Skip to main content
Log in

Structural Relaxation of Salmon Gelatin Films in the Glassy State

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Mechanical relaxation of glassy carbohydrates has been reported extensively in the literature; however, little work is available on protein-based systems. This study deals with the structural relaxation of salmon (Salmo salar) gelatin in the glassy state. Skin gelatin was obtained by an acid–alkaline extraction method. Molecular weight (M w) was determined by capillary viscometry. Films prepared by casting (7% w/v) were equilibrated to a moisture content of ~18.4% (db). The glass transition temperature (T g) and enthalpic relaxation were determined by differential scanning calorimetry (DSC). Mechanical properties were assessed using a texture analyzer at constant temperature and moisture content. DSC showed a T g ~34°C, and the selected storage temperature (T a ) was 29°C (T g − T a = 5°C). The films were aged for 0, 4, 8, 16, and 40 h. Viscometry produced values of M w ~90.2 kDa. The stress relaxation was modeled by the Kohlrausch–Wlliams–Watts (KWW) equation, reporting an increase in relaxation time (τ 0) as the ageing time increased (τ 0 ~6.41E + 03 s for 0 h; τ 0 ~9.01E + 05 s for 40 h). β parameter was smaller for the aged films, indicating a spread of relaxation times. The derivative of KWW equation (dφ/dt) indicated a more rapid relaxation in a fresh sample compared with aged films. DSC showed an excess in enthalpy (ΔH) on the aged samples due to the non-equilibrium state of the matrix. ΔH increased with ageing time with values of ΔH ~2.42 J/g for the films aged for 40 h. This work demonstrated molecular relaxation process of gelatin in the glassy state, which must be taken into account if this material is used as a structure forming matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adriazola, K. (2007). Caracterización Reológica y Bioquímica de Gelatina Obtenida de Piel del Salmón Atlántico. Tesis (Magíster en tecnología de los alimentos), Universidad de Santiago de Chile, Santiago.

  • Aguilera, J., & Lillford, P. (2008). Food materials science: principles and practice. New York: Springer.

    Google Scholar 

  • Aguirre, G., (2009). Gelatin structures and their storage stability and performance. Ph.D. thesis, Division of Food Sciences School of Biosciences University of Nottingham, UK.

  • Anderssen, R. S., Husain, S. A., & Loy, R. J. (2004). The Kohlrausch function: properties and applications. Anziam Journal, 45, C800–C816.

    Google Scholar 

  • Arnesen, J. A., & Gildberg, A. (2007). Extraction and characterisation of gelatine from Atlantic salmon (Salmo salar) skin. Bioresource Technology, 98(1), 53–57.

    Article  CAS  Google Scholar 

  • Badii, F., & Howell, N. K. (2006). Fish gelatin: structure, gelling properties and interaction with egg albumen proteins. Food Hydrocolloids, 20(5), 630–640.

    Article  CAS  Google Scholar 

  • Badii, F., MacNaughtan, W., & Farhat, I. A. (2005). Enthalpy relaxation of gelatin in the glassy state. International Journal of Biological Macromolecules, 36(4), 263–269.

    Article  CAS  Google Scholar 

  • Badii, F., Martinet, C., Mitchell, J. R., & Farhat, I. A. (2006). Enthalpy and mechanical relaxation of glassy gelatin films. Food Hydrocolloids, 20(6), 879–884.

    Article  CAS  Google Scholar 

  • Bailey, N. A., Hay, J. N., & Price, D. M. (2001). A study of enthalpic relaxation of poly (ethylene terephthalate) by conventional and modulated temperature DSC. Thermochimica Acta, 367–368, 425–431.

    Article  Google Scholar 

  • Chung, H. J., & Lim, S. T. (2003). Physical aging of glassy and waxy rice starches: effect of ageing temperature on glass transition and enthalpy relaxation. Carbohydrate Polymer, 17(6), 855–861.

    CAS  Google Scholar 

  • Enrione, J. I. (2005). Mechanical stability of intermediate moisture starch–glycerol systems. Ph.D. thesis, Division of Food Sciences, The University of Nottingham.

  • Enrione, J., Osorio, F., Pedreschi, F., & Hill, S. (2010). Prediction of the glass transition temperature on extruded waxy maize and rice starches in presence of glycerol. Food and Bioprocess Technology, 3(6), 791–796.

    Article  CAS  Google Scholar 

  • Eysturskar, J., Haug, I. J., Ulset, A. S., & Draget, K. I. (2009). Mechanical properties of mammalian and fish gelatins based on their weight average molecular weight and molecular weight distribution. Food Hydrocolloids, 23(8), 2315–2321.

    Article  Google Scholar 

  • Gilsenan, P. M., & Ross-Murphy, S. B. (2000). Rheological characterisation of gelatins from mammalian and marine sources. Food Hydrocolloids, 14(3), 191–195.

    Article  CAS  Google Scholar 

  • Gomez-Guillen, M. C., Turnay, J., Fernandez-Diaz, M. D., Ulmo, N., Lizarbe, M. A., & Montero, P. (2002). Structural and physical properties of gelatin extracted from different marine species: a comparative study. Food Hydrocolloids, 16(1), 25–34.

    Article  CAS  Google Scholar 

  • Gómez-Guillén, M. C., Pérez-Mateos, M., Gómez-Estaca, J., López-Caballero, E., Giménez, B., & Montero, P. (2009). Fish gelatin: a renewable material for developing active biodegradable films. Trends in Food Science & Technology, 20(1), 3–16.

    Article  Google Scholar 

  • Gudmundsson, M. (2002). Rheological properties of fish gelatins. Journal of Food Science, 67(6), 2172–2176.

    Article  CAS  Google Scholar 

  • Harding, S. E. (1997). The intrinsic viscosity of biological macromolecules. Progress in measurement, interpretation and application to structure in dilute solution. Progress In Biophysics & Molecular Biology, 68, 207–262.

    Article  CAS  Google Scholar 

  • Harding, S. E. (1998). Dilute solution viscometry of food biopolymers. In S. E. Hill, D. A. Ledward, & J. R. Mitchell (Eds.), Functional properties of food macromolecules. Gaithersburg: Aspen Publishers Inc.

    Google Scholar 

  • Haug, I., Williams, M. A. K., Lundin, L., Smidsrod, O., & Draget, K. I. (2003). Molecular interactions in, and rheological properties of, a mixed biopolymer system undergoing order/disorder. Food Hydrocolloids, 17(4), 439–444.

    Article  CAS  Google Scholar 

  • Joly-Duhamel, C., Hellio, D., & Djabourov, M. (2002). All gelatin networks. 1. Biodiversity and physical chemistry. Langmuir, 18(19), 7208–7217.

    Article  CAS  Google Scholar 

  • Kim, J. Y., Hagiwara, T., Kawai, K., Suzuki, T., & Takai, R. (2003). Kinetic process of enthalpy relaxation of glassy starch and effect of physical aging upon its water vapor permeability property. Carbohydrate Polymers, 53(3), 289–296.

    Article  CAS  Google Scholar 

  • Liu, Y. T., Bhandari, B., & Zhou, W. B. (2006). Glass transition and enthalpy relaxation of amorphous food saccharides: a review. Journal of Agricultural and Food Chemistry, 54(16), 5701–5717.

    Article  CAS  Google Scholar 

  • Lourdin, D., Colonna, P., Brownsey, G. J., Noel, T. R., & Ring, S. G. (2002). Structural relaxation and physical ageing of starchy materials. Carbohydrate Research, 337(9), 827–833.

    Article  CAS  Google Scholar 

  • Mano, J., & Viana, J. (2001). Effects of the strain rate and temperature in stress–strain test: study of the glass transition of a polyamide-6. Polymer Testing, 20, 937–943.

    Article  CAS  Google Scholar 

  • Muyonga, J., Cole, C., & Duodu, K. (2004). Extraction and physico-chemical characterisation of Nile perch (Lates niloticus) skin and bone gelatin. Food Hydrocolloids, 18, 581–592.

    Article  CAS  Google Scholar 

  • Ngai, K. L. (1998). Correlation between the secondary beta-relaxation time at Tg with the Kohlrausch exponent of the primary alpha relaxation or the fragility of glass-forming materials. Physical Review E, 57(6), 7346.

    Article  CAS  Google Scholar 

  • Noel, T. R., Parker, R., Ring, S. M., & Ring, S. G. (1999). A calorimetric study of structural relaxation in a maltose glass. Carbohydrate Research, 319(1–4), 166–171.

    Article  CAS  Google Scholar 

  • Surana, R., Pyne, A., Rani, M., & Suryanarayanan, R. (2005). Measurement of enthalpic relaxation by differential scanning calorimetry, effect of experimental conditions. Thermochimica Acta, 433(1–2), 173–182.

    Article  CAS  Google Scholar 

  • Voon, H. C., Bhat, R. B., Easa, A. M., Liong, M. T. & Karim, A. A. (2010). Effect of addition of halloysite nanoclay and SiO2 nanoparticles on barrier and mechanical properties of bovine gelatin films. Food and Bioprocess Technology. doi:10.1007/s11947-010-0461-y

  • Wulansari, R. (1999). The effects of gelatin inclusion to the starch conversion in extrusion. Ph.D. thesis, University of Nottingham, Nottingham, pp. 83–93.

  • Zhang, Y., Wang, J. L., & Herring, J. H. O. (2007). Characterization of edible film fabricated with channel catfish (Ictalurus punctatus) gelatin extract using selected pretreatment methods. Journal of Food Science, 72, C498–C503.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Professor John Mitchell for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier I. Enrione.

Additional information

Funding Sources

Work supported by FONDECYT 11075053; FONDECYT 11090051; PBCT PSD62 from CONICYT; Innova Chile-Corfo CT11 PUT-20

Rights and permissions

Reprints and permissions

About this article

Cite this article

Enrione, J.I., Sáez, C., López, D. et al. Structural Relaxation of Salmon Gelatin Films in the Glassy State. Food Bioprocess Technol 5, 2446–2453 (2012). https://doi.org/10.1007/s11947-011-0618-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-011-0618-3

Keywords

Navigation