, K. Liefeith, Atomic force microscopy and thermodynamics on taro, a self-cleaning plant leaf. Appl. Phys. Lett. 95, 033702 (2009)

    Article  Google Scholar 

  190. R. Fürstner, W. Barthlott, C. Neinhuis, P. Walzel, Wetting and self-cleaning properties of artificial superhydrophobic surfaces. Langmuir 21, 956–961 (2005)

    Article  Google Scholar 

  191. X.M. Li, D. Reinhoudt, M. Crego-Calama, What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces. Chem. Soc. Rev. 36, 1350 (2007)

    Article  Google Scholar 

  192. J. Zimmermann, G.R.J. Artus, S. Seeger, Long term studies on the chemical stability of a superhydrophobic silicone nanofilament coating. Appl. Surf. Sci. 253, 5972–5979 (2007)

    Article  Google Scholar 

  193. L. Boinovich, A.M. Emelyanenko, A.S. Pashinin, Analysis of long-term durability of superhydrophobic properties under continuous contact with water. ACS Appl. Mater. Interfaces 2, 1754–1758 (2010)

    Article  Google Scholar 

  194. A.K. Epstein, T.-S. Wong, R.A. Belisle, E.M. Boggs, J. Aizenberg, Liquid-infused structured surfaces with exceptional anti-biofouling performance. Proc. Natl. Acad. Sci. 109, 13182–13187 (2012)

    Article  Google Scholar 

  195. H.F. Bohn, W. Federle, Insect aquaplaning: Nepenthes pitcher plants capture prey with the peristome, a fully wettable water-lubricated anisotropic surface. Proc. Natl. Acad. Sci. U. S. A. 101, 14138–14143 (2004)

    Article  Google Scholar 

  196. U. Bauer, W. Federle, The insect-trapping rim of Nepenthes pitchers. Plant Signal. Behav. 4, 1019–1023 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Li or Zheng Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Li, J., Taylor, M., Zhang, Z. (2017). Anti-fouling Medical Coatings. In: Zhang, Z., Wagner, V. (eds) Antimicrobial Coatings and Modifications on Medical Devices. Springer, Cham. https://doi.org/10.1007/978-3-319-57494-3_8

Download citation

Publish with us

Policies and ethics