Skip to main content
Log in

Production of salmosin, a snake venom-derived disintegrin, in recombinant Pichia pastoris using high cell density fed-batch fermentation

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Salmosin, a snake venom-derived disintegrin, was successfully expressed in the methylotrophic yeast Pichia pastoris and secreted into the culture supernatant, as a 6 kDa protein. High-cell density fermentation of recombinant P. pastoris was optimized for the mass production of salmosin. In a 5 L jar fermentor, recombinant P. pastoris was fermented in growth medium containing 5% (w/v) glycerol at the controlled pH of 5.0. After culturing for 21 h, glycerol feeding medium was fed at one time into the culture broth. After 7 h (a total of 28 h), induction medium that contained methanol was increasingly added until the culture time totaled 75 h. Finally, these optimized culture conditions produced a high cell density of recombinant P. pastoris (dry cell weight of 113.38 g/L) and led to the mass production of salmosin (a total protein concentration of 369.2 mg/L). The culture supernatant containing salmosin inhibited platelet aggregation, resulting in a platelet aggregation of 9% compared to that of 94% in the control experiment, without culture supernatant. These results demonstrate that recombinant salmosin in culture supernatant from high cell density fed-batch fermentation can serve as a platelet aggregation inhibitor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bae, C. S., M. S. Hong, S. G. Chang, D. Y. Kim, and H. C. Shin (1997) Optimization of fusion proinsulin production by high celldensity fermentation of recombinant E. coli. Biotechnol. Bioproc. Eng. 2: 27–32.

    Article  Google Scholar 

  2. Zhang, W., M. Inan, and M. M. Meagher (2000) Fermentation strategies for recombinant protein expression in the methylotrophic yeast Pichia pastoris. Biotechnol. Bioproc. Eng. 5: 275–287.

    Article  CAS  Google Scholar 

  3. Dasari, V. K. R., D. Are, V. R. Joginapally, L. N. Mangamoori, and K. S. B. R. Adibhatla (2008) Optimization of the downstream process for high recovery of rhG-CSF from inclusion bodies expressed in Escherichia coli. Proc. Biochem. 43: 566–575.

    Article  CAS  Google Scholar 

  4. Cregg, J. M., J. F. Tschopp, C. Stillman, R. Siegel, M. Akong, W. S. Craig, R. G. Buckholz, K. R. Madden, A. Kellaris, G. R. Davis, B. L. Smiley, J. Cruze, R. Torregrossa, G. Velicelebi, and G. P. Thill (1987) High-level expression and efficient assembly of hepatitis B surface antigen in the methylotrophic yeast, Pichia pastoris. Nat. Biotechnol. 5: 479–485.

    Article  CAS  Google Scholar 

  5. Zhang, Z., M. Moo-Young, and Y. Chisti (1996) Plasmid stability in recombinant Saccharomyces cerevisiae. Biotechnol. Adv. 14: 401–435.

    Article  CAS  Google Scholar 

  6. Cregg, J. M., T. S. Vedvick, and W. C. Raschke (1993) Recent advances in the expression of foreign genes in Pichia pastoris. Nat. Biotechnol. 11: 905–910.

    Article  CAS  Google Scholar 

  7. Kim, M. J., S. H. Kim, J. H. Lee, J. H. Seo, J. H. Lee, J. H. Kim, Y. H. Kim, and S. W. Nam (2008) High-level secretory expression of human procarboxypeptidase B by fed-batch cultivation of Pichia pastoris and its partial characterization. J. Microbiol. Biotechnol. 18: 1938–1944.

    CAS  Google Scholar 

  8. Macauley-Patrick, S., M. L. Fazenda, B. McNeil, and L. M. Harvey (2005) Heterologous protein production using the Pichia pastoris expression system. Yeast 22: 249–270.

    Article  CAS  Google Scholar 

  9. Kim, S. J., J. A. Lee, K. Won, Y. H. Kim, and B. K. Song (2009) Functional expression of Coprinus cinereus peroxidase in Pichia pastoris. Proc. Biochem. 44: 731–735.

    Article  CAS  Google Scholar 

  10. Wu, D., X. W. Yu, T. C. Wang, R. Wang, and Y. Xu (2011) High yield Rhizopus chinenisis prolipase production in Pichia pastoris: Impact of methanol concentration. Biotechnol. Bioproc. Eng. 16: 305–311.

    Article  CAS  Google Scholar 

  11. Savage, B., U. M. Marzec, B. H. Chao, L. A. Harker, J. M. Maraganore, and Z. M. Ruggeri (1990) Binding of the snake venom-derived proteins applaggin and echistatin to the arginineglycine-aspartic acid recognition site(s) on platelet glycoprotein IIb.IIIa complex inhibits receptor function. J. Biol. Chem. 265: 11766–11772.

    CAS  Google Scholar 

  12. Huang, T. F., C. Z. Liu, C. H. Ouyang, and C. M. Teng (1991) Halysin, an antiplatalet Arg-Gly-Asp-containing snake venom peptide, as fibrinogen receptor antagonist. Biochem. Pharmacol. 42: 1209–1219.

    Article  CAS  Google Scholar 

  13. Kang, I. C., K. H. Chung, S. J. Lee, Y. D. Yoon, H. M. Moon, and D. S. Kim (1998) Purification and molecular cloning of a platelet aggregation inhibitor from the snake (Agkistrodon halys brevicaudus) venom. Thromb. Res. 91: 65–73.

    Article  CAS  Google Scholar 

  14. Hong, S. Y., Y. S. Koh, K. H. Chung, and D. S. Kim (2002) Snake venom disintegrin, saxatilin, inhibits platelet aggregation, human umbilical vein endothelial cell proliferation, and smooth muscle cell migration. Thromb. Res. 105: 79–86.

    Article  CAS  Google Scholar 

  15. Hong, S. Y., H. Lee, W. K. You, K. H. Chung, D. S. Kim, and K. Song (2003) The snake venom disintegrin salmosin induces apoptosis by disassembly of focal adhesions in bovine capillary endothelial cells. Biochem. Biophys. Res. Commun. 302: 502–508.

    Article  CAS  Google Scholar 

  16. Min, C. K., J. W. Lee, K. H. Chung, and H. W. Park (2010) Control of specific rate to enhance the production of a novel disintegrin, saxatilin, in recombinant Pichia pastoris. J. Biosci. Bioeng. 110: 314–319.

    Article  CAS  Google Scholar 

  17. Seo, M. J., H. J. Choi, K. H. Chung, and Y. R. Pyun (2011) Production of a platelet aggregation inhibitor, salmosin, by high cell density fermentation of recombinant Escherichia coli. J. Microbiol. Biotechnol. 21: 1053–1056.

    Article  CAS  Google Scholar 

  18. Chiruvolu, V., K. Eskridge, J. Cregg, and M. Meagher (1998) Effects of glycerol concentration and pH on growth of recombinant Pichia pastoris yeast. Appl. Biochem. Biotechnol. 75: 163–173.

    Article  CAS  Google Scholar 

  19. Poutou-Piñales, R. A., H. A. Córdoba-Ruiz, L. A. Barrera-Avellaneda, and J. M. Delgado-Boada (2010) Carbon source feeding strategies for recombinant protein expression in Pichia pastoris and Pichia methanolica. Afr. J. Biotechnol. 9: 2173–2184.

    Google Scholar 

  20. Gurramkonda, C., A. Adnan, T. Gäbel, H. Lunsdorf, A. Ross, S. K. Nemani, S. Swaminathan, N. Khanna, and U. Rinas (2009) Simple high-cell density fed-batch technique for high-level recombinant protein production with Pichia pastoris: Application to intracellular production of Hepatitis B surface antigen. Microb. Cell Fact. 8: 13–20.

    Article  Google Scholar 

  21. Koganesawa, N., T. Aizawa, H. Shimojo, K. Miura, A. Ohnishi, M. Demura, Y. Hayakawa, K. Nitta, and K. Kawano (2002) Expression and purification of a small cytokine growth-blocking peptide from armyworm Pseudaletia separata by an optimized fermentation method using the methylotrophic yeast Pichia pastoris. Protein Expr. Purif. 25: 416–425.

    Article  CAS  Google Scholar 

  22. Imai, T. and T. Ohno (1995) Measurement of yeast intracellular pH by image processing and the change it undergoes during growth phase. J. Biotechnol. 38: 165–172.

    Article  CAS  Google Scholar 

  23. Tanner, R. D., N. T. Souki, and R. M. Russell (1977) A fermentation process for producing both ethanol and lysine-enriched yeast. Biotechnol. Bioeng. 19: 27–42.

    Article  CAS  Google Scholar 

  24. Stratton, J., V. Chiruvolu, and M. Meagher (1998) High cell-density fermentation. Methods Mol. Biol. 103: 107–120.

    CAS  Google Scholar 

  25. Packham, M. A. and J. F. Mustard (1977) Clinical pharmacology of platelets. Blood 50: 555–573.

    CAS  Google Scholar 

  26. Srivastava, K. C. (1984) Aqueous extracts of onion, garlic and ginger inhibit platelet aggregation and alter arachidonic acid metabolism. Biomed. Biochim. Acta 43: 335–346.

    Google Scholar 

  27. Neiva, T. J. C., L. Morais, M. Polack, C. M. O. Simões, and E. A. D’Amico (1999) Effects of catechins on human blood platelet aggregation and lipid peroxidation. Phytother. Res. 13: 597–600.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myung-Ji Seo.

Additional information

Two authors contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seo, MJ., Choi, HJ., Chung, KH. et al. Production of salmosin, a snake venom-derived disintegrin, in recombinant Pichia pastoris using high cell density fed-batch fermentation. Biotechnol Bioproc E 17, 1068–1075 (2012). https://doi.org/10.1007/s12257-011-0647-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-011-0647-9

Keywords

Navigation