Skip to main content

Fish Oil n-3 Fatty Acids to Prevent Hippocampus and Cognitive Dysfunction in Experimental Alcoholism

  • Chapter
  • First Online:
Alcohol, Nutrition, and Health Consequences

Part of the book series: Nutrition and Health ((NH))

  • 3653 Accesses

Abstract

Recently, a substantial body of evidence has evolved in literature indicating that n-3 polyunsaturated fatty acids (n-3 PUFA) are critical contributors to cell structure and function of the nervous system [1–4]. n-3 PUFA deficiency causes memory deficit [5], learning disability [6, 7], and visual activity loss [8]. Various neurological disease states in humans are associated with a deficient n-3 PUFA status [9, 10]. Epidemiological studies have shown interrelationship between n-3 long-chain PUFA intake, low plasma n-3 PUFA concentrations, and risk of cognitive impairment [11]. Such neurodegenerative diseases as generalized peroxisomal disorders and Alzheimer’s disease are associated with low levels of docosahexaenoic acid (22:6n-3), the major n-3 fatty acid found in brain [12, 13]. Dietary supply of 22:6n-3 has been shown to reduce neuronal injury in experimental brain ischemia [14, 15] and Alzheimer’s disease [16] and to improve some symptoms in patients with peroxisomal disorders [17]. It is worth noting that reference memory or working memory can be enhanced in normal animals or improved in 22:6n-3-deficient animals by fish oil supplementation [18]. Hippocampus and olfactory bulbs which accumulate greater 22:6n-3 showed stronger resistance to dietary 22:6n-3 deprivation and better 22:6n-3 recovery than the visual cortex, frontal cortex, and cerebellum. Results obtained suggest a critical role of 22:6n-3 in the development and maintenance of learning memory performance. Important trophic control by 22:6n-3 of hippocampus-dependent neuronal function such as learning and memory has been suggested [19, 20]. 22:6n-3 supplementation for 6 days increased the dendritic length and number of dendritic branches, which in turn would affect the number and quality of synaptic connections during organism development and in adulthood. It is conceivable that the derivatives of 22:6n-3 rather than 22:6n-3 by itself may mediate the observed effect of n-3 PUFA on the neurite growth [21, 22]. The trophic action of n-3 PUFA on the neuronal differentiation may be derived from the facilitated membrane interaction and activation of Raf-1 or Akt due to phosphatidylserine (PS) increase, as observed for neuronal survival.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kidd PM. Omega-3 DHA and EPA for cognition, behavior, and mood: clinical findings and structural-functional synergies with cell membrane phospholipids. Altern Med Rev. 2007;12:207–27.

    PubMed  Google Scholar 

  2. Sinclair AJ, Begg D, Mathai M, et al. Omega 3 fatty acids and the brain: review of studies in depression. Asia Pac J Clin Nutr. 2007;16:391–7.

    PubMed  CAS  Google Scholar 

  3. Lukiw WJ, Bazan NG. Docosahexaenoic acid and the aging brain. J Nutr. 2008;138:2510–4.

    Article  PubMed  CAS  Google Scholar 

  4. Kim HY. Biochemical and biological functions of docosahexaenoic acid in the nervous system: modulation by ethanol. Chem Phys Lipids. 2008;153:34–46.

    Article  PubMed  CAS  Google Scholar 

  5. Gamoh S, Hashimoto M, Sugioka K, et al. Chronic administration of docosahexaenoic acid improves reference memory-related learning ability in young rats. Neuroscience. 1999;93:237–41.

    Article  PubMed  CAS  Google Scholar 

  6. Yoshida S, Yasuda A, Kawazato H, et al. Synaptic vesicle ultrastructural changes in the rat hippocampus induced by a combination of alpha-linolenate deficiency and a learning task. J Neurochem. 1997;68(3):1261–8.

    Article  PubMed  CAS  Google Scholar 

  7. Carrie I, Clement M, De Javel D, et al. Learning deficits in first generation OF1 mice deficient in (n-3) polyunsaturated fatty acids do not result from visual alteration. Neurosci Lett. 1999;266:69–72.

    Article  PubMed  CAS  Google Scholar 

  8. Neuringer M. Infant vision and retinal function in studies of dietary long-chain polyunsaturated fatty acids: methods, results, and implications. Am J Clin Nutr. 2000;71(suppl):256S–67.

    PubMed  CAS  Google Scholar 

  9. Hoffman DR, Birch DG. Omega-3 fatty acid status in patients with retinitis pigmentosa. World Rev Nutr Diet. 1998;83:52–60.

    Article  PubMed  CAS  Google Scholar 

  10. Martinez M. Abnormal profiles of polyunsaturated fatty acids in the brain liver kidney and retina of patients with peroxisomal disorders. Brain Res. 1992;583:171–82.

    Article  PubMed  CAS  Google Scholar 

  11. Cherubini A, Andres-Lacueva C, Martin AJ, et al. Low plasma N-3 fatty acids and dementia in older persons: the InCHIANTI study. Gerontol A Biol Sci Med Sci. 2007;62(10):1120–6.

    Article  Google Scholar 

  12. Martinez M. Severe deficiency of docosahexaenoic acid in peroxisomal disorders: a defect of Æ4-desaturation? Neurology. 1990;40:1292–8.

    Article  PubMed  CAS  Google Scholar 

  13. Soderberg M, Edlund C, Kristensson K, et al. Fatty acid composition of brain phospholipids in aging and in Alzheimer’s disease. Lipids. 1991;26:421–5.

    Article  PubMed  CAS  Google Scholar 

  14. Choi-Kwon S, Park KA, Lee HJ, et al. Temporal changes in cerebral antioxidant enzyme activities after ischemia and reperfusion in a rat focal brain ischemia model: effect of dietary fish oil. Brain Res Dev Brain Res. 2004;152:11–8.

    Article  PubMed  Google Scholar 

  15. Okada M, Amamoto T, Tomonaga M, et al. The chronic administration of docosahexaenoic acid reduces the spatial cognitive deficit following transient forebrain ischemia in rats. Neuroscience. 1996;71:17–25.

    Article  PubMed  CAS  Google Scholar 

  16. Calon F, Lim GP, Yang F, et al. Docosahexaenoic acid protects from dendritic pathology in an Alzheimer’s disease mouse model. Neuron. 2004;43:633–45.

    Article  PubMed  CAS  Google Scholar 

  17. Martínez M, Vázquez E, García-Silva MT, et al. Therapeutic effects of docosahexaenoic acid ethyl ester in patients with generalized peroxisomal disorders. Am J Clin Nutr. 2000;71:376S–85.

    PubMed  Google Scholar 

  18. Chung WL, Chen JJ, Su HM. Fish oil supplementation of control and (n-3) fatty acid-deficient male rats enhances reference and working memory performance and increases brain regional docosahexaenoic acid levels. J Nutr. 2008;138:1165–71.

    PubMed  CAS  Google Scholar 

  19. Yoshida S, Yasuda A, Kawazato H, et al. Synaptic vesicle ultrastructural changes in the rat hippocampus induced by a combination of alpha-linolenate deficiency and a learning task. J Neurochem. 1997;68:1261–8.

    Article  PubMed  CAS  Google Scholar 

  20. Moriguchi T, Greiner RS, Salem Jr N. Behavioral deficits associated with dietary induction of decreased brain docosahexaenoic acid concentration. J Neurochem. 2000;75:2563–73.

    Article  PubMed  CAS  Google Scholar 

  21. Hong S, Gronert K, Devchand PR, et al. Novel docosatrienes and 17S-resolvins generated from docosahexaenoic acid in murine brain, human blood, and glial cells. Autacoids in anti-inflammation. J Biol Chem. 2003;278:14677–87.

    Article  PubMed  CAS  Google Scholar 

  22. Mukherjee PK, Marcheselli VL, Serhan CN, et al. Neuroprotectin D1: a docosahexaenoic acid-derived docosatriene protects human retinal pigment epithelial cells from oxidative stress. Proc Natl Acad Sci USA. 2004;101:8491–6.

    Article  PubMed  CAS  Google Scholar 

  23. Rotstein NP, Aveldaño MI, Barrantes FJ, et al. Apoptosis of retinal photoreceptors during development in vitro: protective effect of docosahexaenoic acid. J Neurochem. 1997;69:504–13.

    Article  PubMed  CAS  Google Scholar 

  24. Rotstein NP, Aveldaño MI, Barrantes FJ, et al. Docosahexaenoic acid is required for the survival of rat retinal photoreceptors in vitro. J Neurochem. 1996;66:1851–9.

    Article  PubMed  CAS  Google Scholar 

  25. Cao DH, Xu JF, Xue RH, et al. Protective effect of chronic ethyl docosahexaenoate administration on brain injury in ischemic gerbils. Pharmacol Biochem Behav. 2004;79:651–9.

    Article  PubMed  CAS  Google Scholar 

  26. Babenko NA, Semenova YA. Effect of the diet enriched in the polyunsaturatted fatty, acids of the fish oil on phospholipid turnover and cognitive function of the old rats. Ross Fiziol Zh Im I M Sechenova. 2008;94:1400–6.

    PubMed  CAS  Google Scholar 

  27. Babenko NA, Semenova YA. Effects of long-term fish oil-enriched diet on the sphingolipid metabolism in brain of old rats. Exp Gerontol. 2010;45:375–80.

    Article  PubMed  CAS  Google Scholar 

  28. Akbar M, Calderon F, Wen Z, et al. Docosahexaenoic acid: a positive modulator of Akt signaling in neuronal survival. Proc Natl Acad Sci USA. 2005;102:10858–63.

    Article  PubMed  CAS  Google Scholar 

  29. Akbar M, Baick J, Calderon F, et al. Ethanol promotes neuronal apoptosis by inhibiting phosphatidylserine accumulation. J Neurosci Res. 2006;83:432–40.

    Article  PubMed  CAS  Google Scholar 

  30. Kim HY, Akbar M, Lau A, et al. Inhibition of neuronal apoptosis by docosahexaenoic acid (22:6n-3). Role of phosphatidylserine in antiapoptotic effect. J Biol Chem. 2000;275:35215–23.

    Article  PubMed  CAS  Google Scholar 

  31. Alling C, Liljequist S, Engel J. The effect of chronic ethanol administration on lipids and fatty acids in subcellular fractions of rat brain. Med Biol. 1982;60:149–54.

    PubMed  CAS  Google Scholar 

  32. Harris RA, Baxter DM, Mitchell MA, et al. Physical properties and lipid composition of brain membranes from ethanol tolerant-dependent mice. Mol Pharmacol. 1984;25:401–9.

    PubMed  CAS  Google Scholar 

  33. Pawlosky RJ, Salem Jr N. Ethanol exposure causes a decrease in docosahexaenoic acid and an increase in docosapentaenoic acid in feline brains and retinas. Am J Clin Nutr. 1995;61:1284–9.

    PubMed  CAS  Google Scholar 

  34. de la Monte SM, Longato L, Tong M, et al. The liver-brain axis of alcohol-mediated neurodegeneration: role of toxic lipids. Int J Environ Res Public Health. 2009;6:2055–75.

    Article  PubMed  Google Scholar 

  35. Saito M, Chakraborty G, Mao RF, et al. Ethanol alters lipid profiles and phosphorylation status of AMP-activated protein kinase in the neonatal mouse brain. J Neurochem. 2007;103:1208–18.

    Article  PubMed  CAS  Google Scholar 

  36. DeVito WJ, Stone S, Shamgochian M. Ethanol increases the neurotoxic effect of tumor necrosis factor-alpha in cultured rat astrocytes. Alcohol Clin Exp Res. 2000;24:82–92.

    PubMed  CAS  Google Scholar 

  37. Pascual M, Valles SL, Renau-Piqueras J, et al. Ceramide pathways modulate ethanol-induced cell death in astrocytes. J Neurochem. 2003;87:1535–45.

    Article  PubMed  CAS  Google Scholar 

  38. Crews FT, Nixon K. Mechanisms of neurodegeneration and regeneration in alcoholism. Alcohol Alcohol. 2009;44:115–27.

    PubMed  CAS  Google Scholar 

  39. Tsyupko AN, Dudnik LB, Evstigneeva RP, et al. Effects of reduced and oxidized glutathione on sphingomyelinase activity and contents of sphingomyelin and lipid peroxidation products in murine liver. Biochemistry (Mosc). 2001;66:1028–34.

    Article  CAS  Google Scholar 

  40. Ayasolla K, Khan M, Singh AK, et al. Inflammatory mediator and beta-amyloid (25–35)-induced ceramide generation and iNOS expression are inhibited by vitamin E. Free Radic Biol Med. 2004;37:325–38.

    Article  PubMed  CAS  Google Scholar 

  41. Yamagata K, Ichinose S, Tagawa C, et al. Vitamin E regulates SMase activity, GSH levels, and inhibits neuronal death in stroke-prone spontaneously hypertensive rats during hypoxia and reoxygenation. J Exp Stroke Transl Med. 2009;2:2.

    Article  Google Scholar 

  42. Cutler RG, Mattson MP. Sphingomyelin and ceramide as regulators of development and lifespan. Mech Ageing Dev. 2001;122:895–908.

    Article  PubMed  CAS  Google Scholar 

  43. Peña LA, Fuks Z, Kolesnick RN. Stress-induced apoptosis and the sphingomyelin pathway. Biochem Pharmacol. 1997;53:615–21.

    Article  PubMed  Google Scholar 

  44. Karakashian AA, Giltiay NV, Smith GM, et al. Expression of neutral sphingomyelinase-2 (NSMase-2) in primary rat hepatocytes modulates IL-beta-induced JNK activation. FASEB J. 2004;18:968–70.

    PubMed  CAS  Google Scholar 

  45. Wang G, Bieberich E. Prenatal alcohol exposure triggers ceramide-induced apoptosis in neural crest-derived tissues concurrent with defective cranial development. Cell Death Dis. 2010;1:e46.

    Article  PubMed  CAS  Google Scholar 

  46. Dasgupta S, Adams JA, Hogan EL. Maternal alcohol consumption increases sphingosine levels in the brains of progeny mice. Neurochem Res. 2007;32:2217–24.

    Article  PubMed  CAS  Google Scholar 

  47. Saito M, Chakraborty G, Hegde M, et al. Involvement of ceramide in ethanol-induced apoptotic neurodegeneration in the neonatal mouse brain. J Neurochem. 2010;115:168–77.

    Article  PubMed  CAS  Google Scholar 

  48. Babenko NA, Shakhova EG. Correction of cognitive dysfunction and sphingolipid metabolism in the rat brain cortex by quercetin. Exp Clin Med (Ukraine). 2008;2:62–5.

    Google Scholar 

  49. Babenko NA, Semenova YA. Sphingolipid turnover in the hippocampus and cognitive dysfunction in alcoholized rats: correction with the help of alimentary n-3 fatty acids. Neurophysiology. 2010;42:169–74.

    Article  Google Scholar 

  50. Tomás M, Durán JM, Lázaro-Diéguez F, et al. Fluorescent analogues of plasma membrane sphingolipids are sorted to different intracellular compartments in astrocytes; harmful effects of chronic ethanol exposure on sphingolipid trafficking and metabolism. FEBS Lett. 2004;563:59–65.

    Article  PubMed  Google Scholar 

  51. Esteban-Pretel G, Marín MP, Romero AM, et al. Protein traffic is an intracellular target in alcohol toxicity. Pharmaceuticals. 2011;4:741–57.

    Article  CAS  Google Scholar 

  52. Ledesma MD, Brügger B, Bünning C, et al. Maturation of the axonal plasma membrane requires upregulation of sphingomyelin synthesis and formation of protein-lipid complexes. EMBO J. 1999;18:1761–71.

    Article  PubMed  CAS  Google Scholar 

  53. Kohyama-Koganeya A, Sasamura T, Oshima E, et al. Drosophila glucosylceramide synthase: a negative regulator of cell death mediated by proapoptotic factors. J Biol Chem. 2004;279:35995–6002.

    Article  PubMed  CAS  Google Scholar 

  54. Uchida Y, Murata S, Schmuth M, et al. Glucosylceramide synthesis and synthase expression protect against ceramide-induced stress. J Lipid Res. 2002;43:1293–302.

    PubMed  CAS  Google Scholar 

  55. Saito M, Saito M, Cooper TB, et al. Ethanol-induced changes in the content of triglycerides, ceramides, and glucosylceramides in cultured neurons. Alcohol Clin Exp Res. 2005;29:1374–83.

    Article  PubMed  CAS  Google Scholar 

  56. Dolgachev V, Farooqui MS, Kulaeva OI, et al. De novo ceramide accumulation due to inhibition of its conversion to complex sphingolipids in apoptotic photosensitized cells. J Biol Chem. 2004;279:23238–49.

    Article  PubMed  CAS  Google Scholar 

  57. Satoi H, Tomimoto H, Ohtani R, et al. Astroglial expression of ceramide in Alzheimer’s disease brains: a role during neuronal apoptosis. Neuroscience. 2005;130:657–66.

    Article  PubMed  CAS  Google Scholar 

  58. Liu JJ, Wang JY, Hertervig E, et al. Activation of neutral sphingomyelinase participates in ethanol-induced apoptosis in Hep G2 cells. Alcohol Alcohol. 2000;35:569–73.

    PubMed  CAS  Google Scholar 

  59. Reichel M, Beck J, Mühle C, et al. Activity of secretory sphingomyelinase is increased in plasma of alcohol-dependent patients. Alcohol Clin Exp Res. 2011. doi:10.1111/j.1530-0277.2011.01529.x.

  60. Kim MY, Linardic C, Obeid L, et al. Identification of sphingomyelin turnover as an effector mechanism for the action of tumor necrosis factor alpha and gamma-interferon. Specific role in cell differentiation. J Biol Chem. 1991;266:484–9.

    PubMed  CAS  Google Scholar 

  61. Ballou LR, Chao CP, Holness MA, et al. Interleukin-1-mediated PGE2 production and sphingomyelin metabolism. Evidence for the regulation of cyclooxygenase gene expression by sphingosine and ceramide. J Biol Chem. 1992;267:20044–50.

    PubMed  CAS  Google Scholar 

  62. Fernandez-Checa JC, Colell A, Mari M, et al. Ceramide, tumor necrosis factor and alcohol-induced liver disease. Alcohol Clin Exp Res. 2005;29:151S–7.

    Article  PubMed  CAS  Google Scholar 

  63. Fernández-Checa JC. Alcohol-induced liver disease: when fat and oxidative stress meet. Ann Hepatol. 2003;2:69–75.

    PubMed  Google Scholar 

  64. DeVito WJ, Xhaja K, Stone S. Prenatal alcohol exposure increases TNFalpha-induced cytotoxicity in primary astrocytes. Alcohol. 2000;21:63–71.

    Article  CAS  Google Scholar 

  65. Lukoyanov NV, Brandгo F, Cadete-Leite A, et al. Synaptic reorganization in the hippocampal formation of alcohol-fed rats may compensate for functional deficits related to neuronal loss. Alcohol. 2000;20:139–48.

    Article  PubMed  CAS  Google Scholar 

  66. Weissenborn R, Duka T. Acute alcohol effects on cognitive function in social drinkers: their relationship to drinking habits. Psychopharmacology (Berl). 2003;165:306–12.

    CAS  Google Scholar 

  67. Mielke MM, Lyketsos CG. Alterations of the sphingolipid pathway in Alzheimer’s disease: new biomarkers and treatment targets? Neuromol Med. 2010;12:331–40.

    Article  CAS  Google Scholar 

  68. Mielke MM, Bandaru VV, Haughey NJ, et al. Serum sphingomyelins and ceramides are early predictors of memory impairment. Neurobiol Aging. 2010;31:17–24.

    Article  PubMed  CAS  Google Scholar 

  69. Costantini C, Kolasani RMK, Puglielli L. Ceramide and cholesterol: possible connections between normal aging of the brain and Alzheimer’s disease. Just hypotheses or molecular pathways to be identified? Alzheimer’s Dement. 2005;1:43–50.

    Article  CAS  Google Scholar 

  70. Costantini C, Weindruch R, Della Valle G, et al. A TrkA-to-p75NTR molecular switch activates amyloid b-peptide generation during aging. Biochem J. 2005;391:59–67.

    Article  PubMed  CAS  Google Scholar 

  71. Hamilton L, Greiner R, Salem Jr N, et al. N-3 fatty acid deficiency decreases phosphatidylserine accumulation selectively in neuronal tissues. Lipids. 2000;35:863–9.

    Article  PubMed  CAS  Google Scholar 

  72. Wen Z, Kim HY. Alterations in hippocampal phospholipid profile by prenatal exposure to ethanol. J Neurochem. 2004;89:1368–77.

    Article  PubMed  CAS  Google Scholar 

  73. Rotstein NP, Miranda GE, Abrahan CE, et al. Regulating survival and development in the retina: key roles for simple sphingolipids. J Lipid Res. 2010;51:1247–62.

    Article  PubMed  CAS  Google Scholar 

  74. Opreanu M, Lydic TA, Reid GE, et al. Inhibition of cytokine signaling in human retinal endothelial cells through downregulation of sphingomyelinases by docosahexaenoic acid. Invest Ophthalmol Vis Sci. 2010;51:3253–63.

    Article  PubMed  Google Scholar 

  75. Jolly CA, Jiang YH, Chapkin RS, et al. Dietary (n–3) polyunsaturated fatty acids suppress murine lymphoproliferation, interleukin-2 secretion, and the formation of diacylglycerol and ceramide. J Nutr. 1997;127:37–43.

    PubMed  CAS  Google Scholar 

  76. Lankinen M, Schwab U, Erkkilä A, et al. Fatty fish intake decreases lipids related to inflammation and insulin signaling – a lipidomics approach. PLoS One. 2009;4:e5258.

    Article  PubMed  Google Scholar 

  77. Babenko NA, Semenova YA. Effects of exogenous phosphatidylserine on cognitive functions and phospholipid metabolism in the hippocampus of aged rats. Neurosci Behav Physiol. 2011;41:97–101.

    Article  CAS  Google Scholar 

  78. Zanotti A, Valzelli L, Toffano G. Chronic phosphatidylserine treatment improves spatial memory and passive avoidance in aged rats. Psychopharmacology. 1989;99:316–21.

    Article  PubMed  CAS  Google Scholar 

  79. Pepeu G, Pepeu IM, Amaducci L. A review of phosphatidylserine pharmacological and clinical effects. Is phosphatidylserine a drug for the ageing brain? Pharmacol Res. 1996;33:73–80.

    Article  PubMed  CAS  Google Scholar 

  80. Qin L, He J, Hanes RN, et al. Increased systemic and brain cytokine production and neuroinflammation by endotoxin following ethanol treatment. J Neuroinflammation. 2008;5:10–26.

    Article  PubMed  Google Scholar 

  81. Zhang Y, Kolesnick R. Signaling through the sphingomyelin pathway. Endocrinology. 1995;136:4157–60.

    Article  PubMed  CAS  Google Scholar 

  82. Kanety H, Feinstein R, Papa MZ, et al. Tumor necrosis 34. factor alpha-induced phosphorylation of insulin receptor substrate-1 (IRS-1). Possible mechanism for suppression of insulin-stimulated tyrosine phosphorylation of IRS-1. J Biol Chem. 1995;270:23780–4.

    Article  PubMed  CAS  Google Scholar 

  83. Addolorato G, Gasbarrini A, Marcoccia S, et al. Prenatal exposure to ethanol in rats: effects on liver energy level and antioxidant status in mothers, fetuses, and newborns. Alcohol. 1997;14:569–73.

    Article  PubMed  CAS  Google Scholar 

  84. Adibhatla RM, Hatcher JF. Altered lipid metabolism in brain injury and disorders. Subcell Biochem. 2008;49:241–68.

    Article  PubMed  Google Scholar 

  85. Ramos GC, Fernandes D, Charao CT, et al. Apoptotic mimicry: phosphatidylserine liposomes reduce inflammation through activation of peroxisome proliferator-activated receptors (PPARs) in vivo. Br J Pharmacol. 2007;151:844–50.

    Article  PubMed  CAS  Google Scholar 

  86. Nolan Y, Martin D, Campbell VA, et al. Evidence of a protective effect of phosphatidylserine-containing liposomes on lipopolysaccharide-induced impairment of long-term potentiation in the rat hippocampus. J Neuroimmunol. 2004;151:12–23.

    Article  PubMed  CAS  Google Scholar 

  87. Ajmone-Cat MA, De Simone R, Nicolini A, et al. Effects of phosphatidylserine on p38 mitogen activated protein kinase, cyclic AMP responding element binding protein and nuclear factor-kappaB activation in resting and activated microglial cells. J Neurochem. 2003;84:413–6.

    Article  PubMed  CAS  Google Scholar 

  88. Ben-David O, Futerman AH. The role of the ceramide acyl chain length in neurodegeneration: involvement of ceramide synthases. Neuromolecular Med. 2010;12:341–50.

    Article  PubMed  CAS  Google Scholar 

  89. Haughey NJ, Bandaru VV, Bae M, et al. Roles for dysfunctional sphingolipid metabolism in Alzheimer’s disease neuropathogenesis. Biochim Biophys Acta. 2010;1801:878–86.

    Article  PubMed  CAS  Google Scholar 

  90. Posse de Chaves E, Sipione S. Sphingolipids and gangliosides of the nervous system in membrane function and dysfunction. FEBS Lett. 2010;584:1748–17459.

    Article  PubMed  CAS  Google Scholar 

  91. De la Monte SM, Tong M, Nguyen V, et al. Ceramide-mediated insulin resistance and impairment of cognitive-motor functions. J Alzheimers Dis. 2010;21:967–84.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nataliya A. Babenko Ph.D., D.Si. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Babenko, N.A. (2013). Fish Oil n-3 Fatty Acids to Prevent Hippocampus and Cognitive Dysfunction in Experimental Alcoholism. In: Watson, R., Preedy, V., Zibadi, S. (eds) Alcohol, Nutrition, and Health Consequences. Nutrition and Health. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-047-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-047-2_17

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-046-5

  • Online ISBN: 978-1-62703-047-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics