Skip to main content
Log in

Efficient expression of glucagon-like peptide-1 analogue with human serum albumin fusion protein in Pichia pastoris using the glyceraldehyde-3-phosphate dehydrogenase promoter

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Glucagon-like peptide-1 (GLP-1) was a potential therapeutic drug for type II diabetes, mainly because of the stimulatory effect on insulin secretion under condition of high blood glucose. We used PCR to obtain a recombination gene, GGH, in which two GLP-1 (GLP-1A2G) mutants were connected in series and then fused to the N terminal of human serum albumin. The fusion gene was inserted into pGAPZaA plasmid with Saccharomyces cerevisiae α-factor secretion signal sequence, and was expressed by the glyceraldehyde-3-phosphate dehydrogenase (GAP) promoter. The engineered strain was constructed by integrating the recombinant plasmid pGAPZαA/GGH into the genome of Pichia pastoris GS115. Genome PCR and western blot showed that the recombinant P. pastoris successfully expressed the fusion protein GGH. The yield of GGH reached 78 mg/L after 72 h fermentation in a flask, using glucose as the optimal carbon source. Fed-batch fermentation was investigated in a 5 L bioreactor, and the expression level of GGH reached 246 mg/L in 52 h. The fusion protein GGH was purified in four steps, and the final purity was 96.1%. The in vitro bioactivity of GGH was the same as that expressed in P. pastoris by the AOX1 promoter. This study described an efficient way to express GGH fusion protein in P. pastoris using GAP promoter, fermentation was easier to control without carbon source change and fermentation time was 20 h less than AOX1 promotercontrolled GGH fermentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Doyle, M. E. and J. M. Egan (2007) Mechanisms of action of glucagon-like peptide 1 in the pancreas. Pharmacol. Therapeutics. 113: 546–593.

    Article  CAS  Google Scholar 

  2. Yu, Z. W. and T. R. Jin (2010) New insights into the role of cAMP in the production and function of the incretin hormone glucagon-like peptide-1 (GLP-1). Cellular Signalling. 22: 1–8.

    Article  Google Scholar 

  3. Donnelly, D. (2012) The structure and function of the glucagonlike peptide-1 receptor and its ligands. British J. Pharmacol. 166: 27–41.

    Article  CAS  Google Scholar 

  4. Chung, L. T. K., T. Hosaka, M. Yoshida, N. Harada, H. Sakaue, T. Sakai, and Y. Nakaya (2009) Exendin-4, a GLP-1 receptor agonist, directly induces adiponectin expression through protein kinase A pathway and prevents inflammatory adipokine expression. Biochem. Biophys. Res. Commun. 390: 613–618.

    Article  CAS  Google Scholar 

  5. Gao, Z., G. Bai, J. Chen, Q. Zhang, P. Pan, F. Bai, and P. Geng (2009) Development, characterization, and evaluation of a fusion protein of a novel Glucagon-like peptide-1 (GLP-1) analog and human serum albumin in Pichia pastoris. Biosci. Biotech. Bioch. 73: 688–694.

    Article  CAS  Google Scholar 

  6. Qian, J. (2001) Biological activities of glucagon-like peptide-1 analogues in vitro and in vivo. Biochem. 40: 2860–2869.

    Article  Google Scholar 

  7. Seo, M. -J., H. -J. Choi, K. -H. Chung, and Y. -R. Pyun (2012) Production of salmosin, a snake venom-derived disintegrin, in recombinant Pichia pastoris using high cell density fed-batch fermentation. Biotechnol. Bioproc. Eng. 17: 1068–1075.

    Article  CAS  Google Scholar 

  8. Liu, Y., J. Pan, P. Wei, J. Zhu, L. Huang, J. Cai, and Z. Xu (2012) Efficient expression and purification of recombinant alcohol oxidase in Pichia pastoris. Biotechnol. Bioproc. Eng. 17: 693–702.

    Article  CAS  Google Scholar 

  9. Waterham, H. R., M. E. Digan, P. J. Koutz, S. V. Lair, and J. M. Cregg (1997) Isolation of the Pichia pastoris glyceraldehyde-3-phosphate dehydrogenase gene and regulation and use of its promoter. Gene. 186: 37–44.

    Article  CAS  Google Scholar 

  10. Chen, G. H., L. J. Yin, I. H. Chiang, and S. T. Jiang (2007) Expression and purification of goat lactoferrin from Pichia pastoris expression system. J. Food Sci. 72: M67–M71.

    Article  CAS  Google Scholar 

  11. Goodrick, J. C., M. Xu, R. Finnegan, B. M. Schilling, S. Schiavi, H. Hoppe, and N. C. Wan (2001) High-level expression and stabilization of recombinant human chitinase produced in a continuous constitutive Pichia pastoris expression system. Biotechnol. Bioeng. 74: 492–497.

    Article  CAS  Google Scholar 

  12. Zhang, A. L., J. X. Luo, T. Y. Zhang, Y. W. Pan, Y. H. Tan, C. Y. Fu, and F. Z. Tu (2009) Recent advances on the GAP promoter derived expression system of Pichia pastoris. Mol. Biol. Rep. 36: 1611–1619.

    Article  CAS  Google Scholar 

  13. Dou, W.-F., J. -Y. Lei, L. -F. Zhang, Z. -H. Xu, Y. Chen, and J. Jin (2008) Expression, purification, and characterization of recombinant human serum albumin fusion protein with two human glucagon-like peptide-1 mutants in Pichia pastoris. Protein Expres. Purif. 61: 45–49.

    Article  CAS  Google Scholar 

  14. Wu, S. X. and G. J. Letchworth (2004) High efficiency transformation by electroporation of Pichia pastoris pretreated with lithium acetate and dithiothreitol. Biotechniq. 36: 152–154.

    CAS  Google Scholar 

  15. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685.

    Article  Google Scholar 

  16. Kobayashi, K., S. Kuwae, T. Ohya, T. Ohda, M. Ohyama, H. Ohi, K. Tomomitsu, and T. Ohmura (2000) High-level expression of recombinant human serum albumin from the methylotrophic yeast Pichia pastoris with minimal protease production and activation. J. Biosci. Bioeng. 89: 55–61.

    Article  CAS  Google Scholar 

  17. Zhang, Y. P., W. Yang, L. J. Chen, Y. Shi, G. Li, and N. M. Zhou (2011) Development of a novel DnaE intein-based assay for quantitative analysis of G-protein-coupled receptor internalization. Anal. Biochem. 417: 65–72.

    Article  CAS  Google Scholar 

  18. Poutou-Pinales, R. A., H. A. Cordoba-Ruiz, L. A. Barrera-Avellaneda, and J. M. Delgado-Boada (2010) Carbon source feeding strategies for recombinant protein expression in Pichia pastoris and Pichia methanolica. African J. Biotechnol. 9: 2173–2184.

    CAS  Google Scholar 

  19. Gao, M. and Z. Shi (2013) Process control and optimization for heterologous protein production by methylotrophic Pichia pastoris. Chin. J. Chem. Eng. 21: 216–226.

    Article  CAS  Google Scholar 

  20. Periyasamy, S., N. Govindappa, S. Sreenivas, and K. Sastry (2013) Isolation, characterization and evaluation of the Pichia pastoris sorbitol dehydrogenase promoter for expression of heterologous proteins. Protein Expres. Purif. 92: 128–133.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to HuaZhong Li or Jian Jin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, K., Gong, X., Guan, B. et al. Efficient expression of glucagon-like peptide-1 analogue with human serum albumin fusion protein in Pichia pastoris using the glyceraldehyde-3-phosphate dehydrogenase promoter. Biotechnol Bioproc E 20, 694–700 (2015). https://doi.org/10.1007/s12257-014-0818-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-014-0818-6

Keywords

Navigation