Skip to main content

Advertisement

Log in

Dual-energy X-ray absorptiometry bone densitometry in pediatrics: a practical review and update

  • Review
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

The assessment of pediatric bone mineral content and density is an evolving field. In this manuscript we provide a practical review and update on the interpretation of dual-energy X-ray absorptiometry (DXA) in pediatrics including historical perspectives as well as a discussion of the recently published 2019 Official Position Statements of the International Society of Clinical Densitometry (ISCD) that apply to children.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cosman F, de Beur SJ, LeBoff MS et al (2014) Clinician's guide to prevention and treatment of osteoporosis. Osteoporos Int 25:2359–2381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Siris ES, Adler R, Bilezikian J et al (2014) The clinical diagnosis of osteoporosis: a position statement from the National Bone Health Alliance Working Group. Osteoporos Int 25:1439–1443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Harrington J, Sochett E (2015) The child with multiple fractures, what next? Pediatr Clin N Am 62:841–855

    Article  Google Scholar 

  4. Henderson RC, Berglund LM, May R et al (2010) The relationship between fractures and DXA measures of BMD in the distal femur of children and adolescents with cerebral palsy or muscular dystrophy. J Bone Miner Res 25:520–526

    Article  PubMed  Google Scholar 

  5. Weaver CM, Gordon CM, Janz KF et al (2016) The National Osteoporosis Foundation's position statement on peak bone mass development and lifestyle factors: a systematic review and implementation recommendations. Osteoporos Int 27:1281–1386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gordon CM, Zemel BS, Wren TAL et al (2017) The determinants of peak bone mass. J Pediatr 180:261–269

    Article  PubMed  Google Scholar 

  7. Bouxsein ML, Zysset P, Gluer CC et al (2020) Perspectives on the non-invasive evaluation of femoral strength in the assessment of hip fracture risk. Osteoporos Int 31:393–408

    Article  CAS  PubMed  Google Scholar 

  8. Wasserman H, Gordon CM (2017) Bone mineralization and fracture risk assessment in the pediatric population. J Clin Densitom 20:389–396

    Article  PubMed  Google Scholar 

  9. Sheu A, Diamond T (2016) Secondary osteoporosis. Aust Prescr 39:85–87

    Article  PubMed  PubMed Central  Google Scholar 

  10. Fitzpatrick LA (2002) Secondary causes of osteoporosis. Mayo Clin Proc 77:453–468

    Article  PubMed  Google Scholar 

  11. Morin SN, Lix LM, Leslie WD (2014) The importance of previous fracture site on osteoporosis diagnosis and incident fractures in women. J Bone Miner Res 29:1675–1680

    Article  PubMed  Google Scholar 

  12. Bianchi ML, Leonard MB, Bechtold S et al (2014) Bone health in children and adolescents with chronic diseases that may affect the skeleton: the 2013 ISCD pediatric official positions. J Clin Densitom 17:281–294

    Article  PubMed  Google Scholar 

  13. Williams KM (2016) Update on bone health in pediatric chronic disease. Endocrinol Metab Clin N Am 45:433–441

    Article  Google Scholar 

  14. Vierucci F, Saggese G, Cimaz R (2017) Osteoporosis in childhood. Curr Opin Rheumatol 29:535–546

    Article  PubMed  Google Scholar 

  15. Kraus E, Bachrach LK, Grover M (2018) Team approach: bone health in children and adolescents. JBJS Rev 6:e6

    Article  PubMed  Google Scholar 

  16. Crabtree NJ, Arabi A, Bachrach LK et al (2014) Dual-energy X-ray absorptiometry interpretation and reporting in children and adolescents: the revised 2013 ISCD pediatric official positions. J Clin Densitom 17:225–242

    Article  PubMed  Google Scholar 

  17. Bishop N, Arundel P, Clark E et al (2014) Fracture prediction and the definition of osteoporosis in children and adolescents: the ISCD 2013 pediatric official positions. J Clin Densitom 17:275–280

    Article  PubMed  Google Scholar 

  18. Kalkwarf HJ, Abrams SA, DiMeglio LA et al (2014) Bone densitometry in infants and young children: the 2013 ISCD pediatric official positions. J Clin Densitom 17:243–257

    Article  PubMed  Google Scholar 

  19. Bachrach LK, Gordon CM (2016) Bone densitometry in children and adolescents. Pediatrics 138:e20162398

    Article  PubMed  Google Scholar 

  20. Jain RK, Vokes T (2017) Dual-energy X-ray absorptiometry. J Clin Densitom 20:291–303

    Article  PubMed  Google Scholar 

  21. Shuhart CR, Yeap SS, Anderson PA et al (2019) Executive summary of the 2019 ISCD position development conference on monitoring treatment, DXA cross-calibration and least significant change, spinal cord injury, periprosthetic and orthopedic bone health, transgender medicine, and pediatrics. J Clin Densitom 22:453–471

    Article  PubMed  Google Scholar 

  22. Rosen HN, Hamnvik O-PR, Jaisamrarn U et al (2019) Bone densitometry in transgender and gender nonconforming (TGNC) individuals: the 2019 ISCD official positions. J Clin Densitom 22:544–553

    Article  PubMed  Google Scholar 

  23. Messina C, Lastella G, Sorce S et al (2018) Pediatric dual-energy X-ray absorptiometry in clinical practice: what the clinicians need to know. Eur J Radiol 105:153–161

    Article  PubMed  Google Scholar 

  24. Weber DR, Boyce A, Gordon C et al (2019) The utility of DXA assessment at the forearm, proximal femur, and lateral distal femur, and vertebral fracture assessment in the pediatric population: the 2019 official pediatric positions of the ISCD. J Clin Densitom 22:567–589

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kendler DL, Compston J, Carey JJ et al (2019) Repeating measurement of bone mineral density when monitoring with dual-energy X-ray absorptiometry: the 2019 ISCD official positions. J Clin Densitom 22:489–500

    Article  PubMed  Google Scholar 

  26. [No author listed] (1993) Consensus development conference: diagnosis, prophylaxis, and treatment of osteoporosis. Am J Med 94:646–650

  27. World Health Organization (1994) Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: report of a WHO study group [meeting held in Rome from 22 to 25 June 1992]. https://apps.who.int/iris/handle/10665/39142. Accessed 22 May 2020

  28. [No author listed] (2004) Diagnosis of osteoporosis in men, premenopausal women, and children. J Clin Densitom 7:17–26

  29. Leslie WD, Adler RA, El-Hajj Fuleihan G et al (2006) Application of the 1994 WHO classification to populations other than postmenopausal Caucasian women: the 2005 ISCD official positions. J Clin Densitom 9:22–30

    Article  PubMed  Google Scholar 

  30. Gordon CM, Leonard MB, Zemel BS (2014) 2013 pediatric position development conference: executive summary and reflections. J Clin Densitom 17:219–224

    Article  PubMed  Google Scholar 

  31. Baim S, Leonard MB, Bianchi M-L et al (2008) Official positions of the International Society for Clinical Densitometry and executive summary of the 2007 ISCD pediatric position development conference. J Clin Densitom 11:6–21

    Article  PubMed  Google Scholar 

  32. Gordon CM, Bachrach LK, Carpenter TO et al (2008) Dual energy X-ray absorptiometry interpretation and reporting in children and adolescents: the 2007 ISCD pediatric official positions. J Clin Densitom 11:43–58

    Article  PubMed  Google Scholar 

  33. Cummings SR, Eastell R (2020) Stop (mis)classifying fractures as high- or low-trauma or as fragility fractures. Osteoporos Int 31:1023–1024

    Article  CAS  PubMed  Google Scholar 

  34. Cohen LE (2014) Idiopathic short stature: a clinical review. JAMA 311:1787–1796

    Article  PubMed  Google Scholar 

  35. Stalman SE, Hellinga I, Wit JM et al (2016) Growth failure in adolescents: etiology, the role of pubertal timing and most useful criteria for diagnostic workup. J Pediatr Endocrinol Metab 29:465–473

    Article  PubMed  Google Scholar 

  36. Lazar L, Phillip M (2012) Pubertal disorders and bone maturation. Endocrinol Metab Clin N Am 41:805–825

    Article  Google Scholar 

  37. Butenandt O (2017) For debate: constitutional and non-constitutional delay of growth and puberty. Pediatr Endocrinol Rev 15:132–135

    PubMed  Google Scholar 

  38. Harcke HT, Taylor A, Bachrach S et al (1998) Lateral femoral scan: an alternative method for assessing bone mineral density in children with cerebral palsy. Pediatr Radiol 28:241–246

    Article  CAS  PubMed  Google Scholar 

  39. Zemel BS, Stallings VA, Leonard MB et al (2009) Revised pediatric reference data for the lateral distal femur measured by Hologic discovery/Delphi dual-energy X-ray absorptiometry. J Clin Densitom 12:207–218

    Article  PubMed  PubMed Central  Google Scholar 

  40. Vokes T, Lentle B (2016) The ISCD and vertebral fractures. J Clin Densitom 19:5–7

    Article  PubMed  Google Scholar 

  41. Borges JLC, Sousa da Silva M, Ward RJ et al (2019) Repeating vertebral fracture assessment: the 2019 ISCD official position. J Clin Densitom 22:484–488

    Article  PubMed  Google Scholar 

  42. Genant HK, Wu CY, van Kuijk C, Nevitt MC (1993) Vertebral fracture assessment using a semiquantitative technique. J Bone Miner Res 8:1137–1148

    Article  CAS  PubMed  Google Scholar 

  43. Alqahtani FF, Messina F, Offiah AC (2019) Are semi-automated software program designed for adults accurate for the identification of vertebral fractures in children? Eur Radiol 29:6780–6789

    Article  PubMed  PubMed Central  Google Scholar 

  44. Specker BL, Schoenau E (2005) Quantitative bone analysis in children: current methods and recommendations. J Pediatr 146:726–731

    Article  PubMed  Google Scholar 

  45. Ahlborg HG, Johnell O, Turner CH et al (2003) Bone loss and bone size after menopause. N Engl J Med 349:327–334

    Article  PubMed  Google Scholar 

  46. Chong KH, Poh BK, Jamil NA et al (2015) Radial quantitative ultrasound and dual energy X-ray absorptiometry: intermethod agreement for bone status assessment in children. Biomed Res Int 2015:232876

    PubMed  PubMed Central  Google Scholar 

  47. Marshall D, Johnell O, Wedel H (1996) Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ 312:1254–1259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Clark EM, Ness AR, Tobias JH (2008) Bone fragility contributes to the risk of fracture in children, even after moderate and severe trauma. J Bone Miner Res 23:173–179

    Article  PubMed  Google Scholar 

  49. Clark EM, Ness AR, Bishop NJ, Tobias JH (2006) Association between bone mass and fractures in children: a prospective cohort study. J Bone Miner Res 21:1489–1495

    Article  PubMed  Google Scholar 

  50. Prentice A, Parsons TJ, Cole TJ (1994) Uncritical use of bone mineral density in absorptiometry may lead to size-related artifacts in the identification of bone mineral determinants. Am J Clin Nutr 60:837–842

    Article  CAS  PubMed  Google Scholar 

  51. Molgaard C, Thomsen BL, Prentice A et al (1997) Whole body bone mineral content in healthy children and adolescents. Arch Dis Child 76:9–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kalkwarf HJ, Zemel BS, Gilsanz V et al (2007) The Bone Mineral Density in Childhood Study: bone mineral content and density according to age, sex, and race. J Clin Endocrinol Metab 92:2087–2099

    Article  CAS  PubMed  Google Scholar 

  53. Zemel BS, Leonard MB, Kelly A et al (2010) Height adjustment in assessing dual energy X-ray absorptiometry measurements of bone mass and density in children. J Clin Endocrinol Metab 95:1265–1273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kalkwarf HJ, Gilsanz V, Lappe JM et al (2010) Tracking of bone mass and density during childhood and adolescence. J Clin Endocrinol Metab 95:1690–1698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Short DF, Zemel BS, Gilsanz V et al (2011) Fitting of bone mineral density with consideration of anthropometric parameters. Osteoporos Int 22:1047–1057

    Article  CAS  PubMed  Google Scholar 

  56. Gilsanz V, Chalfant J, Kalkwarf H et al (2011) Age at onset of puberty predicts bone mass in young adulthood. J Pediatr 158:100–105

    Article  PubMed  Google Scholar 

  57. Zemel BS, Kalkwarf HJ, Gilsanz V et al (2011) Revised reference curves for bone mineral content and areal bone mineral density according to age and sex for black and non-black children: results of the Bone Mineral Density in Childhood Study. J Clin Endocrinol Metab 96:3160–3169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Shepherd JA, Wang L, Fan B et al (2011) Optimal monitoring time interval between DXA measures in children. J Bone Miner Res 26:2745–2752

    Article  PubMed  Google Scholar 

  59. Wren TAL, Shepherd JA, Kalkwarf HJ et al (2012) Racial disparity in fracture risk between white and nonwhite children in the United States. J Pediatr 161:1035–1040

    Article  PubMed  PubMed Central  Google Scholar 

  60. Kelly A, Winer KK, Kalkwarf H et al (2014) Age-based reference ranges for annual height velocity in US children. J Clin Endocrinol Metab 99:2104–2112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wren TAL, Kalkwarf HJ, Zemel BS et al (2014) Longitudinal tracking of dual-energy X-ray absorptiometry bone measures over 6 years in children and adolescents: persistence of low bone mass to maturity. J Pediatr 164:1280–1285.e2

    Article  PubMed  PubMed Central  Google Scholar 

  62. Lappe JM, Watson P, Gilsanz V et al (2015) The longitudinal effects of physical activity and dietary calcium on bone mass accrual across stages of pubertal development. J Bone Miner Res 30:156–164

    Article  PubMed  Google Scholar 

  63. Ollberding NJ, Gilsanz V, Lappe JM et al (2015) Reproducibility and intermethod reliability of a calcium food frequency questionnaire for use in Hispanic, non-Hispanic black, and non-Hispanic white youth. J Acad Nutr Diet 115:519–527.e2

    Article  PubMed  PubMed Central  Google Scholar 

  64. Mitchell JA, Chesi A, Elci O et al (2015) Genetics of bone mass in childhood and adolescence: effects of sex and maturation interactions. J Bone Miner Res 30:1676–1683

    Article  CAS  PubMed  Google Scholar 

  65. Xie B, Avila JI, Ng BK et al (2015) Accurate body composition measures from whole-body silhouettes. Med Phys 42:4668–4677

    Article  PubMed  PubMed Central  Google Scholar 

  66. Chesi A, Mitchell JA, Kalkwarf HJ et al (2015) A trans-ethnic genome-wide association study identifies gender-specific loci influencing pediatric aBMD and BMC at the distal radius. Hum Mol Genet 24:5053–5059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Medina-Gomez C, Chesi A, Heppe DHM et al (2015) BMD loci contribute to ethnic and developmental differences in skeletal fragility across populations: assessment of evolutionary selection pressures. Mol Biol Evol 32:2961–2972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Mitchell JA, Chesi A, Elci O et al (2016) Genetic risk scores implicated in adult bone fragility associate with pediatric bone density. J Bone Miner Res 31:789–795

    Article  CAS  PubMed  Google Scholar 

  69. McCormack SE, Chesi A, Mitchell JA et al (2017) Relative skeletal maturation and population ancestry in nonobese children and adolescents. J Bone Miner Res 32:115–124

    Article  PubMed  Google Scholar 

  70. McCormack SE, Cousminer DL, Chesi A et al (2017) Association between linear growth and bone accrual in a diverse cohort of children and adolescents. JAMA Pediatr 171:e171769

    Article  PubMed  PubMed Central  Google Scholar 

  71. Kelly A, Shults J, Mostoufi-Moab S et al (2019) Pediatric bone mineral accrual Z-score calculation equations and their application in childhood disease. J Bone Miner Res 34:195–203

    Article  PubMed  Google Scholar 

  72. Lorente Ramos RM, Azpeitia Arman J, Arevalo Galeano N et al (2012) Dual energy X-ray absorptimetry [sic]: fundamentals, methodology, and clinical applications. Radiologia 54:410–423

    Article  CAS  PubMed  Google Scholar 

  73. Molgaard C, Thomsen BL, Michaelsen KF (1998) Influence of weight, age and puberty on bone size and bone mineral content in healthy children and adolescents. Acta Paediatr 87:494–499

    Article  CAS  PubMed  Google Scholar 

  74. Leonard MB, Zemel BS (2002) Current concepts in pediatric bone disease. Pediatr Clin N Am 49:143–173

    Article  Google Scholar 

  75. Lewiecki EM, Gordon CM, Baim S et al (2008) Special report on the 2007 adult and pediatric position development conferences of the International Society for Clinical Densitometry. Osteoporos Int 19:1369–1378

    Article  CAS  PubMed  Google Scholar 

  76. Kuczmarski RJ, Ogden CL, Guo SS et al (2002) 2000 CDC growth charts for the United States: methods and development. Vital Health Stat 11:1–190

    Google Scholar 

  77. Carter DR, Bouxsein ML, Marcus R (1992) New approaches for interpreting projected bone densitometry data. J Bone Miner Res 7:137–145

    Article  CAS  PubMed  Google Scholar 

  78. Katzman DK, Bachrach LK, Carter DR, Marcus R (1991) Clinical and anthropometric correlates of bone mineral acquisition in healthy adolescent girls. J Clin Endocrinol Metab 73:1332–1339

    Article  CAS  PubMed  Google Scholar 

  79. Kroger H, Kotaniemi A, Kroger L, Alhava E (1993) Development of bone mass and bone density of the spine and femoral neck — a prospective study of 65 children and adolescents. Bone Miner 23:171–182

    Article  CAS  PubMed  Google Scholar 

  80. Bonjour JP, Theintz G, Buchs B et al (1991) Critical years and stages of puberty for spinal and femoral bone mass accumulation during adolescence. J Clin Endocrinol Metab 73:555–563

    Article  CAS  PubMed  Google Scholar 

  81. Sabatier JP, Guaydier-Souquieres G, Laroche D et al (1996) Bone mineral acquisition during adolescence and early adulthood: a study in 574 healthy females 10–24 years of age. Osteoporos Int 6:141–148

    Article  CAS  PubMed  Google Scholar 

  82. Gilsanz V, Skaggs DL, Kovanlikaya A et al (1998) Differential effect of race on the axial and appendicular skeletons of children. J Clin Endocrinol Metab 83:1420–1427

    CAS  PubMed  Google Scholar 

  83. Crabtree NJ, Kibirige MS, Fordham JN et al (2004) The relationship between lean body mass and bone mineral content in paediatric health and disease. Bone 35:965–972

    Article  CAS  PubMed  Google Scholar 

  84. Binkovitz LA, Henwood MJ, Sparke P (2008) Pediatric DXA: technique, interpretation and clinical applications. Pediatr Radiol 38(Suppl 2):S227–S239

    Article  PubMed  Google Scholar 

  85. Ho CP, Kim RW, Schaffler MB, Sartoris DJ (1990) Accuracy of dual-energy radiographic absorptiometry of the lumbar spine: cadaver study. Radiology 176:171–173

    Article  CAS  PubMed  Google Scholar 

  86. Margulies L, Horlick M, Thornton JC et al (2005) Reproducibility of pediatric whole body bone and body composition measures by dual-energy X-ray absorptiometry using the GE lunar prodigy. J Clin Densitom 8:298–304

    Article  PubMed  Google Scholar 

  87. Glastre C, Braillon P, David L et al (1990) Measurement of bone mineral content of the lumbar spine by dual energy X-ray absorptiometry in normal children: correlations with growth parameters. J Clin Endocrinol Metab 70:1330–1333

    Article  CAS  PubMed  Google Scholar 

  88. Bonnick SL, Johnston CCJ, Kleerekoper M et al (2001) Importance of precision in bone density measurements. J Clin Densitom 4:105–110

    Article  CAS  PubMed  Google Scholar 

  89. Jankowski LG, Warner S, Gaither K et al (2019) The official positions of the International Society for Clinical Densitometry: cross calibration, least significant change, and quality assurance in multiple dual-energy X-ray absorptiometry scanner environments. J Clin Densitom 22:472–483

    Article  PubMed  Google Scholar 

  90. Carey JJ, Delaney MF (2017) Utility of DXA for monitoring, technical aspects of DXA BMD measurement and precision testing. Bone 104:44–53

    Article  PubMed  Google Scholar 

  91. Lewiecki EM, Gordon CM, Baim S et al (2008) International Society for Clinical Densitometry 2007 adult and pediatric official positions. Bone 43:1115–1121

    Article  PubMed  Google Scholar 

  92. Sadatsafavi M, Moayyeri A, Wang L, Leslie WD (2008) Optimal decision criterion for detecting change in bone mineral density during serial monitoring: a Bayesian approach. Osteoporos Int 19:1589–1596

    Article  CAS  PubMed  Google Scholar 

  93. Baim S, Wilson CR, Lewiecki EM et al (2005) Precision assessment and radiation safety for dual-energy X-ray absorptiometry: position paper of the International Society for Clinical Densitometry. J Clin Densitom 8:371–378

    Article  PubMed  Google Scholar 

  94. Lenchik L, Kiebzak GM, Blunt BA (2002) What is the role of serial bone mineral density measurements in patient management? J Clin Densitom 5:S29–S38

  95. Sabatier JP, Guaydier-Souquieres G, Benmalek A, Marcelli C (1999) Evolution of lumbar bone mineral content during adolescence and adulthood: a longitudinal study in 395 healthy females 10-24 years of age and 206 premenopausal women. Osteoporos Int 9:476–482

    Article  CAS  PubMed  Google Scholar 

  96. Ward LM, Konji VN, Ma J (2016) The management of osteoporosis in children. Osteoporos Int 27:2147–2179

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hedieh Khalatbari.

Ethics declarations

Conflicts of interest

None

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 25 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalatbari, H., Binkovitz, L.A. & Parisi, M.T. Dual-energy X-ray absorptiometry bone densitometry in pediatrics: a practical review and update. Pediatr Radiol 51, 25–39 (2021). https://doi.org/10.1007/s00247-020-04756-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-020-04756-4

Keywords

Navigation