Skip to main content

Pitfalls in DXA Scanning

  • Chapter
  • First Online:
New Horizons in Osteoporosis Management
  • 1558 Accesses

Abstract

Dual-energy X-ray absorptiometry (DXA) is recognized as the reference method to measure bone mineral density (BMD) with good precision and reproducibility and acceptable accuracy errors. The World Health Organization (WHO) has established DXA as the best densitometric technique for assessing BMD in postmenopausal women and based the definition of osteoporosis on its results. DXA allows accurate diagnosis of osteoporosis, estimation of fracture risk, and monitoring of patients undergoing treatment. However, DXA studies are commonly performed or analyzed incorrectly leading to major mistakes in diagnosis and therapy. This chapter reviews the fundamentals of positioning, scan analysis, and interpretation of DXA in clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BMC:

Bone mineral content

BMD:

Bone mineral density

CV:

Coefficient of variation

DXA:

Dual-energy X-ray absorptiometry

IOF:

International Osteoporosis Foundation

ISCD:

International Society for Clinical Densitometry

LSC:

Least significant change

PE:

Precision error

ROI:

Region of interest

SD:

Standard deviation

SDD:

Smallest detectable difference

TBS:

Trabecular bone score

VFA:

Vertebral fracture assessment

WHO:

World Health Organization

References

  1. Blake GM, Fogelman I. The role of DXA bone density scans in the diagnosis and treatment of osteoporosis. Postgrad Med J. 2007;83:509–17.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kanis JA. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: synopsis of a WHO report. WHO Study Group Osteoporos Int. 1994;4:368–81.

    Article  CAS  Google Scholar 

  3. Kanis JA, Borgstrom F, De Laet C, et al. Assessment of fracture risk. Osteoporos Int. 2005;16:581–9.

    Article  PubMed  Google Scholar 

  4. Conference. WGftIPD. Indications and reporting for dual-energy x-ray absorptiometry. J Clin Densitom. 2004;7:37–44.

    Article  Google Scholar 

  5. Lewiecki EM, Binkley N, Petak SM. DXA quality matters. J Clin Densitom. 2006;9:388–92.

    Article  PubMed  Google Scholar 

  6. Hans D, Downs RW Jr, Duboeuf F, et al. Skeletal sites for osteoporosis diagnosis: the 2005 ISCD Official Positions. J Clin Densitom. 2006;9:15–21.

    Article  PubMed  Google Scholar 

  7. El Maghraoui A, Roux C. DXA scanning in clinical practice. QJM. 2008;101:605–17.

    Article  PubMed  Google Scholar 

  8. Blake GM, Fogelman I. DXA scanning and its interpretation in osteoporosis. Hosp Med. 2003;64:521–5.

    Article  PubMed  Google Scholar 

  9. Blake GM, Fogelman I. Dual energy x-ray absorptiometry and its clinical applications. Semin Musculoskelet Radiol. 2002;6:207–18.

    Article  PubMed  Google Scholar 

  10. Tothill P, Avenell A. Errors in dual-energy X-ray absorptiometry of the lumbar spine owing to fat distribution and soft tissue thickness during weight change. Br J Radiol. 1994;67:71–5.

    Article  CAS  PubMed  Google Scholar 

  11. Svendsen OL, Hassager C, Skodt V, Christiansen C. Impact of soft tissue on in vivo accuracy of bone mineral measurements in the spine, hip, and forearm: a human cadaver study. J Bone Miner Res. 1995;10:868–73.

    Article  CAS  PubMed  Google Scholar 

  12. Kuiper JW, van Kuijk C, Grashuis JL, Ederveen AG, Schutte HE. Accuracy and the influence of marrow fat on quantitative CT and dual-energy X-ray absorptiometry measurements of the femoral neck in vitro. Osteoporos Int. 1996;6:25–30.

    Article  CAS  PubMed  Google Scholar 

  13. Griffith JF, Yeung DK, Antonio GE, et al. Vertebral marrow fat content and diffusion and perfusion indexes in women with varying bone density: MR evaluation. Radiology. 2006;241:831–8.

    Article  PubMed  Google Scholar 

  14. Lewiecki EM, Borges JL. Bone density testing in clinical practice. Arq Bras Endocrinol Metabol. 2006;50:586–95.

    Article  PubMed  Google Scholar 

  15. Price RI, Walters MJ, Retallack RW, et al. Impact of the analysis of a bone density reference range on determination of the T-score. J Clin Densitom. 2003;6:51–62.

    Article  PubMed  Google Scholar 

  16. Watts NB. Fundamentals and pitfalls of bone densitometry using dual-energy X-ray absorptiometry (DXA). Osteoporos Int. 2004;15:847–54.

    Article  PubMed  Google Scholar 

  17. Baddoura R, Awada H, Okais J, et al. An audit of bone densitometry practice with reference to ISCD, IOF and NOF guidelines. Osteoporos Int. 2006;17:1111–5.

    Article  CAS  PubMed  Google Scholar 

  18. Leib ES, Binkley N, Bilezikian JP, Kendler DL, Lewiecki EM, Petak SM. Position Development Conference of the International Society for Clinical Densitometry. Vancouver, BC, July 15–17, 2005. J Rheumatol. 2006;33:2319–21.

    PubMed  Google Scholar 

  19. Kanis JA, Johnell O, Oden A, Jonsson B, De Laet C, Dawson A. Risk of hip fracture according to the World Health Organization criteria for osteopenia and osteoporosis. Bone. 2000;27:585–90.

    Article  CAS  PubMed  Google Scholar 

  20. Kanis JA, Oden A, Johnell O, Jonsson B, de Laet C, Dawson A. The burden of osteoporotic fractures: a method for setting intervention thresholds. Osteoporos Int. 2001;12:417–27.

    Article  CAS  PubMed  Google Scholar 

  21. Kanis JA. Diagnosis of osteoporosis and assessment of fracture risk. Lancet. 2002;359:1929–36.

    Article  PubMed  Google Scholar 

  22. Johnell O, Kanis JA, Oden A, et al. Predictive value of BMD for hip and other fractures. J Bone Miner Res. 2005;20:1185–94.

    Article  PubMed  Google Scholar 

  23. Kanis JA, Seeman E, Johnell O, Rizzoli R, Delmas P. The perspective of the International Osteoporosis Foundation on the official positions of the International Society for Clinical Densitometry. Osteoporos Int. 2005;16:456–9, discussion 579–80.

    Article  PubMed  Google Scholar 

  24. Arabi A, Baddoura R, Awada H, et al. Discriminative ability of dual-energy X-ray absorptiometry site selection in identifying patients with osteoporotic fractures. Bone. 2007;40:1060–5.

    Article  PubMed  Google Scholar 

  25. Roux C. Densitométrie osseuse et ostéoporose. J Radiol. 1998;79:821–3.

    CAS  PubMed  Google Scholar 

  26. Baim S, Wilson CR, Lewiecki EM, Luckey MM, Downs RW Jr, Lentle BC. Precision assessment and radiation safety for dual-energy X-ray absorptiometry: position paper of the International Society for Clinical Densitometry. J Clin Densitom. 2005;8:371–8.

    Article  PubMed  Google Scholar 

  27. Lekamwasam S, Lenora RS. Effect of leg rotation on hip bone mineral density measurements. J Clin Densitom. 2003;6:331–6.

    Article  PubMed  Google Scholar 

  28. Hamdy R, Kiebzak GM, Seier E, Watts NB. The prevalence of significant left-right differences in hip bone mineral density. Osteoporos Int. 2006;17:1772–80.

    Article  CAS  PubMed  Google Scholar 

  29. El Maghraoui A. Osteoporosis and ankylosing spondylitis. Joint Bone Spine revue du rhumatisme. 2004;71:291–5.

    Article  Google Scholar 

  30. Moayyeri A, Soltani A, Tabari NK, Sadatsafavi M, Hossein-Neghad A, Larijani B. Discordance in diagnosis of osteoporosis using spine and hip bone densitometry. BMC Endocr Disord. 2005;5:3.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Woodson G. Dual X-ray absorptiometry T-score concordance and discordance between the hip and spine measurement sites. J Clin Densitom. 2000;3:319–24.

    Article  CAS  PubMed  Google Scholar 

  32. Faulkner KG, von Stetten E, Miller P. Discordance in patient classification using T-scores. J Clin Densitom. 1999;2:343–50.

    Article  CAS  PubMed  Google Scholar 

  33. O’Gradaigh D, Debiram I, Love S, Richards HK, Compston JE. A prospective study of discordance in diagnosis of osteoporosis using spine and proximal femur bone densitometry. Osteoporos Int. 2003;14:13–8.

    Article  PubMed  Google Scholar 

  34. El Maghraoui A, Mouinga Abayi DA, Ghozlani I, et al. Prevalence and risk factors of discordance in diagnosis of osteoporosis using spine and hip bone densitometry. Ann Rheum Dis. 2007;66:271–2.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Mounach A, Abayi DA, Ghazi M, et al. Discordance between hip and spine bone mineral density measurement using DXA: prevalence and risk factors. Semin Arthritis Rheum. 2009;38:467–71.

    Article  CAS  PubMed  Google Scholar 

  36. Mounach A, Rezqi A, Ghozlani I, Achemlal L, Bezza A, El Maghraoui A. Prevalence and risk factors of discordance between left- and right-hip bone mineral density using DXA. ISRN Rheumatol. 2012;2012:617535.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Blank RD, Malone DG, Christian RC, et al. Patient variables impact lumbar spine dual energy X-ray absorptiometry precision. Osteoporos Int. 2006;17:768–74.

    Article  CAS  PubMed  Google Scholar 

  38. Agarwal M, Camacho P. Bone densitometry. Interpretation and pitfalls. Postgrad Med. 2006;119:17–23.

    Article  PubMed  Google Scholar 

  39. Theodorou DJ, Theodorou SJ. Dual-energy X-ray absorptiometry in clinical practice: application and interpretation of scans beyond the numbers. Clin Imaging. 2002;26:43–9.

    Article  PubMed  Google Scholar 

  40. Bolotin HH. Inaccuracies inherent in dual-energy X-ray absorptiometry in vivo bone mineral densitometry may flaw osteopenic/osteoporotic interpretations and mislead assessment of antiresorptive therapy effectiveness. Bone. 2001;28:548–55.

    Article  CAS  PubMed  Google Scholar 

  41. El Maghraoui A, Do Santos Zounon AA, Jroundi I, et al. Reproducibility of bone mineral density measurements using dual X-ray absorptiometry in daily clinical practice. Osteoporos Int. 2005;16:1742–8.

    Article  PubMed  Google Scholar 

  42. El Maghraoui A. La spondylarthrite ankylosante. Presse Med. 2004;33:1459–64.

    Article  PubMed  Google Scholar 

  43. El Maghraoui A, Borderie D, Cherruau B, Edouard R, Dougados M, Roux C. Osteoporosis, body composition, and bone turnover in ankylosing spondylitis. J Rheumatol. 1999;26:2205–9.

    PubMed  Google Scholar 

  44. Maillefert JF, Aho LS, El Maghraoui A, Dougados M, Roux C. Changes in bone density in patients with ankylosing spondylitis: a two-year follow-up study. Osteoporos Int. 2001;12:605–9.

    Article  CAS  PubMed  Google Scholar 

  45. El Maghraoui A. L’ostéoprose cortisonique. Presse Med. 2004;33:1213–7.

    Article  PubMed  Google Scholar 

  46. Khan AA, Hanley DA, Bilezikian JP, et al. Standards for performing DXA in individuals with secondary causes of osteoporosis. J Clin Densitom. 2006;9:47–57.

    Article  PubMed  Google Scholar 

  47. McMahon K, Nightingale J, Pocock N. Discordance in DXA male reference ranges. J Clin Densitom. 2004;7:121–6.

    Article  PubMed  Google Scholar 

  48. Liao EY, Wu XP, Luo XH, et al. Establishment and evaluation of bone mineral density reference databases appropriate for diagnosis and evaluation of osteoporosis in Chinese women. J Bone Miner Metab. 2003;21:184–92.

    Article  PubMed  Google Scholar 

  49. Kanis JA, Cooper C, Rizzoli R, et al. European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int. 2019;30:3–44.

    Article  CAS  PubMed  Google Scholar 

  50. Lenchik L, Kiebzak GM, Blunt BA. What is the role of serial bone mineral density measurements in patient management? J Clin Densitom. 2002;5 Suppl:S29–38.

    Article  PubMed  Google Scholar 

  51. Phillipov G, Seaborn CJ, Phillips PJ. Reproducibility of DXA: potential impact on serial measurements and misclassification of osteoporosis. Osteoporos Int. 2001;12:49–54.

    Article  CAS  PubMed  Google Scholar 

  52. Maggio D, McCloskey EV, Camilli L, et al. Short-term reproducibility of proximal femur bone mineral density in the elderly. Calcif Tissue Int. 1998;63:296–9.

    Article  CAS  PubMed  Google Scholar 

  53. Fuleihan GE, Testa MA, Angell JE, Porrino N, Leboff MS. Reproducibility of DXA absorptiometry: a model for bone loss estimates. J Bone Miner Res. 1995;10:1004–14.

    Article  CAS  PubMed  Google Scholar 

  54. Kline GA, Hanley DA. Differences of vertebral area in serial bone density measurements: a common source of potential error in interpretation of BMD change. J Clin Densitom. 2006;9:419–24.

    Article  PubMed  Google Scholar 

  55. Kolta S, Ravaud P, Fechtenbaum J, Dougados M, Roux C. Follow-up of individual patients on two DXA scanners of the same manufacturer. Osteoporos Int. 2000;11:709–13.

    Article  CAS  PubMed  Google Scholar 

  56. Roux C, Garnero P, Thomas T, Sabatier JP, Orcel P, Audran M. Recommendations for monitoring antiresorptive therapies in postmenopausal osteoporosis. Joint Bone Spine. 2005;72:26–31.

    Article  PubMed  Google Scholar 

  57. Bennett HS, Dienstfrey A, Hudson LT, Oreskovic T, Fuerst T, Shepherd J. Standards and measurements for assessing bone health-workshop report co-sponsored by the International Society for Clinical Densitometry (ISCD) and the National Institute of Standards and Technology (NIST). J Clin Densitom. 2006;9:399–405.

    Article  PubMed  Google Scholar 

  58. Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;1:307–10.

    Article  CAS  PubMed  Google Scholar 

  59. Ravaud P, Reny JL, Giraudeau B, Porcher R, Dougados M, Roux C. Individual smallest detectable difference in bone mineral density measurements. J Bone Miner Res. 1999;14:1449–56.

    Article  CAS  PubMed  Google Scholar 

  60. El Maghraoui A, Achemlal L, Bezza A. Monitoring of dual-energy X-ray absorptiometry measurement in clinical practice. J Clin Densitom. 2006;9:281–6.

    Article  PubMed  Google Scholar 

  61. Ryder KM, Shorr RI, Tylavsky FA, et al. Correlates of use of antifracture therapy in older women with low bone mineral density. J Gen Intern Med. 2006;21:636–41.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Seeman E, Compston J, Adachi J, et al. Non-compliance: the Achilles’ heel of anti-fracture efficacy. Osteoporos Int. 2007;18:711–9.

    Article  CAS  PubMed  Google Scholar 

  63. Bruyere O, Roux C, Detilleux J, et al. Relationship between bone mineral density changes and fracture risk reduction in patients treated with strontium ranelate. J Clin Endocrinol Metab. 2007;92:3076–81.

    Article  CAS  PubMed  Google Scholar 

  64. Bouxsein ML, Eastell R, Lui LY, et al. Change in bone density and reduction in fracture risk: a meta-regression of published trials. J Bone Miner Res. 2019;34:632–42.

    Article  PubMed  Google Scholar 

  65. Lewiecki EM, Kendler DL, Davison KS, et al. Western osteoporosis alliance clinical practice series: treat-to-target for osteoporosis. Am J Med. 2019;132:e771–e7.

    Article  PubMed  Google Scholar 

  66. Cummings SR, Cosman F, Lewiecki EM, et al. Goal-directed treatment for osteoporosis: a progress report from the ASBMR-NOF working group on goal-directed treatment for osteoporosis. J Bone Miner Res. 2017;32:3–10.

    Article  CAS  PubMed  Google Scholar 

  67. Olenginski TP, Newman ED, Hummel JL, Hummer M. Development and evaluation of a vertebral fracture assessment program using IVA and its integration with mobile DXA. J Clin Densitom. 2006;9:72–7.

    Article  PubMed  Google Scholar 

  68. Rea JA, Li J, Blake GM, Steiger P, Genant HK, Fogelman I. Visual assessment of vertebral deformity by X-ray absorptiometry: a highly predictive method to exclude vertebral deformity. Osteoporos Int. 2000;11:660–8.

    Article  CAS  PubMed  Google Scholar 

  69. Chapurlat RD, Duboeuf F, Marion-Audibert HO, Kalpakcioglu B, Mitlak BH, Delmas PD. Effectiveness of instant vertebral assessment to detect prevalent vertebral fracture. Osteoporos Int. 2006;17:1189–95.

    Article  CAS  PubMed  Google Scholar 

  70. Roux C, Fechtenbaum J, Kolta S, Briot K, Girard M. Mild prevalent and incident vertebral fractures are risk factors for new fractures. Osteoporos Int. 2007;18:1617–24.

    Article  CAS  PubMed  Google Scholar 

  71. Damiano J, Kolta S, Porcher R, Tournoux C, Dougados M, Roux C. Diagnosis of vertebral fractures by vertebral fracture assessment. J Clin Densitom. 2006;9:66–71.

    Article  PubMed  Google Scholar 

  72. Jacobs-Kosmin D, Sandorfi N, Murray H, Abruzzo JL. Vertebral deformities identified by vertebral fracture assessment: associations with clinical characteristics and bone mineral density. J Clin Densitom. 2005;8:267–72.

    Article  PubMed  Google Scholar 

  73. Duboeuf F, Bauer DC, Chapurlat RD, Dinten JM, Delmas P. Assessment of vertebral fracture using densitometric morphometry. J Clin Densitom. 2005;8:362–8.

    Article  CAS  PubMed  Google Scholar 

  74. Borges JLC, Sousa da Silva M, Ward RJ, Diemer KM, Yeap SS, Lewiecki EM. Repeating vertebral fracture assessment: 2019 ISCD Official Position. J Clin Densitom. 2019;22:484–8.

    Article  PubMed  Google Scholar 

  75. Wilson PW, Kauppila LI, O’Donnell CJ, et al. Abdominal aortic calcific deposits are an important predictor of vascular morbidity and mortality. Circulation. 2001;103:1529–34.

    Article  CAS  PubMed  Google Scholar 

  76. Golestani R, Tio R, Zeebregts CJ, et al. Abdominal aortic calcification detected by dual X-ray absorptiometry: a strong predictor for cardiovascular events. Ann Med. 2010;42:539–45.

    Article  PubMed  Google Scholar 

  77. Walsh CR, Cupples LA, Levy D, et al. Abdominal aortic calcific deposits are associated with increased risk for congestive heart failure: the Framingham Heart Study. Am Heart J. 2002;144:733–9.

    Article  PubMed  Google Scholar 

  78. van der Meer IM, Bots ML, Hofman A, del Sol AI, van der Kuip DA, Witteman JC. Predictive value of noninvasive measures of atherosclerosis for incident myocardial infarction: the Rotterdam Study. Circulation. 2004;109:1089–94.

    Article  PubMed  Google Scholar 

  79. Hans D, Stenova E, Lamy O. The Trabecular Bone Score (TBS) complements DXA and the FRAX as a fracture risk assessment tool in routine clinical practice. Curr Osteoporos Rep. 2017;15:521–31.

    Article  PubMed  Google Scholar 

  80. Silva BC, Leslie WD. Trabecular bone score: a new DXA-derived measurement for fracture risk assessment. Endocrinol Metab Clin North Am. 2017;46:153–80.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdellah El Maghraoui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

El Maghraoui, A. (2022). Pitfalls in DXA Scanning. In: El Miedany, Y. (eds) New Horizons in Osteoporosis Management. Springer, Cham. https://doi.org/10.1007/978-3-030-87950-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87950-1_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87949-5

  • Online ISBN: 978-3-030-87950-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics