Skip to main content

Role of Chelating Compounds in Biodegradation and Bioremediation

  • Chapter
  • First Online:
Bioremediation of Environmental Pollutants
  • 616 Accesses

Abstract

Heavy metal pollution of soil/sediments/groundwater is amongst the most critical global environmental issue arising due to the extensive use of agrochemicals, industrial effluents and other anthropogenic activities. The non-essential heavy metal residues in the soil/sediments/groundwater in turn enter the food chain and pose adverse impact on living beings and various ecosystems. Therefore, remediation of contaminated sites is of utmost necessity, and various technologies are being employed for achieving this target. Several types of processes affect the partitioning of heavy metal ions between the solid and solution phases (thereby affecting the leachability of metals from contaminated soils), including dissolution and precipitation, sorption and exchange, complexation, and biological fixation. The main impact of complexation is a dramatic rise in the solubility of the heavy metal ions and thus complexing agents can effectively extract heavy metals from contaminated sites. Therefore, the utilization of various chelating agents is a potential strategy owing to sustainable metal ions remediation and least damage to the soil characteristics. This chapter provides a deep insight into recent remediation strategies employing chelating compounds for mobilizing and removing highly toxic heavy metals from contaminated sites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alcántara MTTJ, Gómez M, Pazos M, Sanromán A (2012) Electrokinetic remediation of lead and phenanthrene polluted soils. Geoderma 173–174:128–133

    Article  Google Scholar 

  • Ali SY, Chaudhury S (2016) EDTA-enhanced phytoextraction by Tagetes sp. and effect on bioconcentration and translocation of heavy metals. Environ Process 3(4):735–746

    Article  Google Scholar 

  • Alidoust D, Suzuki S, Matsumura S, Yoshida M (2009) The role of citric acid in enhanced phytoextraction of heavy metals in an andosol by Crotalaria juncea. Fresenius Environ Bull 18:835–842

    CAS  Google Scholar 

  • Ammami MT, Benamar A, Wang H (2014) Simultaneous electrokinetic removal of polycyclic aromatic hydrocarbons and metals from a sediment using mixed enhancing agents. Int J Environ Sci Technol 11:1801–1816. https://doi.org/10.1007/s13762-013-0395-9

    Article  CAS  Google Scholar 

  • Ammami MT, Portet-Koltalo F, Benamar A (2015) Application of biosurfactants and periodic voltage gradient for enhanced electrokinetic remediation of metals and PAHs in dredged marine sediments. Chemosphere 125:1–8

    Article  CAS  PubMed  Google Scholar 

  • Arabi Z, Homaee M, Asadi ME, Kapourchal SA (2017) Cadmium removal from Cd-contaminated soils using some natural and synthetic chelates for enhancing phytoextraction. Chem Ecol 33(9):389–402

    Article  CAS  Google Scholar 

  • Ashraf S, Alia Q, Zahira ZA, Ashraf S, Asghara HN (2019) Phytoremediation: environmentally sustainable way for reclamation of heavy metal polluted soils. Ecotoxicol Environ Safety 174:714–727

    Article  CAS  PubMed  Google Scholar 

  • Ayangbenro AS, Babalola OO (2017) A new strategy for heavy metal polluted environments: a review of microbial biosorbents. Int J Environ Res Public Health 14(1):94. https://doi.org/10.3390/ijerph14010094

    Article  CAS  PubMed Central  Google Scholar 

  • Bala R, Thukral AK (2011) Phytoremediation of Cr(VI) by Spirodela polyrrhiza (l.) Schleiden employing reducing and chelating agents. Int J Phytoremediation 13(5):465–491. https://doi.org/10.1080/15226511003758861

    Article  CAS  PubMed  Google Scholar 

  • Bani A, Pavlova D, Echevarria G, Mullaj A, Reeves RD, Morel JL, Sulce S (2010) Nickel hyperaccumulation by the species of Alyssum and Thlaspi (Brassicaceae) from the ultramafic soils of the Balkans. Bot Serb 34:3–14

    Google Scholar 

  • Beck W (2009) Metal complexes of biologically important ligands, CLXXII [1]. Metal ions and metal complexes as protective groups of amino acids and peptides—reactions at coordinated amino acids. Z Naturforsch 64b:1221–1245

    Article  Google Scholar 

  • Begum ZA, Rahman IMM, Tate Y, Sawai H, Maki T, Hasegawa H (2012) Remediation of toxic metal contaminated soil by washing with biodegradable aminopolycarboxylate chelants. Chemosphere 87:1161–1170

    Article  CAS  PubMed  Google Scholar 

  • Begum ZA, Rahman IMM, Sawai H, Mizutani S, Maki T, Hasegawa H (2013) Effect of extraction variables on the biodegradable chelant assisted removal of toxic metals from artificially contaminated European reference soils. Water Air Soil Pollut 224:1381

    Article  Google Scholar 

  • Bhandari G, Bhatt P (2020) Concepts and application of plant–microbe interaction in remediation of heavy metals. In: Sharma A (ed) Microbes and signaling biomolecules against plant stress, rhizosphere biology. https://doi.org/10.1007/978-981-15-7094-0_4

  • Bhandari G, Bagheri AR, Bhatt P, Bilal M (2021) Occurrence, potential ecological risks, and degradation of endocrine disrupter, nonylphenol from the aquatic environment. Chemosphere 275:130013. https://doi.org/10.1016/j.chemosphere.2021.130013

    Article  CAS  PubMed  Google Scholar 

  • Bhatt P, Gangola S, Bhandari G, Zhang W, Maithani D, Mishra S, Chen S (2020) New insights into the degradation of synthetic pollutants in contaminated environments. Chemosphere. https://doi.org/10.1016/j.chemosphere.2020.128827

  • Bi R, Schlaak M, Siefert E, Lord R, Connolly H (2011) Influence of electrical fields (AC and DC) on phytoremediation of metal polluted soils with rapeseed (Brassica napus) and tobacco (Nicotiana tabacum). Chemosphere 83:318–326

    Article  CAS  PubMed  Google Scholar 

  • Blaylock MJ, Salt DE, Dushenkov S, Zakharova O, Gussman C, Kapulnik Y, Ensley BD, Raskin I (1997) Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environ Sci Technol 31:860–865

    Article  Google Scholar 

  • Cameselle C, Reddy KR (2012) Development and enhancement of electro-osmotic flow for the removal of contaminants from soils. Electrochim Acta 86:10–22

    Article  CAS  Google Scholar 

  • Cameselle C, Chirakkara RA, Reddy KR (2013) Electrokinetic-enhanced phytoremediation of soils: status and opportunities. Chemosphere 93:626–636

    Article  CAS  PubMed  Google Scholar 

  • Cang L, Zhou D, Wang Q, Fan G (2012) Impact of electrokinetic-assisted phytoremediation of heavy metal contaminated soil on its physicochemical properties, enzymatic and microbial activities. Electrochim Acta 86:41–48

    Article  CAS  Google Scholar 

  • Çelik Ö, AkdaÅŸ EY (2019) Tissue-specific transcriptional regulation of seven heavy metal stress-responsive miRNAs and their putative targets in nickel indicator castor bean (R. communis L.) plants. Ecotoxicol Environ Saf 170:682–690

    Article  PubMed  Google Scholar 

  • Chamba I, Rosado D, Kalinhoff C, Thangaswamy S, Sánchez-Rodríguez A, Gazquez MJ (2017) Eratopolymnioides—a novel Hg hyperaccumulator plant in ecuadorian rainforest acid soils with potential of microbe associated phytoremediation. Chemosphere 188:633–641

    Article  CAS  PubMed  Google Scholar 

  • Chaney RL, Broadhurst CL, Centofanti T (2010) Phytoremediation of soil trace elements. In: Hooda PS (ed) Trace elements in soils. Wiley, Chichester, pp 311–352

    Chapter  Google Scholar 

  • Chen H, Dou J, Xu H (2018) The effect of low-molecular-weight organic-acids (LMWOAs) on treatment of chromium-contaminated soils by compost-phytoremediation: kinetics of the chromium release and fractionation. J Environ Sci 70:45–53

    Article  CAS  Google Scholar 

  • Cheng S, Lin Q, Wang Y, Luo H, Huang Z, Fu H (2020) The removal of Cu, Ni, and Zn in industrial soil by washing with EDTA-organic acids. Arab J Chem 13:5160–5170. https://doi.org/10.1016/j.arabjc.2020.02.015

    Article  CAS  Google Scholar 

  • Chibuike GU, Obiora SC (2014) Heavy metal polluted soils: effect on plants and bioremediation methods. Appl Environ Soil Sci:12. https://doi.org/10.1155/2014/752708

  • Dacera DDM, Babel S (2006) Use of citric acid for heavy metals extraction from contaminated sewage sludge for land application. Water Sci Technol 54(9):129–135

    Article  CAS  PubMed  Google Scholar 

  • Ding YZ, Song ZG, Feng RW, Guo JK (2014) Interaction of organic acids and pH on multi heavy metal extraction from alkaline and acid mine soils. Int J Environ Sci Technol 11:33–42. https://doi.org/10.1007/s13762-013-0433-7

    Article  CAS  Google Scholar 

  • Ebrahimi M (2014) Effect of EDTA and DTPA on phytoremediation of Pb-Zn contaminated soils by eucalyptus camaldulensis dehnh and effect on treatment time. Desert 19(1):65–73

    Google Scholar 

  • Ehsan S, Ali S, Noureen S, Mahmood K, Farid M, Ishaque W, Shakoor MB, Rizwan M (2014) Citric acid assisted phytoremediation of cadmium by Brassica napus L. Ecotoxicol Environ Saf 106:164–172

    Article  CAS  PubMed  Google Scholar 

  • Elias SH, Mohamed M, Ankur AN, Muda K, Hassan MAHM, Othman MN, Chelliapan S (2014) Water hyacinth bioremediation for ceramic industry wastewater treatment-application of rhizofiltration system. Sains Malays 43(9):1397–1403

    Google Scholar 

  • Elliott HA, Brown G (1989) Comparative evaluation of NTA and EDTA for extractive decontamination of Pb-polluted soils. Water Air Soil Pollut 45:361–369

    Article  CAS  Google Scholar 

  • Epelde L, Hernandez-Allica J, Becerril JM, Blanco F, Garbisu C (2008) Effects of chelates on plants and soil microbial community: comparison of EDTA and EDDS for lead phytoextraction. Sci Total Environ 401:21–28

    Article  CAS  PubMed  Google Scholar 

  • Evangelou MWH, Ebel M, Schaeffer A (2007) Chelate assisted phytoextraction of heavy metals from soil. Effect, mechanism, toxicity, and fate of chelating agents. Chemosphere 68(6):989–1003

    Article  CAS  PubMed  Google Scholar 

  • Farooq MA, Gill RA, Ali B, Wang J, Islam F, Ali S, Zhou W (2016) Subcellular distribution, modulation of antioxidant and stress-related genes response to arsenic in Brassica napus L. Ecotoxicol 25(2):350–366

    Article  CAS  Google Scholar 

  • Fedje KK, Yillin L, Stromvall AM (2013) Remediation of metal polluted hotspot areas through enhanced soil washing—evaluation of leaching methods. J Environ Manag 128:489–496

    Article  CAS  Google Scholar 

  • Figueroa A, Cameselle C, Gouveia S, Hansen HK (2016) Electrokinetic treatment of an agricultural soil contaminated with heavy metals. J Environ Sci Health A Tox Hazard Subst Environ Eng 51:691–700

    Article  CAS  PubMed  Google Scholar 

  • Flora SJS, Pachauri V (2010) Chelation in metal intoxication. Int J Environ Res Public Health 7(7):2745–2788. https://doi.org/10.3390/ijerph7072745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fomina M, Hillier S, Charnock JM, Melville K, Alexander IJ, Gadd GM (2005) Role of oxalic acid over excretion in transformations of toxic metal minerals by Beauveria caledonica. Appl Environ Microbiol 71:371–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freitas E, Nascimento C (2016) Degradability of natural and synthetic chelating agents applied to a lead-contaminated soil. J Soils Sediments 17(5):1272–1278. https://doi.org/10.1007/s11368-015-1350-9

    Article  CAS  Google Scholar 

  • Gan S, Lau EV, Ng HK (2009) Remediation of soils contaminated with polycyclic aromatic hydrocarbons (PAHs). J Hazard Mater 172:532–549. https://doi.org/10.1016/j.jhazmat.2009.07.118

    Article  CAS  PubMed  Google Scholar 

  • Ghasemi F, Ebrahimi M, Shirazi MP (2017) Lead phytoremediation capacity of Puccinellia distans (Jacq.) Parl. using EDTA and DTPA and associated potential leaching risk. Global NEST J 19:359–366

    Article  CAS  Google Scholar 

  • Gluhar S, Kaurin A, Lestan D (2020) Soil washing with biodegradable chelating agents and EDTA: technological feasibility, remediation efficiency and environmental sustainability. Chemosphere 257:127226

    Article  CAS  PubMed  Google Scholar 

  • Guo X, Zhao G, Zhang G, He Q, Wei Z, Zheng W, Qian T, Wu Q (2018) Effect of mixed chelators of EDTA, GLDA, and citric acid on bioavailability of residual heavy metals in soils and soil properties. Chemosphere 209:776–782

    Article  CAS  PubMed  Google Scholar 

  • Gupta P, Diwan B (2017) Bacterial exopolysaccharide mediated heavy metal removal: a review on biosynthesis, mechanism and remediation strategies. Biotechnol Rep 13:58–71. https://doi.org/10.1016/j.btre.2016.12.006

    Article  Google Scholar 

  • Hansen HK, Ottosen LM, Ribeiro AB (2016) Electrokinetic soil remediation: an overview, 854. In: Ribeiro A, Mateus E, Couto N (eds) Electrokinetics across disciplines and 855 continents. Springer, Cham, pp 3–18

    Chapter  Google Scholar 

  • Iannelli R, Masi M, Ceccarini A, Ostuni MBB, Lageman R, Muntoni A, Spiga D, Polettini A, Marini A, Pomi R (2015) Electrokinetic remediation of metalpolluted marine sediments: experimental investigation for plant design. Electrochim Acta 181:146–159. https://doi.org/10.1016/j.electacta.2015.04.093

    Article  CAS  Google Scholar 

  • Iheanacho EU, Ndulaka JC, Onuh CF (2017) Environmental pollution and heavy metals. Eur J Biotechnol Biosci 5(5):73–78

    Google Scholar 

  • Irini NO, Panagiotis M, Kissoudis C, Voulgari G, Chronopoulou E, Tsaftaris A, Labrou NE (2017) Plant glutathione transferase-mediated stress tolerance: functions and biotechnological applications. Plant Cell Rep 36(6):791–805

    Article  Google Scholar 

  • Jain A, Chen WN (2018) Involvement of organic acids and amino acids in ameliorating Ni(II) toxicity induced cell cycle dysregulation in Caulobacter crescentus: a metabolomics analysis. Appl Microbiol Biotechnol 102(10):4563–4575. https://doi.org/10.1007/s00253-018-8938-0

    Article  CAS  PubMed  Google Scholar 

  • Jean L, Bordas F, Gautier-Moussard C, Vernay O, Hitmi A, Bollinger JC (2008) Effect of citric acid and EDTA on chromium and nickel uptake and translocation by Datura innoxia. Environ Pollut 153:555–563

    Article  CAS  PubMed  Google Scholar 

  • Kalve S, Sarangi BK, Pandey RA, Chakrabarti T (2011) Arsenic and chromium hyperaccumulation by an ecotype of Pteris vittata-prospective for phytoextraction from contaminated water and soil. Curr Sci 100:888–894

    CAS  Google Scholar 

  • Kayser A, Schulin R, Felix H (1999) Field trials for the phytoremediation of soils polluted with heavy metals. In: Umweltbundesamt (ed) Proc. Int. Workshop am Fraunhofer Institut für Umweltchemic und Ökotoxikologie, Schmallenberg, Germany. 1–2 Dec. 1997. Erich Schmidt Verlag, Berlin, pp 170–182

    Google Scholar 

  • Ke X, Li PJ, Zhou Q, Zhang Y, Sun TH (2006) Removal of heavy metals from a contaminated soil using tartaric acid. J Environ Sci 18:727–733

    CAS  Google Scholar 

  • Komarek M, Vanek A, Mrnka L, Sudova R, Szakova J, Tejnecky V, Chrastny V (2010) Potential and drawbacks of EDDS-enhanced phytoextraction of copper from contaminated soils. Environ Pollut 158:2428–2438

    Article  CAS  PubMed  Google Scholar 

  • Koptsik G (2014) Problems and prospects concerning the phytoremediation of heavy metal polluted soils: a review. Eurasian Soil Sci 47:923–939. https://doi.org/10.1134/S1064229314090075

    Article  CAS  Google Scholar 

  • Kour D, Kaur T, Devi R, Yadav A, Singh M et al (2021) Beneficial microbiomes for bioremediation of diverse contaminated environments for environmental sustainability: present status and future challenges. Environ Sci Pollut Res 28:24917–24939

    Article  CAS  Google Scholar 

  • Kramer U (2018) The plants that suck up metal. Ger Res 40(3):18–23

    Article  Google Scholar 

  • Kubiak JJ, Khankhane PJ, Kleingeld PJ, Lima AT (2012) An attempt to electrically enhance phytoremediation of arsenic contaminated water. Chemosphere 87:259–264

    Article  CAS  PubMed  Google Scholar 

  • Kumar P, Dash B, Suyal DC, Gupta SB, Singh AK, Chowdhury T, Soni R (2021) Characterization of arsenic-resistant Klebsiella pneumoniae RnASA11 from contaminated soil and water samples and its bioremediation potential. Curr Microbiol. https://doi.org/10.1007/s00284-021-02602-w

  • Kuppusamy S, Thavamani P, Venkateswarlu K, Lee YB, Naidu R, Megharaj M (2017) Remediation approaches for polycyclic aromatic hydrocarbons (PAHs) contaminated soils: technological constraints, emerging trends and future directions. Chemosphere 168:944–968

    Article  CAS  PubMed  Google Scholar 

  • Lajayer BA, Moghadam NK, Maghsoodi MR, Ghorbanpour M, Kariman K (2019) Phytoextraction of heavy metals from contaminated soil, water and atmosphere using ornamental plants: mechanisms and efficiency improvement strategies. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-019-04241-y

  • Lawal M, Sauban OO (2014) Ethylene diamine tetra-acetate (EDTA) chelate effects on pennisetum purpureum as heavy metal phytoextraction from contaminated soil in Mokwa/New Bussa Highway Road, Niger State. J Trop Forest Res 30:127–136

    Google Scholar 

  • Lestan D (2017) Novel chelant-based washing method for soil contaminated with Pb and other metals: a pilot-scale study. Land Degrad Dev 28:2585–2595

    Article  Google Scholar 

  • Lestan D, Luo C, Li XD (2008) The use of chelating agents in the remediation of metal contaminated soils: a review. Environ Pollut 153:3–13. https://doi.org/10.1016/j.envpol.2007.11.015

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Luo J, Yu J, Xia L, Zhou C, Cai L, Ma X (2018) Improvement of the phytoremediation efficiency of Neyraudia reynaudiana for lead-zinc mine-contaminated soil under the interactive effect of earthworms and EDTA. Sci Rep 8(1):6417. https://doi.org/10.1038/s41598-018-24715-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin L, Li GD, Jing P, Yuan YF, Zhou NN, Jiao W (2009) Removal effect of EDTA and organicacids on Pb in soil. Health Environ Res Online 9(4):51–53

    CAS  Google Scholar 

  • Ling G, Cheng MZF, Wang QH (2011) Effects of natural organic acids on growth of maize and uptake of chromium by maize in chromium contaminated soil. Adv Mater Res 281:21–24

    Article  Google Scholar 

  • Liu D, Islam E, Li T, Yang X, Jin X, Mahmood Q (2008) Comparison of synthetic chelators and low molecular weight organic acids in enhancing phytoextraction of heavy metals by two ecotypes of Sedum alfredii Hance. J Hazard Mater 153:114–122

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Wang L-A, Ding S, Xiao H (2018) Enhancer assisted-phytoremediation of mercury contaminated soils by Oxalis corniculata L., and rhizosphere microorganism distribution of Oxaliscorniculata L. Ecotoxicol Environ Saf 160:171–177. https://doi.org/10.1016/j.ecoenv.2018.05.041

    Article  CAS  PubMed  Google Scholar 

  • Lone MI, He Z, Stoffella PJ, Yang X (2008) Phytoremediation of heavy metal polluted soils and water: progresses and perspectives. J Zhejiang Univ (Sci) 9(3):210–220. https://doi.org/10.1631/jzus.B0710633

    Article  CAS  Google Scholar 

  • Lu Y, Luo D, Lai A, Liu G, Liu L, Long J, Zhang H, Chen Y (2017) Leaching characteristics of EDTA-enhanced phytoextraction of Cd and Pb by Zea mays L. in different particle-size fractions of soil aggregates exposed to artificial rain. Environ Sci Pollut Res 24(2):1845–1853

    Article  CAS  Google Scholar 

  • Luo CL, Shen ZG, Li XD (2005) Enhanced phytoextraction of Cu, Pb, Zn and Cd with EDTA and EDDS. Chemosphere 59:1–11

    Article  CAS  PubMed  Google Scholar 

  • Luo CL, Shen ZG, Li XD, Baker AJM (2006) Enhanced phytoextraction of Pb and other metals from contaminated soils through the combined application of EDTA and EDDS. Chemosphere 63:1773–1784

    Article  CAS  PubMed  Google Scholar 

  • Luo CL, Shen ZG, Li XD (2007) Plant uptake and the leaching of metals during the hot 695 EDDS-enhanced phytoextraction process. Int J Phytoremediation 9:696181196

    Article  Google Scholar 

  • Malik N, Biswas AK (2012) Role of higher plants in remediation of metal contaminated sites. Sci Rev Chem Commun 2:141–146

    CAS  Google Scholar 

  • Mancini G, Bruno M, Polettini A, Pomi R (2011) Chelant-assisted pulse flushing of a field Pb-contaminated soil. Chem Ecol 27(3):251–262

    Article  CAS  Google Scholar 

  • Mani D, Kumar C (2014) Biotechnological advances in bioremediation of heavy metals contaminated ecosystems: an overview with special reference to phytoremediation. Int J Environ Sci Technol 11:843–872. https://doi.org/10.1007/s13762-013-0299-8

    Article  CAS  Google Scholar 

  • Mao X, Han FX, Shao X, Guo K, McComb J, Njemanze S (2015) Electro-kinetic enhanced phytoremediation for the restoration of multimetal(LOID) contaminated soils. Adv Environ Res 42:25–52

    CAS  Google Scholar 

  • Markovska Y, Stancheva I, Petrov P, Georgieva T, Geneva M, Georgieva KM, Ivanova K (2018) EDTA and citrate impact on heavy metals phytoremediation using paulownia hybrids. Int J Environ Pollut 63:31. https://doi.org/10.1504/IJEP.2018.10014111

    Article  Google Scholar 

  • Marschner H, Romheld V, Kissel M (1986) Different strategies in higher-plants in mobilization and uptake of iron. J Plant Nutr 9:695–713

    Article  CAS  Google Scholar 

  • Mathis P, Kayser A (2001) Plant uptake of heavy metals following glyphosate treatment. In: International Society of Trace Element Biogeochemistry (ed) Proceedings of the 6th International Conference on the Geochemistry of Trace Elements (ICOBTE), Guelph, ON, Canada. 29 July–2 Aug. 2001. International Society of Trace Element Biogeochemistry, Vienna, pp .484

    Google Scholar 

  • Matzinger I, Brunthaler J, Fürhapper C, Pollak U, Aschacher G (2007) Biodegradation of new complexing agents in compliance with Austrian waste water emission legislation for the pulp & paper industry. In: Nowack B, Giger W (ed) Complexing agents between science, industry, authorities and users. Monte Verità, Ascona, Switzerland, March 11–16, 2007, pp 19

    Google Scholar 

  • Meers E, Ruttens A, Hopgood MJ, Samson D, Tack FMG (2005) Comparison of EDTA and EDDS as potential soil amendments for enhanced phytoextraction of heavy metals. Chemosphere 58:1011–1022

    Article  CAS  PubMed  Google Scholar 

  • Mesa J, Rodriguez-Llorente JD, Pajuelo E, Piedras JMB, Caviedes MA, Redondo-Gomez S, Mateos-Naranjo E (2015) Moving closer towards restoration of contaminated estuaries: bioaugmentation with autochthonous rhizobacteria improves metal rhizoaccumulation in native spartina maritima. J Hazard Mater 300:263–271. https://doi.org/10.1016/j.jhazmat.2015.07.006

    Article  CAS  PubMed  Google Scholar 

  • Mir ZA, Bharose R, Lone AH, Malik RA (2017) Role of chelating agents in phytoremediation of heavy metals. Trends Biosci 10(7):1449–1454

    Google Scholar 

  • Mujahid F, Ali S, Shakoor M, Bharwana S, Rizvi H, Ehsan S, Tauqeer HM, Iftikhar U, Hannan F (2013) EDTA assisted phytoremediation of cadmium, lead and zinc. Int J Agron Plant Product 4:2833–2846

    Google Scholar 

  • Nanthavong K, Sampanpanish P (2015) Effect of NTA and EDTA on arsenic uptake from contaminated soil by mimosa pudica. Mod Appl Sci 9(9):280–291

    Article  CAS  Google Scholar 

  • Nasiri A, Jamshidi-Zanjani A, Darban AK (2020) Application of enhanced electrokinetic approach to remediate Cr-contaminated soil: effect of chelating agents and permeable reactive barrier. Environ Pollut 266:115197

    Article  CAS  PubMed  Google Scholar 

  • Nezami S, Mohammad MJ, Malakouti J, Samani AB, Maragheh MG (2016) Effect of low molecular weight organic acids on the uptake of 226Ra by corn (Zea mays L.) in a region of high natural radioactivity in Ramsar-Iran. J Environ Radioact 164:145–150

    Article  CAS  PubMed  Google Scholar 

  • Nowack B, Schulin R, Robinson BH (2006) Critical assessment of chelant-enhanced metal phytoextraction. Environ Sci Technol 40:5225–5232

    Article  CAS  PubMed  Google Scholar 

  • Nurchi VM, Cappai R, Crisponi G, Sanna G, Alberti G, Biesuz R, Gama S (2020) Chelating agents in soil remediation: a new method for a pragmatic choice of the right chelator. Front Chem 8:597400. https://doi.org/10.3389/fchem.2020.597400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nworie OE, Qin J, Lin C (2017) Differential effects of low-molecular-weight organic acids on the mobilization of soil-borne arsenic and trace metals. Toxics 5(3):18. https://doi.org/10.3390/toxics5030018

    Article  CAS  PubMed Central  Google Scholar 

  • Ogunleye JA, Dagari MS, Balogun OL, Maigari A (2016) Effect of oxalic acid on Cr3+ ion uptake, accumulation and oxidative stress by sorrel (Hibiscus sabdariffa L.) seedlings in hydroponic solution. Int J Chem Mater Environ Res 3(3):49–55

    Google Scholar 

  • Pastor J, Aparicio AM, Gutierrez-Maroto A, Hernández AJ (2007) Effects of two chelating agents (EDTA and DTPA) on the autochthonous vegetation of a soil polluted with Cu, Zn and Cd. Sci Total Environ 378:114–118. https://doi.org/10.1016/j.scitotenv.2007.01.022

    Article  CAS  PubMed  Google Scholar 

  • Patra DK, Pradhan C, Patra HK (2018) Chelate based phytoremediation study for attenuation of chromium toxicity stress using lemongrass: Cymbopogon flexuosus (nees ex steud.). W Watson Int J Phytoremediat 20(13):1324–1329

    Article  CAS  Google Scholar 

  • Peters RW (1999) Chelant extraction of heavy metals from contaminated soils. J Hazard Mater 66:151–210. https://doi.org/10.1016/S0304-3894(99)00010-2

    Article  CAS  PubMed  Google Scholar 

  • Prasad R, Shivay YS (2017) Oxalic acid/oxalates in plants: from self-defence to phytoremediation. Curr Sci 112:1665–1667. https://doi.org/10.18520/cs/v112/i08/1665-1667

    Article  CAS  Google Scholar 

  • Prieto MJ, Acevedo SOA, Prieto GF (2018) Phytoremediation of soils contaminated with heavy metals. Biodivers Int J 2(4):362–376. https://doi.org/10.15406/bij.2018.02.00088

    Article  Google Scholar 

  • Qu J, Lou CQ, Yuan X, Wang XH, Cong HQ, Wang L (2011) The effect of sodium hydrogen phosphate/citric acid mixtures on phytoremediation by alfalfa & metals availability in soil. J Soil Sci Plant Nutr 11(2):85–95

    Article  Google Scholar 

  • Quartacci MF, Argilla A, Baker AJM, Navari-Izzo F (2006) Phytoextraction of metals from a multiply contaminated soil by Indian mustard. Chemosphere 63:918–925

    Article  CAS  PubMed  Google Scholar 

  • Rai PK (2008) Phytoremediation of Hg and Cd from industrial effluents using an aquatic free floating macrophyte Azolla pinnata. Int J Phytoremediation 10:430–439

    Article  CAS  PubMed  Google Scholar 

  • Reinoso-Maset E, Worsfold PJ, Keith-Roach MJ (2013) Effect of organic complexing agents on the interactions of Cs+, Sr2+ and with silica and natural sand. Chemosphere 91:948–954

    Article  CAS  PubMed  Google Scholar 

  • Ruley AT, Sharma NC, Sahi SV, Singh SR, Sajwan KS (2006) Effects of lead and chelators on growth, photosynthetic activity and Pb uptake in Sesbania drummondii grown in soil. Environ Pollut 144:11–18

    Article  CAS  PubMed  Google Scholar 

  • Saifullah U, Abdul G, Manzoor Q (2008) Lead phytoextraction by wheat in response to the EDTA application method. Int J Phytoremediation 11:268–282. https://doi.org/10.1080/15226510802432702

    Article  CAS  Google Scholar 

  • Saifullah U, Shahid M, Zia-Ur-Rehman M, Sabir M, Ahmad HR (2015) Phytoremediation of Pb-contaminated soils using synthetic chelates soil remediation and plants: prospects and challenges. In: Hakeem K, Sabir M, Ozturk M, Murmet A (eds) Soil remediation and plants, 1st edn. Elsevier, Amsterdam, pp 397–414. https://doi.org/10.1016/B978-0-12-799937-1.00014-0

    Chapter  Google Scholar 

  • Sakakibara M, Ohmori Y, Ha NTH, Sano S, Sera K (2011) Phytoremediation of heavy metal contaminated water and sediment by Eleocharis acicularis. Clean Soil Air Water 39:735–741

    Article  CAS  Google Scholar 

  • Sandeep G, Vijayalatha KR, Anitha T (2019) Heavy metals and its impact in vegetable crops. Int J Chem Stud 7(1):1612–1621

    CAS  Google Scholar 

  • Scheffer F, Schachtschabel P (1998) Lehrbuch der Bodenkunde. Enke, Stuttgart

    Google Scholar 

  • Sharma R, Bhardwaj R, Thukral AK, Bali S, Kohli S, Kaur P, Ohri P, Kaur R, Vig A, Sharma M (2017a) Role of phytochelators in land reclamation: recent progress and perspectives. Bentham Sci Curr Environ Eng 4(1):42–52. https://doi.org/10.2174/2212717804666161220160825

    Article  Google Scholar 

  • Sharma J, Shamim K, Dubey SK, Meena RM (2017b) Metallothionein assisted periplasmic lead sequestration as lead sulfite by Providencia vermicola strain SJ2A. Sci Total Environ 579:359–365. https://doi.org/10.1016/j.scitotenv.2016.11.089

    Article  CAS  PubMed  Google Scholar 

  • Shen ZG, Li XD, Wang CC, Chen HM, Chua H (2002) Lead phytoextraction from contaminated soil with high-biomass plant species. J Environ Qual 31:1893–1900

    Article  CAS  PubMed  Google Scholar 

  • Sheoran V, Sheoran AS, Poonia P (2010) Role of hyperaccumulators in phytoextraction of metals from contaminated mining sites: a review. Crit Rev Environ Sci Technol 41(2):168–214. https://doi.org/10.1080/10643380902718418

    Article  Google Scholar 

  • Shilev S, Naydenov M, Tahsin N, Sancho ED, Bennlloch M, Vancheva V, Sapundjieva K, Kuzmanova J (2007) Effect of easily biodegradable amendments on heavy metal solubilization and accumulation in technical crops-a field trial. J Environ Eng Landsc 15:237–242

    Article  Google Scholar 

  • Singh S, Parihar P, Singh R, Singh VP, Prasad SM (2016) Heavy metal tolerance in plants: role of transcriptomics, proteomics, metabolomics, and ionomics. Front Plant Sci 6:1143. https://doi.org/10.3389/fpls.2015.01143

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh M, Singh D, Rai P, Suyal DC, Saurabh S, Soni R, Giri K, Yadav AN (2021) Fungi in remediation of hazardous wastes: current status and future. In: Yadav AN (ed) Recent trends in mycological research, fungal biology. Springer Nature, Cham

    Google Scholar 

  • Sinhal VK, Srivastava A, Singh VP (2010) EDTA and citric acid mediated phytoextraction of Zn, Cu, Pb and Cd through marigold (Tagetes erecta). J Environ Biol 31:255–259

    CAS  PubMed  Google Scholar 

  • Song Y, Ammami MT, Benamar A, Mezazigh S, Wang H (2016) Effect of EDTA, EDDS, NTA and citric acid on electrokinetic remediation of As, Cd, Cr, Cu, Ni, Pb and Zn contaminated dredged marine sediment. Environ Sci Pollut Res 23(11):10577–10586

    Article  CAS  Google Scholar 

  • Sun R, Zhou Q, Jin C (2006) Cadmium accumulation in relation to organic acids in leaves of Solanum nigrum L. as a newly found cadmium hyperaccumulator. Plant Soil 285:125–134

    Article  CAS  Google Scholar 

  • Sun Y, Sun G, Xu Y, Liu W, Liang X, Wang L (2016) Evaluation of the effectiveness of sepiolite, bentonite, and phosphate amendments on the stabilization remediation of cadmium-contaminated soils. J Environ Manag 166:204–210. https://doi.org/10.1016/j.jenvman.2015.10.017

    Article  CAS  Google Scholar 

  • Suzuki T, Kawai K, Moribe M, Niinae M (2014a) Recovery of Cr as Cr(III) from Cr(VI)-contaminated kaolinite clay by electrokinetics coupled with a permeable reactive barrier. J Hazard Mater 278:297–303

    Article  CAS  PubMed  Google Scholar 

  • Suzuki T, Niinae M, Koga T, Akita T, Ohta M, Choso T (2014b) EDDS-enhanced electrokinetic remediation of heavy metal-contaminated clay soils under neutral pH conditions. Colloid Surface Physicochem Eng Aspect 440:145–150

    Article  CAS  Google Scholar 

  • Tang J, He J, Liu T, Xin X, Hu H (2017) Removal of heavy metal from sludge by the combined application of a biodegradable biosurfactant and complexing agent in enhanced electrokinetic treatment. Chemosphere 189:599–608

    Article  CAS  PubMed  Google Scholar 

  • Tao Q, Hou D, Li T (2016) Oxalate secretion from the root apex of Sedum alfredii contributes to hyperaccumulation of cadmium. Plant Soil 398(1):139–152

    Article  CAS  Google Scholar 

  • Turgut C, Pepe MK, Cutright TJ (2004) The effect of EDTA and citric acid on phytoremediation of Cd, Cr, and Ni from soil using Helianthus annuus. Environ Pollut 131(1):147–154

    Article  CAS  PubMed  Google Scholar 

  • Ullmann A, Brauner N, Vazana S, Katz Z, Goikhman R, Seemann B, Marom H, Gozin M (2013) New biodegradable organic-soluble chelating agents for simultaneous removal of heavy metals and organic pollutants from contaminated media. J Hazard Mater 260:676–688

    Article  CAS  PubMed  Google Scholar 

  • Vassilev A, Schwitzguebel JP, Thewys T, Van Der Lelie D, Vangronsveld J (2004) The use of plants for remediation of metal-contaminated soils. Sci World J 4:9–34

    Article  CAS  Google Scholar 

  • Wan QF, Deng DC, Bai Y, Xia CQ (2012) Phytoremediation and electrokinetic remediation of uranium contaminated soils: a review. He-Huaxue yu Fangshe Huaxue/J Nucl Radiochem 34:148–156

    CAS  Google Scholar 

  • Wang D, Zhang X, Liu J, Zhu Y, Zhang H, Zhang A, Jin X (2012a) Oxalic acid enhances Cr tolerance in the accumulating plant Leersia hexandra Swartz. Int J Phytoremediation 14(10):966–977

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Feng X, Anderson CW, Xing Y, Shang L (2012b) Remediation of mercury contaminated sites—a review. J Hazard Mater 221:1–18. https://doi.org/10.1016/j.jhazmat.2012.04.035

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Wu W, Liu F, Liao R, Hu Y (2017) Accumulation of heavy metals in soil-crop systems: a review for wheat and corn. Environ Sci Pollut Res 24:15209–15225. https://doi.org/10.1007/s11356-017-8909-5

    Article  CAS  Google Scholar 

  • Wang G, Zhang S, Zhong Q, Xu X, Li T, Jia Y, Zhang Y, Peijnenburg WJGM, Vijver MG (2018) Effect of soil washing with biodegradable chelators on the toxicity of residual metals and soil biological properties. Sci Total Environ 625:1021–1029. https://doi.org/10.1016/j.scitotenv.2018.01.019

    Article  CAS  PubMed  Google Scholar 

  • Wen XP, Ban Y, Inoue H, Matsuda N, Moriguch T (2010) Spermidine levels are implicated in heavy metal tolerance in a spermidine synthase overexpressing transgenic European pear by exerting antioxidant activities. Transgenic Res 19(1):91–103

    Article  CAS  PubMed  Google Scholar 

  • Wenger K, Hari T, Gupta MD, Krebs R, Rammelt R, Leumann CD (1998) Possible approaches for in situ restoration of soils contaminated by zinc. Adv Geoecol 31:745–754

    CAS  Google Scholar 

  • Wuana RA, Okieimen FE, Imborvungu JA (2010) Removal of heavy metals from a contaminated soil using organic chelating acids. Int J Environ Sci Technol 7(3):485–496

    Article  CAS  Google Scholar 

  • Xu X, Thomson NR (2007) An evaluation of the green chelant EDDS to enhance the stability of hydrogen peroxide in the presence of aquifer solids. Chemosphere 69:755–762

    Article  CAS  PubMed  Google Scholar 

  • Yan DYS, Yui MMT, Yip TCM, Tsang DCW, Lo IMC (2010) Influence of EDDS-tometal molar ratio, solution pH, and soil-to-solution ratio on metal extraction under EDDS deficiency. J Hazard Mater 178:890–894

    Article  CAS  PubMed  Google Scholar 

  • Yang RX, Luo CL, Zhang G, Li XD, Shen ZG (2012) Extraction of heavy metals from e-waste contaminated soils using EDDS. J Environ Sci (China) 24:1985–1994

    Article  CAS  Google Scholar 

  • Yang L, Luo CL, Liu Y, Quan LT, Chen YH, Shen ZG (2013) Residual effects of EDDS leachates during EDDS-assisted phytoremediation oKf copper contaminated soil. Sci Total Environ 444:263–270

    Article  CAS  PubMed  Google Scholar 

  • Yeung AT, Gu Y (2011) A review on techniques to enhance electrochemical remediation of contaminated soils. J Hazard Mater 195:11–29. https://doi.org/10.1016/j.jhazmat.2011.08.047

    Article  CAS  PubMed  Google Scholar 

  • Yoo JC, Yang JS, Jeon EK, Baek K (2015) Enhanced-electrokinetic extraction of heavy metals from dredged harbor sediment. Environ Sci Pollut Res 22:9912–9921. https://doi.org/10.1007/s11356-015-4155-x

    Article  CAS  Google Scholar 

  • Yoo JC, Beiyuan J, Wang L, Tsang DCW, Baek K, Bolan NS, Ok YS, Li XD (2018) A combination of ferric nitrate/EDDS-enhanced washing and sludgederived biochar stabilization of metal-contaminated soils. Sci Total Environ 616–617:572–582

    Article  PubMed  Google Scholar 

  • Zeng X, Ma LQ, Qiu R, Tang Y (2009) Responses of non-protein thiols to cd exposure in Cd hyperaccumulator Arabis paniculata Franch. Environ Exp Bot 66:242–248

    Article  Google Scholar 

  • Zhang X, Zhong B, Shafi M, Guo J, Liu C, Guo H, Peng D, Wang Y, Liu D (2018) Effect of EDTA and citric acid on absorption of heavy metals and growth of Moso bamboo. Environ Sci Pollut Res 25(19):18846–18852

    Article  CAS  Google Scholar 

  • Zia-ur-Rehman M, Sabir M, Rizwan M, Saifullah Ahmad HR, Nadeem M (2015) Remediating cadmium-contaminated soils by growing grain crops using inorganic amendments. In: Hakeem KR, Sabir M, Ozturk M, Murmet A (eds) Soil remediation and plants: prospects and challenges. Elsevier Inc., Academic Press, pp 367–396

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhandari, G., Prakash, O. (2022). Role of Chelating Compounds in Biodegradation and Bioremediation. In: Suyal, D.C., Soni, R. (eds) Bioremediation of Environmental Pollutants. Springer, Cham. https://doi.org/10.1007/978-3-030-86169-8_13

Download citation

Publish with us

Policies and ethics