Skip to main content
Log in

IL-1β Biological Treatment of Familial Mediterranean Fever

  • Published:
Clinical Reviews in Allergy & Immunology Aims and scope Submit manuscript

Abstract

Familial Mediterranean fever (FMF) is a recessive, autosomal, auto-inflammatory disorder characterised by brief, recurring, self-limited episodes of fever and serositis resulting in abdominal, chest, joint and muscular pain; it is the most common of the periodic hereditary fevers and mostly affects Mediterranean populations. Daily administration of colchicine, a tricyclic alkaloid with anti-microtubule and anti-inflammatory properties, prevents the recurrence of FMF attacks and the development of secondary (AA) amyloidosis, the major long-tem complication of FMF. Colchicine is generally safe and well-tolerated; nevertheless, 5–10 % of FMF patients do not respond to conventional treatment, while another 2–5 % of patients are colchicine-intolerant because of toxicity issues, leading physicians to search for alternative therapeutic strategies. Recent new insights into the mechanisms of auto-inflammation add further proof to the efficacy of IL-1 targeting drugs in colchicine non-responder/intolerant FMF patients. A systematic study of relevant literature through PubMed/Medline was performed in order to identify publications reporting IL-1β biological treatment of FMF. Treatment methods, comorbidities, clinical response and side effects in literature case reports were analysed, as well as recent advances in the pathogenesis of auto-inflammation mechanisms in FMF and the causes of colchicine resistance or toxicity in common clinical practice. The paradigmatic experience of an FMF patient with severe FMF mutations (M694V/M694V) suffering from colchicine toxicity and successfully treated with anakinra is also reported. The present data show that anti-IL-1β biological treatment is actually a therapeutic option for FMF patients unresponsive or intolerant to colchicine or in FMF patients with concomitant vasculitis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ben-Chetrit E, Levy M (1998) Familial Mediterranean fever. Lancet 351:659–664

    Article  PubMed  CAS  Google Scholar 

  2. Soriano A, Manna R (2012) Familial Mediterranean fever. New phenotypes. Autoimmun Rev 12:31–37

    Article  PubMed  Google Scholar 

  3. The French FMF Consortium (1997) A candidate gene for familial Mediterranean fever. Nat Genet 17:25–31

    Article  Google Scholar 

  4. The International FMF Consortium (1997) Ancient missense mutations in a new member of the RoRet gene family are likely to cause familial Mediterranean fever. Cell 90:797–807

    Article  Google Scholar 

  5. Centola M, Wood G, Frucht DM, Galon J, Aringer M, Farrell C et al (2000) The gene for familial Mediterranean fever, MEFV, is expressed in early leukocyte development and is regulated in response to inflammatory mediators. Blood 95:3223–3231

    PubMed  CAS  Google Scholar 

  6. Diaz A, Hu C, Kastner DL, Schaner P, Reginato AM, Richards N et al (2004) Lipopolysaccharide-induced expression of multiple alternatively spliced MEFV transcripts in human synovial fibroblasts: a prominent splice isoform lacks the C-terminal domain that is highly mutated in familial Mediterranean fever. Arthritis Rheum 50:3679–3689

    Article  PubMed  CAS  Google Scholar 

  7. Chae JJ, Aksentijevich I, Kastner DL (2009) Advances in the understanding of familial Mediterranean fever and possibilities for targeted therapy. Br J Haematol 146:467–478

    Article  PubMed  CAS  Google Scholar 

  8. Dinarello CA (2010) IL-1: discoveries, controversies and future directions. Eur J Immunol 40:599–606

    Article  PubMed  CAS  Google Scholar 

  9. Meinzer U, Quartier P, Alexandra JF, Hentgen V, Retornaz F, Konè-Paut I (2011) Interleukin-1 targeting drugs in familial Mediterranean fever: a case-series and a review of the literature. Semin Arthritis Rheum 41:265–271

    Article  PubMed  CAS  Google Scholar 

  10. Cronstein BN, Terkeltaub R (2006) The inflammatory process of gout and its treatment. Arthritis Res Ther 8(Suppl 1):S3

    Article  PubMed  Google Scholar 

  11. Nuki G (2008) Colchicine: a critical appraisal of its mechanism of action and efficacy in crystal-induced inflammation. Curr Rheumatol Rep 10:218–227

    Article  PubMed  CAS  Google Scholar 

  12. Cerquaglia C, Diaco M, Nucera G, La Regina M, Montalto M, Manna R (2005) Pharmacological and clinical basis of treatment of familial Mediterranean fever (FMF) with colchicine or analogues: an update. Curr Drug Targets Inflamm Allergy 4:117–124

    Article  PubMed  CAS  Google Scholar 

  13. Seyahi E, Odogan H, Celik S, Ugurlu S, Yazici H (2006) Treatment options in colchicine resistant familial Mediterranean fever patients: thalidomide and etanercept as adjunctive agents. Clin Exp Rheumatol 24(Suppl 42):S99–S103

    PubMed  CAS  Google Scholar 

  14. Chae JJ, Cho YH, Lee GS, Liu PP, Feigenbaum L, Katz SI, Kastner DL (2011) Gain-of-function pyrin mutations induce NLRP3 protein-independent interleukin-1β activation and severe autoinflammation in mice. Immunity 34:755–768

    Article  PubMed  CAS  Google Scholar 

  15. Economides AN, Carpenter LR, Rudge JS, Wong V, Koehler-Stec EM, Hartnett C et al (2003) Cytokine traps: multi-component, high affinity blockers of cytokine action. Nat Med 9:47–52

    Article  PubMed  CAS  Google Scholar 

  16. McDermott MF, Aksentijevic I, Galon J, McDermott EM, Ogunkolade BW, Centola M et al (1999) Germline mutations in the extracellular domains of the 55 kDa TNF receptor, TNFR1, define a family of dominantly inherited autoinflammatory disorders. Cell 97:133–144

    Article  PubMed  CAS  Google Scholar 

  17. Martinon F, Hofmann K, Tschopp J (2001) The pyrin domain: a possible member of the death domain-fold family implicated in apoptosis and inflammation. Curr Biol 11:R118–R120

    Article  PubMed  CAS  Google Scholar 

  18. Pawlowski K, Pio F, Chu Z, Reed JC, Godzik A (2001) PAAD—a new protein domain associated with apoptosis, cancer and auto-immune diseases. Trends Biochem Sci 26:85–87

    Article  PubMed  CAS  Google Scholar 

  19. Staub E, Dahl E, Rosenthal A (2001) The DAPIN family: a novel domain links apoptotic and interferon response proteins. Trends Biochem Sci 26:83–85

    Article  PubMed  CAS  Google Scholar 

  20. Martinon F, Burns K, Tschopp J (2002) The Inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of pro-IL-beta. Mol Cell 10:417–426

    Article  PubMed  CAS  Google Scholar 

  21. Agostini L, Martinon F, Burns K, McDermott MF, Hawkins PN, Tschopp J (2004) NALP3 Forms an IL-1beta-processing inflammasome with increased activity in Muckle–Wells autoinflammatory disorder. Immunity 20:319–325

    Article  PubMed  CAS  Google Scholar 

  22. Martinon F, Mayor A, Tschopp J (2009) The inflammasomes: guardians of the body. Annu Rev Immunol 27:229–265

    Article  PubMed  CAS  Google Scholar 

  23. Mitroulis I, Skendros P, Ritis K (2010) Targeting IL-1β in disease; the expanding role of NLRP3 inflammasome. Eur J Intern Med 21:157–163

    Article  PubMed  CAS  Google Scholar 

  24. Chae JJ, Komarow HD, Cheng J, Wood G, Raben N, Liu PP, Kastner DL (2003) Targeted disruption of pyrin, the FMF protein, causes heightened sensitivity to endotoxin and a defect in macrophage apoptosis. Mol Cell 11:591–604

    Article  PubMed  CAS  Google Scholar 

  25. Chae JJ, Wood G, Masters SL, Richard K, Park G, Smith BJ, Kastner DL (2006) The B30.2 domain of pyrin, the familial Mediterranean fever protein, interacts directly with caspase-1 to modulate IL-1β production. Prot Natl Acad Sci 103:9982–9987

    Article  CAS  Google Scholar 

  26. Papin S, Cuenin S, Agostini L, Martinon F, Werner S, Beer HD, Grutter C, Tschopp J (2007) The SPRY domain of pyrin, mutated in familial Mediterranean fever patients, interacts with inflammasome components and inhibits pro-IL-1β processing. Cell Death Differ 14:1457–1466

    Article  PubMed  CAS  Google Scholar 

  27. Terkeltaub R (2009) Colchicine update: 2008. Semin Arthritis Rheum 38:411–419

    Article  PubMed  CAS  Google Scholar 

  28. Bhattacharyya B, Panda D, Gupta S, Banerjee M (2008) Anti-mitotic activity of colchicine and the structural basis for its interaction with tubulin. Med Res Rev 28:155–183

    Article  PubMed  CAS  Google Scholar 

  29. Wilson L, Panda D, Jordan MA (1999) Modulation of microtubule dynamics by drugs: a paradigm for the actions of cellular regulators. Cell Struct Funct 24:329–335

    Article  PubMed  CAS  Google Scholar 

  30. Ravelli RB, Gigant B, Curmi PA, Jourdain I, Lachkar S, Sobel A, Knossow M (2004) Insight into tubulin regulation from a complex with colchicine and a stathmin-like domain. Nature 428:198–202

    Article  PubMed  CAS  Google Scholar 

  31. Niel E, Scherrmann JM (2006) Colchicine today. Joint Bone Spine 73:672–678

    Article  PubMed  CAS  Google Scholar 

  32. Goldfinger SE (1972) Colchicine for familial Mediterranean fever. N Engl J Med 287:1302

    PubMed  CAS  Google Scholar 

  33. Dinarello CA, Wolff SM, Goldfinger SE, Dale DC, Alling DW (1974) Colchicine therapy for familial Mediterranean fever. A double-blind trial. N Engl J Med 291:934–937

    Article  PubMed  CAS  Google Scholar 

  34. Zemer D, Revach M, Pras M, Modan B, Schor S, Sohar E, Gafni J (1974) A controlled trial of colchicine in preventing attacks in familial Mediterranean fever. N Engl J Med 291:932–934

    Article  PubMed  CAS  Google Scholar 

  35. Zemer D, Pras M, Sohar E, Modan M, Chabili S, Gafni J (1986) Colchicine in the prevention and treatment of the amyloidosis of familial Mediterranean fever. N Engl J Med 314:1001–1005

    Article  PubMed  CAS  Google Scholar 

  36. Marques-da-Silva C, Chaves MM, Castro NG, Coutinho-Silva R, Guimaraes MZ (2011) Colchicine inhibits cationic dye uptake induced by ATP in P2X2 and P2X7 receptor-expressing cells: implications for its therapeutic action. Br J Pharmacol 163:912–926

    Article  PubMed  CAS  Google Scholar 

  37. Ben-Chetrit E, Ozdogan H (2008) Non-response to colchicine in FMF—definition, causes and suggested solutions. Clin Exp Rheumatol 26:S49–S51

    PubMed  CAS  Google Scholar 

  38. Tang K, Wong LP, Lee EJ, Chong SS, Lee CG (2004) Genomic evidence for recent positive selection at the human MDR1 gene locus. Hum Mol Genet 13:783–797

    Article  PubMed  CAS  Google Scholar 

  39. Sipeky C, Csongei V, Jaromi L, Safrany E, Maasz A, Takacs I et al (2011) Genetic variability and haplotype profile of MDR1 (ABCB1) gene in Roma and Hungarian population samples with a review of the literature. Drug Metab Pharmacokinet 26:206–215

    Article  PubMed  CAS  Google Scholar 

  40. Ben-Chetrit E, Levy M (1998) Does the lack of the p-glycoprotein efflux pump in neutrophils explain the efficacy of colchicine in familial Mediterranean fever and other inflammatory diseases? Med Hypotheses 51:377–380

    Article  PubMed  CAS  Google Scholar 

  41. Lidar M, Scherrmann JM, Shinar Y, Chetrit A, Niel E, Gershoni-Baruch R et al (2004) Colchicine non-responsiveness in familial Mediterranean fever: clinical, genetic, pharmacokinetic, and socioeconomic characterization. Semin Arthritis Rheum 33:273–282

    Article  PubMed  CAS  Google Scholar 

  42. Soylemezoglu O, Arga M, Fidan K, Gonen S, Emeksiz HC, Hasanoglu E, Buyan N (2010) Unresponsiveness to colchicine therapy in patients with familial Mediterranean fever homozygous for the M694V mutation. J Rheumatol 37:182–189

    Article  PubMed  CAS  Google Scholar 

  43. Verrecchia E, Curigliano V, Montalto M, Covino M, Cerquaglia C, Fonnesu C et al (2008) Role of small intestinal bacterial overgrowth in colchicine non-responders. Fifth International Congress on Familial Mediterranean Fever and other Auto-Inflammatory Diseases. Clin Exp Rheumatol 26:171–226

    Google Scholar 

  44. Ben-Chetrit E, Aamar S (2009) About colchicine compliance, resistance and virulence. Clin Exp Rheumatol 27(Suppl 53):S1–S3

    PubMed  CAS  Google Scholar 

  45. Kuijk LM, Govers AM, Hofhuis WJ, Frenkel J (2007) Effective treatment of a colchicine-resistant familial Mediterranean fever patient with anakinra. Ann Rheum Dis 66:1545–1546

    Article  PubMed  Google Scholar 

  46. Hoffman HM, Rosengren S, Boyle DL, Cho JY, Nayar J, Mueller JL et al (2004) Prevention of cold-associated acute inflammation in familial cold auto-inflammatory syndrome by interleukin-1 receptor antagonist. Lancet 364:1779–1785

    Article  PubMed  CAS  Google Scholar 

  47. Mitroulis I, Papadopoulos VP, Kostantinidis T, Ritis K (2008) Anakinra suppresses familial Mediterranean fever crises in a colchicine-resistant patient. Neth J Med 66:489–491

    PubMed  CAS  Google Scholar 

  48. Moser C, Pohl G, Haslinger I, Knapp S, Rowczenio D, Russel T et al (2009) Successful treatment of familial Mediterranean fever with anakinra and outcome after renal transplantation. Nephrol Dial Transplant 24:676–678

    Article  PubMed  CAS  Google Scholar 

  49. Bilginer Y, Ayaz NA, Ozen S (2010) Anti-IL-1 treatment for secondary amyloidosis in an adolescent with FMF and Behçet disease. Clin Rheumatol 29:209–210

    Article  PubMed  Google Scholar 

  50. Hennig S, Bayegan K, Uffmann M, Thalhammer F, Winkler S (2012) Pneumonia in a patient with familial Mediterranean fever successfully treated with anakinra—case report and review. Rheumatol Int 32:1801–1804

    Article  PubMed  Google Scholar 

  51. Petropoulou AD, Robin M, Socié G, Galicier L (2010) Transmission of familial Mediterranean fever mutation after bone marrow transplantation and successful treatment with anakinra. Transplantation 90:102–103

    Article  PubMed  Google Scholar 

  52. Ozen S, Bilginer Y, Ayaz NA, Calguneri M (2011) Anti-interleukin treatment for patients with familial Mediterranean fever resistant to colchicine. J Rheumatol 38:516–518

    Article  PubMed  Google Scholar 

  53. Stankovic Stojanovic K, Delmas Y, Torres PU, Peltier J, Pelle G, Jéru I et al (2012) Dramatic beneficial effect of interleukin-1 inhibitor treatment in patients with familial Mediterranean fever complicated with amyloidosis and renal failure. Nephrol Dial Transplant 27:1898–1901

    Article  PubMed  CAS  Google Scholar 

  54. Verrecchia E, Marinaro A, Sicignano LL, Giovinale M, Soriano A, Landolfi R, Manna R. IL-1β biological treatment of familial Mediterranean fever. In: 8th International Congress on Autoimmunity. Granada, Spain, 9–13 May 2012

  55. Belkhir R, Moulonguet-Doleris L, Hachulla E, Prinseau J, Baglin A, Hanslik T (2007) Treatment of familial Mediterranean fever with anakinra. Ann Intern Med 146:825–826

    Article  PubMed  Google Scholar 

  56. Gattringer R, Lagler H, Gattringer KB, Knapp S, Burgmann H, Winkler S et al (2007) Anakinra in two adolescent female patients suffering from colchicine-resistant familial Mediterranean fever: effective but risky. Eur J Clin Invest 37:912–914

    Article  PubMed  CAS  Google Scholar 

  57. Bresnihan B (2001) The safety and efficacy of interleukin-1 receptor antagonist in the treatment of rheumatoid arthritis. Semin Arthritis Rheum 30:S17–S20

    Article  Google Scholar 

  58. Rubbert-Roth A, Perniok A (2003) Interleukin-1 receptor antagonist anakinra (Kineret) for the treatment of rheumatoid arthritis. Z Rheumatol 62:367–377

    Article  PubMed  Google Scholar 

  59. Salliott C, Dougados M, Gossec L (2009) Risk of serious infections during rituximab, abatacept and anakinra treatments for rheumatoid arthritis: meta-analysis of randomised placebo-controlled trials. Ann Rheum Dis 68:25–32

    Article  Google Scholar 

  60. Lachmann HJ, Kone-Paut I, Kuemmerle-Deschner JB, Leslie KS, Hachulla E, Quartier P et al (2009) Canakinumab in CAPS Study Group. Use of canakinumab in the cryopyrin-associated periodic syndrome. N Engl J Med 360:2416–2425

    Article  PubMed  CAS  Google Scholar 

  61. Mitroulis I, Skendron P, Oikonomou A, Tzioufas AG, Ritis K (2011) The efficacy of canakinumab in the treatment of a patient with familial Mediterranean fever and longstanding destructive arthritis. Ann Rheum Dis 70:1347–1348

    Article  PubMed  Google Scholar 

  62. Hacihamdioglu DO, Ozen S (2012) Canakinumab induces remission in a patient with resistant familial Mediterranean fever. Rheumatology (Oxford) 51:1041

    Article  CAS  Google Scholar 

  63. Roldan R, Ruiz AM, Miranda MD, Collantes E (2008) Anakinra: new therapeutic approach in children with familial Mediterranean fever resistant to colchicine. Joint Bone Spine 75:504–505

    Article  PubMed  Google Scholar 

  64. Calligaris L, Marchetti F, Tommasini A, Ventura A (2008) The efficacy of anakinra in an adolescent with colchicine-resistant familial Mediterranean fever. Eur J Pediatr 167:695–696

    Article  PubMed  Google Scholar 

  65. Alpay N, Sumnu A, Calışkan Y, Yazıcı H, Türkmen A, Gül A (2012) Efficacy of anakinra treatment in a patient with colchicine-resistant familial Mediterranean fever. Rheumatol Int 32:3277–3279

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Craig Peritz for language revision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raffaele Manna.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soriano, A., Verecchia, E., Afeltra, A. et al. IL-1β Biological Treatment of Familial Mediterranean Fever. Clinic Rev Allerg Immunol 45, 117–130 (2013). https://doi.org/10.1007/s12016-013-8358-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12016-013-8358-y

Keywords

Navigation