Skip to main content

Dual-Energy X-Ray Absorptiomery Technology

  • Chapter
  • First Online:
Bone Health Assessment in Pediatrics

Abstract

The fundamental principle of Dual Energy X-ray Absorptiometry (DXA) is the measurement of transmission of X-rays, produced from a stable source, at high and low energies through the body. The advantages of using X-rays instead of photon absorptiometry include a shorter acquisition time and improved accuracy and precision due to the increased photon flux. Over the last few decades, improvements in precision and resolution have been coupled with a decrease in radiation exposure. With the increased availability of DXA, there has been a dramatic rise in its use in pediatric research and clinical practice. However, given DXA is a projectional technique, objects are analyzed as two-dimensional; as such, problems may arise when the dimensions of the area scanned change with time, as is the case in a growing child. Though DXA technology has numerous strengths, there remain a number of factors that must be considered carefully when interpreting DXA results in pediatrics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cameron JR, Sorenson J. Measurement of bone mineral in vivo: an improved method. Science. 1963;11:230–2.

    Article  Google Scholar 

  2. Madsen M, Peppler W, Mazess RB. Vertebral and total body bone mineral content by dual photon absorptiometry. Calcif Tissue Res. 1976;21(Suppl):361–4.

    PubMed  Google Scholar 

  3. Kelly TL, Crane G, Baran D. Single X-ray absorptiometry of the forearm: precision, correlation, and reference data. Calcif Tissue Int. 1994;53:212–8.

    Article  Google Scholar 

  4. Kelly TL, Slovik D, Schoenfeld DA, Neer RM. Quantitative digital radiography versus dual photon absorptiometry of the lumbar spine. J Clin Endocrinol Metab. 1988;67:839–44.

    Article  CAS  PubMed  Google Scholar 

  5. Carter DR, Bouxsein ML, Marcus R. New approaches for interpreting projected bone densitometry data. J Bone Miner Res. 1992;7:137–45.

    Article  CAS  PubMed  Google Scholar 

  6. Kroger H, Vainio P, Nieminen J, Kotaniemi A. Comparison of different models for interpreting bone mineral density measurements using DXA and MRI technology. Bone. 1995;17:157–9.

    Article  CAS  PubMed  Google Scholar 

  7. Leonard MB, Feldman HI, Zemel BS, Berlin JA, Barden EM, Stallings VA. Evaluation of low density spine software for the assessment of bone mineral density in children. J Bone Miner Res. 1998;13:1687–90.

    Article  CAS  PubMed  Google Scholar 

  8. Cole JH, Scerpella TA, van der Meulen MC. Fan-beam densitometry of the growing skeleton: are we measuring what we think we are? J Clin Densitom. 2005;8:57–64.

    Article  PubMed  Google Scholar 

  9. Pocock NA, Noakes KA, Majerovic Y, Griffiths MR. Magnification error of femoral geometry using fan beam densitometers. Calcif Tissue Int. 1997;60:8–10.

    Article  CAS  PubMed  Google Scholar 

  10. Oldroyd B, Smith AH, Truscott JG. Cross-calibration of GE/Lunar pencil and fan-beam dual energy densitometers—Bone mineral density and body composition studies. Eur J Clin Nutr. 2003;57:977–87.

    Article  CAS  PubMed  Google Scholar 

  11. Position Statement of the Health Physics Society, “Radiation Risk Perspective.” Adopted 1996, Reissued, 2004. http://hps.org/documents/radiationrisk.pdf

  12. Board statement on diagnostic medical exposures to ionizing radiation during pregnancy and estimates of late radiation effects to the U.K. population. Documents of NRPB4, No 4, 1993.

    Google Scholar 

  13. Annals of the ICRP. 1990 Recommendations of the International Commission on Radiological Protection. ICRP Publication 60. 1991; Volume 21: No. 1–3.

    Google Scholar 

  14. Powers C, Fan B, Borrud LG, Looker AC, Shepherd JA. Long-term precision of dual-energy X-ray absorptiometry body composition measurements and association with their covariates. J Clin Densitom. 2015;18(1):76–85.

    Article  PubMed  Google Scholar 

  15. Shepherd JA, Wang L, Fan B, Gilsanz V, Kalkwarf HJ, Lappe J, et al. Optimal monitoring time interval between DXA measures in children. J Bone Min Res. 2011;26(11):2745–52.

    Article  Google Scholar 

  16. Blake GM, Naeem M, Boutros M. Comparison of effective dose to children and adults from dual X-ray absorptiometry examinations. Bone. 2006;38(6):935–42.

    Article  PubMed  Google Scholar 

  17. Zanchetta JR, Plotkin H, Alvarez Filgueira ML. Bone mass in children: normative values for the 2–20-year-old population. Bone. 1995;16:393S–9.

    CAS  PubMed  Google Scholar 

  18. Damilakis J, Solomou G, Manios GE, Karantanas A. Pediatric radiation dose and risk from bone density measurements using a GE Lunar Prodigy scanner. Osteoporos Int. 2013;24(7):2025–31.

    Article  CAS  PubMed  Google Scholar 

  19. Henderson RC, Berglund LM, May R, Zemel BS, Grossberg RI, Johnson J, et al. The relationship between fractures and DXA measures of BMD in the distal femur of children and adolescents with cerebral palsy or muscular dystrophy. J Bone Miner Res. 2010;25(3):520–6.

    Article  PubMed  Google Scholar 

  20. Nejh CF, Hans D, Li J, Fan B, Fuerst T, He YQ, et al. Comparison of six calcaneal quantitative ultrasound devices: precision and hip fracture discrimination. Osteoporos Int. 2000;11(12):1051–62.

    Article  Google Scholar 

  21. Crabtree NJ et al. Dual-energy X-ray absorptiometry interpretation and reporting in children and adolescents: the revised 2013 ISCD Pediatric Official Positions. J Clin Densitom. 2014;17(2):225–42.

    Article  PubMed  Google Scholar 

  22. Binkley TL, Specker BL, Wittig TA. Centile curves for bone density measurements in healthy males and females ages 5–22 yr. J Clin Densitom. 2002;5:343–53.

    Article  PubMed  Google Scholar 

  23. Arabi A, Nabulsi M, Maalouf J, et al. Bone mineral density by age, gender, pubertal stages, and socioeconomic status in healthy Lebanese children and adults. Bone. 2004;35:1169–79.

    Article  PubMed  Google Scholar 

  24. Arabi A, Tamim H, Nabulsi M, et al. Sex differences in the effect of body-composition variables on bone mass in healthy children and adolescents. Am J Clin Nutr. 2004;80:1428–35.

    CAS  PubMed  Google Scholar 

  25. Cromer BA, Binkovitz L, Ziegler J, et al. Reference values for bone mineral density in 12- to 18-year-old girls categorized by weight, race, and age. Pediatr Radiol. 2004;34:787–92.

    Article  PubMed  Google Scholar 

  26. Ward KA, Ashby RL, Roberts SA, et al. UK reference data for the Hologic QDR Discovery dual-energy x ray absorptiometry scanner in healthy children and young adults aged 6–17 years. Arch Dis Child. 2007;92:53–9.

    Article  PubMed  Google Scholar 

  27. Kalkwarf HJ, Zemel BS, Gilsanz V, et al. The bone mineral density in childhood study (BMDCS): bone mineral content and density according to age, sex and race. J Clin Endocrinol Metab. 2007;92(6):2087–99.

    Article  CAS  PubMed  Google Scholar 

  28. Sala A, Webber CE, Morrison J, et al. Whole-body bone mineral content, lean body mass, and fat mass as measured by dual-energy x-ray absorptiometry in a population of healthy Canadian children and adolescents. Can Assoc Radiol J. 2007;58(1):46–52.

    PubMed  Google Scholar 

  29. Tan LJ, Lei SF, Chen XD, et al. Establishment of peak bone mineral density in Southern Chinese males and its comparisons with other males from different regions of China. J Bone Miner Metab. 2007;25:114–21.

    Article  PubMed  Google Scholar 

  30. Kelly TL, Wilson KE, Heymsfield SB. Dual energy X-ray absorptiometry body composition reference values from NHANES. PLoS One. 2009;4(9):e7038.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Zemel BS, Stallings VA, Leonard MB, et al. Revised pediatric reference data for the lateral distal femur measured by Hologic Discovery/Delphi dual-energy X-ray absorptiometry. J Clin Densitom. 2009;12(2):207–18.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Zhou W, Langsetmo L, Berger C, et al. CaMos Research Group. Normative bone mineral density z-scores for Canadians aged 16 to 24 years: the Canadian Multicenter Osteoporosis Study. J Clin Densitom. 2010;13(3):267–76.

    Article  PubMed  Google Scholar 

  33. Baxter-Jones AD, Burrows M, Bachrach LK, et al. International longitudinal pediatric reference standards for bone mineral content. Bone. 2010;46(1):208–16.

    Article  PubMed  Google Scholar 

  34. Zemel BS, Kalkwarf HJ, Gilsanz V, et al. Revised reference curves for bone mineral content and areal bone mineral density according to age and sex for black and non-black children: results of the bone mineral density in childhood study. J Clin Endocrinol Metab. 2011;96(10):3160–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kalkwarf HJ, Zemel BS, Yolton K, Heubi JE. Bone mineral content and density of the lumbar spine of infants and toddlers: influence of age, sex, race, growth, and human milk feeding. J Bone Miner Res. 2013;28(1):206–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Khadilkar AV, Sanwalka NJ, Chiplonkar SA, et al. Normative data and percentile curves for dual energy X-ray absorptiometry in healthy Indian girls and boys aged 5–17 years. Bone. 2011;48(4):810–9.

    Article  PubMed  Google Scholar 

  37. Crabtree NJ, Machin M, Bebbington NA, et al. 2013 The Amalgamated Paediatric Bone Density Study (the ALPHABET Study): the collation and generation of UK based reference data for paediatric bone densitometry. Bone Abstr 2. doi:10.1530/boneabs.2.OC1.

  38. Xu H, Chen JX, Gong J, et al. Normal reference for bone density in healthy Chinese children. J Clin Densitom. 2007;10(3):266–75.

    Article  PubMed  Google Scholar 

  39. Marwaha RK, Tandon N, Reddy DH, et al. Peripheral bone mineral density and its predictors in healthy school girls from two different socioeconomic groups in Delhi. Osteoporos Int. 2007;18(3):375–83.

    Article  CAS  PubMed  Google Scholar 

  40. Min JY, Min KB, Paek D, et al. Age curves of bone mineral density at the distal radius and calcaneus in Koreans. J Bone Miner Metab. 2010;28(1):94–100.

    Article  PubMed  Google Scholar 

  41. Cheng JCY, Leung SSSF, Lee WTK, et al. Determinants of axial and peripheral bone mass in Chinese adolescents. Arch Dis Child. 1998;78:524–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hasanoglu A, Tumer L, Ezgu FS. Vertebra and femur bone mineral density values in Turkish children. Turk J Pediatr. 2004;46:298–302.

    PubMed  Google Scholar 

  43. Gordon CM, Bachrach LK, Carpenter TO, et al. Dual energy X-ray absorptiometry interpretation and reporting in children and adolescents: the 2007 ISCD Pediatric Official Positions. J Clin Densitom. 2008;11(1):43–58.

    Article  PubMed  Google Scholar 

  44. Leonard MB, Propert KJ, Zemel BS, Stallings VA, Feldman HI. Discrepancies in pediatric bone mineral density reference data: potential for misdiagnosis of osteopenia. J Pediatr. 1999;135:182–8.

    Article  CAS  PubMed  Google Scholar 

  45. WHO. The WHO Study Group: Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. Geneva, Switzerland, 1994.

    Google Scholar 

  46. Marshall D, Johnell O, Wedel H. Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ. 1996;312:1254–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Cummings SR, Black DM, Nevitt MC, Browner W, Cauley J, Ensrud K, et al. Bone density at various sites for prediction of hip fractures. The Study of Osteoporotic Fractures Research Group. Lancet. 1993;341:72–5.

    Article  CAS  PubMed  Google Scholar 

  48. Kanis JA, Johnell O, Oden A, Dawson A, De Laet C, Jonsson B. Ten year probabilities of osteoporotic fractures according to BMD and diagnostic thresholds. Osteoporos Int. 2001;12:989–95.

    Article  CAS  PubMed  Google Scholar 

  49. Taylor BC, Schreiner PJ, Stone KL, Fink HA, Cummings SR, Nevitt MC, et al. Long-term prediction of incident hip fracture risk in elderly white women: study of osteoporotic fractures. J Am Geriatr Soc. 2004;52:1479–86.

    Article  PubMed  Google Scholar 

  50. Prentice A, Parsons TJ, Cole TJ. Uncritical use of bone mineral density in absorptiometry may lead to size-related artifacts in the identification of bone mineral determinants. Am J Clin Nutr. 1994;60:837–42.

    CAS  PubMed  Google Scholar 

  51. Molgaard C, Thomsen BL, Prentice A, Cole TJ, Michaelsen KF. Whole body bone mineral content in healthy children and adolescents. Arch Dis Child. 1997;76:9–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Heaney RP. Bone mineral content, not bone mineral density, is the correct bone measure for growth studies. Am J Clin Nutr. 2003;78:350–2.

    CAS  PubMed  Google Scholar 

  53. Leonard MB, Shults J, Elliott DM, Stallings VA, Zemel BS. Interpretation of whole body dual energy X-ray absorptiometry measures in children: comparison with peripheral quantitative computed tomography. Bone. 2004;34:1044–52.

    Article  PubMed  Google Scholar 

  54. Bachrach LK, Hastie T, Wang MC, Narasimhan B, Marcus R. Bone mineral acquisition in healthy Asian, Hispanic, black, and Caucasian youth: a longitudinal study. J Clin Endocrinol Metab. 1999;84:4702–12.

    CAS  PubMed  Google Scholar 

  55. Wang MC, Aguirre M, Bhudhikanok GS, Kendall CG, Kirsch S, Marcus R, et al. Bone mass and hip axis length in healthy Asian, black, Hispanic, and white American youths. J Bone Miner Res. 1997;12:1922–35.

    Article  CAS  PubMed  Google Scholar 

  56. Blake GM, Parker JC, Buxton FM, Fogelman I. Dual X-ray absorptiometry: a comparison between fan beam and pencil beam scans. Br J Radiol. 1993;66:902–6.

    Article  CAS  PubMed  Google Scholar 

  57. Tothill P, Laskey MA, Orphanidou CI, Van Wijk M. Anomalies in dual energy X-ray absorptiometry measurements of total-body bone mineral during weight change using Lunar, Hologic and Norland instruments. Br J Radiol. 1999;72:661–9.

    Article  CAS  PubMed  Google Scholar 

  58. Tothill P. Dual-energy X-ray absorptiometry measurements of total-body bone mineral during weight change. J Clin Densitom. 2005;8(1):31–8.

    Article  PubMed  Google Scholar 

  59. Tothill P, Avenill A. Anomalies in the measurement of changes in bone mineral density of the spine by dual-energy X-ray absorptiometry. Calcif Tissue Int. 1998;63:126–33.

    Article  CAS  PubMed  Google Scholar 

  60. Zemel BS, Leonard MB, Stallings VA. Evaluation of the Hologic experimental pediatric whole body analysis software in healthy children and children with chronic disease (Abstract). J Bone Miner Res. 2000;15(15(Supp l1)):S400.

    Google Scholar 

  61. Kelly TL. Pediatric whole body measurements. J Bone Miner Res 2002;17(Suppl 1): Abstract#S296.

    Google Scholar 

  62. Hui SL, Gao S, Zhou XH, Johnston Jr CC, Lu Y, Gluer CC, et al. Universal standardization of bone density measurements: a method with optimal properties for calibration among several instruments. J Bone Miner Res. 1997;12:1463–70.

    Article  CAS  PubMed  Google Scholar 

  63. Kalkwarf HJ, Zemel BS, Gilsanz V, Lappe JM, Horlick M, Oberfield S, et al. The bone mineral density in childhood study: bone mineral content and density according to age, sex, and race. J Clin Endocrinol Metab. 2007;92(6):2087–99.

    Article  CAS  PubMed  Google Scholar 

  64. del Rio L, Carrascosa A, Pons F, Gusinye M, Yeste D, Domenech FM. Bone mineral density of the lumbar spine in white Mediterranean Spanish children and adolescents: changes related to age, sex, and puberty. Pediatr Res. 1994;35:362–6.

    Article  PubMed  Google Scholar 

  65. Glastre C, Braillon P, David L, Cochat P, Meunier PJ, Delmas PD. Measurement of bone mineral content of the lumbar spine by dual energy X-ray absorptiometry in normal children: correlations with growth parameters. J Clin Endocrinol Metab. 1990;70:1330–3.

    Article  CAS  PubMed  Google Scholar 

  66. Katzman DK, Bachrach LK, Carter DR, Marcus R. Clinical and anthropometric correlates of bone mineral acquisition in healthy adolescent girls. J Clin Endocrinol Metab. 1991;73:1332–9.

    Article  CAS  PubMed  Google Scholar 

  67. Lu PW, Briody JN, Ogle GD, Morley K, Humphries IR, Allen J, et al. Bone mineral density of total body, spine, and femoral neck in children and young adults: a cross-sectional and longitudinal study. J Bone Miner Res. 1994;9:1451–8.

    Article  CAS  PubMed  Google Scholar 

  68. Southard RN, Morris JD, Mahan JD, Hayes JR, Torch MA, Sommer A, et al. Bone mass in healthy children: measurement with quantitative DXA. Radiology. 1991;179:735–8.

    Article  CAS  PubMed  Google Scholar 

  69. Horlick M, Wang J, Pierson Jr RN, Thornton JC. Prediction models for evaluation of total-body bone mass with dual-energy X-ray absorptiometry among children and adolescents. Pediatrics. 2004;114:337–45.

    Article  Google Scholar 

  70. Plotkin H, Nunez M, Alvarez Filgueira ML, Zanchetta JR. Lumbar spine bone density in Argentine children. Calcif Tissue Int. 1996;58:144–9.

    Article  CAS  PubMed  Google Scholar 

  71. Theintz G, Buchs B, Rizzoli R, Slosman D, Clavien H, Sizonenko PC, et al. Longitudinal monitoring of bone mass accumulation in healthy adolescents: evidence for a marked reduction after 16 years of age at the levels of lumbar spine and femoral neck in female subjects. J Clin Endocrinol Metab. 1992;75:1060–5.

    CAS  PubMed  Google Scholar 

  72. Nelson DA, Simpson PM, Johnson CC, Barondess DA, Kleerekoper M. The accumulation of whole body skeletal mass in third- and fourth-grade children: effects of age, gender, ethnicity, and body composition. Bone. 1997;20:73–8.

    Article  CAS  PubMed  Google Scholar 

  73. Parfitt AM. Genetic effects on bone mass and turnover-relevance to black/white differences. J Am Coll Nutr. 1997;16:325–33.

    Article  CAS  PubMed  Google Scholar 

  74. Pietrobelli A, Faith MS, Wang J, Brambilla P, Chiumello G, Heymsfield SB. Association of lean tissue and fat mass with bone mineral content in children and adolescents. Obes Res. 2002;10:56–60.

    Article  PubMed  Google Scholar 

  75. Chan GM, Hoffman K, McMurry M. Effects of dairy products on bone and body composition in pubertal girls. J Pediatr. 1995;126:551–6.

    Article  CAS  PubMed  Google Scholar 

  76. Sentipal JM, Wardlaw GM, Mahan J, Matkovic V. Influence of calcium intake and growth indexes on vertebral bone mineral density in young females. Am J Clin Nutr. 1991;54:425–8.

    CAS  PubMed  Google Scholar 

  77. Slemenda CW, Christian JC, Williams CJ, Norton JA, Johnston CC. Genetic determinants of bone mass in adult women: a reevaluation of the twin model and the potential importance of gene interaction in heritability estimates. J Bone Miner Res. 1991;6:561–7.

    Article  CAS  PubMed  Google Scholar 

  78. Bailey DA, McKay HA, Mirwald RL, Crocker PR, Faulkner RA. A six-year longitudinal study of the relationship of physical activity to bone mineral accrual in growing children: The University of Saskatchewan bone mineral accrual study. J Bone Miner Res. 1999;14:1672–9.

    Article  CAS  PubMed  Google Scholar 

  79. Magarey AM, Boulton TJ, Chatterton BE, Schultz C, Nordin BE, Cockington RA. Bone growth from 11 to 17 years: relationship to growth, gender and changes with pubertal status including timing of menarche. Acta Paediatr. 1999;88:139–46.

    Article  CAS  PubMed  Google Scholar 

  80. Seeman E. From density to structure: growing up and growing old on the surfaces of bone. J Bone Miner Res. 1997;12:509–21.

    Article  CAS  PubMed  Google Scholar 

  81. Seeman E, Hopper JL, Young NR, Formica C, Goss P, Tsalamandris C. Do genetic factors explain associations between muscle strength, lean mass, and bone density? A twin study. Am J Physiol. 1996;270:E320–7.

    CAS  PubMed  Google Scholar 

  82. Bachrach LK. Acquisition of optimal bone mass in childhood and adolescence. Trends Endocrinol Metab. 2001;12:22–8.

    Article  CAS  PubMed  Google Scholar 

  83. Leib ES, Lewiecki EM, Binkley N, Hamdy RC. Official positions of the International Society for Clinical Densitometry. J Clin Densitom. 2004;7:1–6.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Shepherd Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Shepherd, J., Crabtree, N.J. (2016). Dual-Energy X-Ray Absorptiomery Technology. In: Fung, E., Bachrach, L., Sawyer, A. (eds) Bone Health Assessment in Pediatrics. Springer, Cham. https://doi.org/10.1007/978-3-319-30412-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30412-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30410-6

  • Online ISBN: 978-3-319-30412-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics