Skip to main content

Advertisement

Log in

Intracranial Cystic Lesions: A Review

  • Neuro-Oncology (LE Abrey, Section Editor)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Cysts and cystic-appearing intracranial lesions are common findings with routine cerebral imaging examination. These lesions often represent a challenge in diagnosis. Intracranial cystic lesions have wide pathologic and imaging spectra, of which some require an aggressive and tailored treatment, whereas many others remain asymptomatic and do not require follow-up or intervention. Intracranial cysts can be divided in non-neoplastic lesions that are often of developmental origin but comprise as well infectious cysts and neoplastic lesions that include benign cysts associated with low-grade tumors and cysts as a component of higher grade neoplasms. Reviewed are the pathology, origin, radiologic appearance, differential diagnosis, and therapeutic aspects of intracranial cystic lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Osborn AG. Miscellaneous tumors, cysts, and metastases. In: Diagnostic neuroradiology. St Louis: Mosby; 1994. p. 631–49.

    Google Scholar 

  2. Katzman GL. Epidermoid cyst. In: Diagnostic imaging: brain. Salt Lake City, UT: Amirsys; 2004. p. I-7–16.

  3. Kachhara R, Bhattacharya RN, Radhakrishnan VV. Epidermoid cyst involving the brain stem. Acta Neurochir (Wien). 2000;142:97.

    Article  CAS  Google Scholar 

  4. McLendon RE, Tien RD. Tumors and tumorlike lesions of maldevelopmental origin. In: Russell and Rubinstein’s pathology of tumors of the nervous system. 6th ed. New York: Oxford University Press; 1998. p. 327–52.

    Google Scholar 

  5. Dutt SN, Mirza S, Chavda SV, Irving RM. Radiologic differentiation of intracranial epidermoids from arachnoid cysts. Otol Neurotol. 2002;23:84–92.

    Article  PubMed  Google Scholar 

  6. Osborn AG, Preece MT. Intracranial cysts: radiologic-pathologic correlation and imaging approach. Radiology. 2006;239:650–64.

    Article  PubMed  Google Scholar 

  7. Schiff D, Hsu L, Wen PY. Uncommon brain tumors, skull base tumors, and intracranial cysts. In: Samuels MA, Feske S, editors. Office practice of neurology, 2nd edition. New York, NY: 2003. p. 1092.

  8. Hamlat A, Hua ZF, Saikali S, et al. Malignant transformation of intra-cranial epithelial cysts: systematic article review. J Neurooncol. 2005;74:187.

    Article  PubMed  Google Scholar 

  9. Katzman GL. Dermoid cyst. In: Diagnostic imaging: brain. Salt Lake City, UT: Amirsys; 2004b. p. I-7–12.

  10. Burger PC, Scheithauer BW, Vogel FS. Intracranial meninges. In: Surgical pathology of the brain and its coverings. 4th edition. Philadelphia, PA: Churchill Livingstone; 2002. p. 89–93.

  11. Stendel R, Pietilä TA, Lehmann K, et al. Ruptured intracranial dermoid cysts. Surg Neurol. 2002;57:391.

    Article  PubMed  Google Scholar 

  12. Canbaz B, Kemerdere R, Ocal E, Tanriverdi T. Intracranial dermoid cyst mimicking a giant thrombosed aneurysm. Neurol India. 2004;52:524.

    PubMed  Google Scholar 

  13. Macdonald RL. Colloid cysts in children. In: Berger MS, Prados MD, editors. Textbook of neuro-oncology. Philadelphia: Elsevier Saunders; 2005. p. 735.

    Chapter  Google Scholar 

  14. Macdonald RL, Humphreys RP, Rutka JT, Kestle JR. Colloid cysts in children. Pediatr Neurosurg. 1994;20:169.

    Article  CAS  PubMed  Google Scholar 

  15. Spears RC. Colloid cyst headache. Curr Pain Headache Rep. 2004;8:297.

    Article  PubMed  Google Scholar 

  16. Osborn AG. Arachnoid cyst. In: Diagnostic imaging: brain. Salt Lake City, UT: Amirsys; 2004; p. I-7–4.

  17. Smith RA, Smith WA. Arachnoid cysts of the middle cranial fossa. Surg Neurol. 1976;5:246.

    CAS  PubMed  Google Scholar 

  18. Al-Holou WN, Terman S, Kilburg C, et al. Prevalence and natural history of arachnoid cysts in adults. J Neurosurg. 2013;118:222.

    Article  PubMed  Google Scholar 

  19. Rao G, Anderson R, Feldstein NA, Brockmeyer DL. Expansion of arachnoid cysts in children: report of two cases and review of the literature. J Neurosurg. 2005;102(3 Suppl):314.

    PubMed  Google Scholar 

  20. Osborn AG. Brain tumors and tumorlike masses: classification and differential diagnosis. In: Diagnostic neuroradiology. St Louis: Mosby; 1994. p. 408–30.

    Google Scholar 

  21. Osborn AG. Choroid plexus cyst. In: Diagnostic imaging: brain. Salt Lake City, Utah: Amirsys; 2004. p. I-7–30.

  22. Osborn AG. Enlarged perivascular spaces. In: Diagnostic imaging: brain. Salt Lake City, UT: Amirsys; 2004. p. I-7–22.

  23. Osborn AG. Acquired metabolic, white matter, and degenerative diseases of the brain. In: Diagnostic neuroradiology. St Louis: Mosby; 1994. p. 751–2.

    Google Scholar 

  24. Osborn AG. Neurenteric cyst. In: Diagnostic imaging: brain. Salt Lake City, UT: Amirsys; 2004. p. I-7–40.

  25. Harris CP, Dias MS, Brockmeyer DL, Townsend JJ, Willis BK, Apfelbaum RI. Neurenteric cysts of the posterior fossa: recognition management, and embryogenesis. Neurosurgery. 1991;29:893–7.

    Article  CAS  PubMed  Google Scholar 

  26. Osborn AG. Rathke cleft cyst. In: Diagnostic imaging: brain. Salt Lake City, UT: Amirsys; 2004f. p. II-2–16.

  27. Byun WM, Kim OL, Kim D. MR imaging findings of Rathke’s cleft cysts: significance of intracystic nodules. Am J Neuroradiol. 2000;21:485–8.

    CAS  PubMed  Google Scholar 

  28. Osborn AG. Porencephalic cyst. In: Diagnostic imaging: brain. Salt Lake City, UT: Amirsys; 2004g. p. I-7–36.

  29. Pawar SJ, Sharma RR, Mahapatra AK, Dev EJ. Giant ependymal cyst of the temporal horn: an unusual presentation—case report with review of the literature. Pediatr Neurosurg. 2001;34:306–10.

    Article  CAS  PubMed  Google Scholar 

  30. Osborn AG. Neuroglial cyst. In: Diagnostic imaging: brain. Salt Lake City, UT: Amirsys; 2004h. p. I-7–20.

  31. Osborn AG. Pineal cyst. In: Diagnostic imaging: brain. Salt Lake City, UT: Amirsys; 2004. p. I-7–26.

  32. Bruce JN, Stein BM. Pineal tumors. Neurosurg Clin N Am. 1990;1:123.

    CAS  PubMed  Google Scholar 

  33. Hellwig D, Bauer BL, List-Hellwig E. Stereotactic endoscopic interventions in cystic brain lesions. Acta Neurochir Suppl. 1995;64:59.

    Article  CAS  PubMed  Google Scholar 

  34. Koelsche C, Wöhrer A, Jeibmann A, et al. Mutant BRAF V600E protein in ganglioglioma is predominantly expressed by neuronal tumor cells. Acta Neuropathol. 2013;125:891.

    Article  CAS  PubMed  Google Scholar 

  35. Schindler G, Capper D, Meyer J, et al. Analysis of BRAF V600E mutation in 1,320 nervous system tumors reveals high mutation frequencies in pleomorphic xanthoastrocytoma, ganglioglioma and extra-cerebellar pilocytic astrocytoma. Acta Neuropathol. 2011;121:397. Authors could discriminate different types of tumors according to their BRAF V600E status, thus, providing a new type of CNS tumor classification useful as a diagnostic tool and as a new lead in future clinical trials assessing targeted therapies in rare tumors sharing biomolecular patterns.

    Article  CAS  PubMed  Google Scholar 

  36. Horbinski C, Kofler J, Yeaney G, et al. Isocitrate dehydrogenase 1 analysis differentiates gangliogliomas from infiltrative gliomas. Brain Pathol. 2011;21:564.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Shih KC, Shastry M, Williams JT, et al. Successful treatment with dabrafenib (GSK2118436) in a patient with ganglioglioma. J Clin Oncol. 2014. This paper displays a clinical application of biomolecular researches recently conducted in the field of rare CNS tumors with the use of dabrafenib in a patient with a ganglioglioma.

  38. Rush S, Foreman N, Liu A. Brainstem ganglioglioma successfully treated with vemurafenib. J Clin Oncol. 2013;31:e159. This paper displays a clinical application of biomolecular researches recently conducted in the field of rare CNS tumors with the use of vemurafenib in ganglioglioma.

    Article  PubMed  Google Scholar 

  39. Hassoun J, Söylemezoglu F, Gambarelli D, et al. Central neurocytoma: a synopsis of clinical and histologic features. Brain Pathol. 1993;3:297.

    Article  CAS  PubMed  Google Scholar 

  40. Kocaoglu M, Ors F, Bulakbasi N, et al. Central neurocytoma: proton MR spectroscopy and diffusion weighted MR imaging findings. Magn Reson Imaging. 2009;27:434.

    Article  PubMed  Google Scholar 

  41. Yang GF, Wu SY, Zhang LJ, et al. Imaging findings of extraventricular neurocytoma: report of 3 cases and review of the literature. Am J Neuroradiol. 2009;30:581.

    Article  PubMed  Google Scholar 

  42. Paek SH, Han JH, Kim JW, et al. Long-term outcome of conventional radiation therapy for central neurocytoma. J Neurooncol. 2008;90:25.

    Article  PubMed  Google Scholar 

  43. Kim CY, Paek SH, Jeong SS, et al. Gamma knife radiosurgery for central neurocytoma: primary and secondary treatment. Cancer. 2007;110:2276.

    Article  PubMed  Google Scholar 

  44. Bertalanffy A, Roessler K, Koperek O, et al. Recurrent central neurocytomas. Cancer. 2005;104:135.

    Article  PubMed  Google Scholar 

  45. Northcott PA, Korshunov A, Witt H, et al. Medulloblastoma comprises four distinct molecular variants. J Clin Oncol. 2011;29:1408. The authors propose an integrative genomics approach to a cohort of 103 medulloblastomas patients to classify these tumors in 4 subgroups characterized by distinct demographics, clinical presentation, transcriptional profiles, genetic abnormalities, and clinical outcome. They showed that MB can be reliably assigned to subgroups through immunochemistry, thereby making MB subclassification widely available. These categories should be taken into account when designing a therapeutic trial in MB.

    Article  PubMed  Google Scholar 

  46. Rutkowski S, von Hoff K, Emser A, et al. Survival and prognostic factors of early childhood medulloblastoma: an international meta-analysis. J Clin Oncol. 2010;28:4961.

    Article  PubMed  Google Scholar 

  47. Ellison DW, Kocak M, Dalton J, et al. Definition of disease-risk stratification groups in childhood medulloblastoma using combined clinical, pathologic, and molecular variables. J Clin Oncol. 2011;29:1400. Since MB are heterogeneous and include relatively good-prognosis tumors, the authors underline the need to integrate in further clinical trial a practical stratification that permits accurate identification of risk and prognosis in order to be able to individualize adjuvant treatment and, thus, to minimize long-term adverse events in a subgroup of survivors. The authors could find 3 risk categories in childhood MB characterized by different molecular biomarker and clinical outcome.

    Article  PubMed Central  PubMed  Google Scholar 

  48. Tabori U, Baskin B, Shago M, et al. Universal poor survival in children with medulloblastoma harboring somatic TP53 mutations. J Clin Oncol. 2010;28:1345.

    Article  CAS  PubMed  Google Scholar 

  49. Korshunov, A, Remke, M, Werft, W, et al. Adult and pediatric medulloblastomas are genetically distinct and require different algorithms for molecular risk stratification. J Clin Oncol. 2010;28(18):3054–60. Since adult MB is distinct from pediatric MB in terms of genomic aberrations and their impact on clinical outcomes, it appears that adult MBs require age-specific risk stratification models. The authors propose a molecular staging system involving 3 distinct risk groups based on DNA copy number, status of 10q, and 17q in adult patients.

  50. Pfaff E, Remke M, Sturm D, et al. TP53 mutation is frequently associated with CTNNB1 mutation or MYCN amplification and is compatible with long-term survival in medulloblastoma. J Clin Oncol. 2010;28:5188.

    Article  CAS  PubMed  Google Scholar 

  51. Cho YJ, Tsherniak A, Tamayo P, et al. Integrative genomic analysis of medulloblastoma identifies a molecular subgroup that drives poor clinical outcome. J Clin Oncol. 2011;29:1424.

    Article  PubMed Central  PubMed  Google Scholar 

  52. Shih DJ, Northcott PA, Remke M, et al. Cytogenetic prognostication within medulloblastoma subgroups. J Clin Oncol. 2014;32:886.

    Article  PubMed  Google Scholar 

  53. Gimi B, Cederberg K, Derinkuyu B, et al. Utility of apparent diffusion coefficient ratios in distinguishing common pediatric cerebellar tumors. Acad Radiol. 2012;19:794.

    Article  PubMed  Google Scholar 

  54. Rumboldt Z, Camacho DL, Lake D, et al. Apparent diffusion coefficients for differentiation of cerebellar tumors in children. Am J Neuroradiol. 2006;27:1362.

    CAS  PubMed  Google Scholar 

  55. Rudin CM, Hann CL, Laterra J, et al. Treatment of medulloblastoma with hedgehog pathway inhibitor GDC-0449. N Engl J Med. 2009;361:1173. The authors illustrate a clinical application of recent biomolecular findings in the fields of MB with the successful use of a hedgehog pathway inhibitor in 1 young adult patient.

    Article  CAS  PubMed  Google Scholar 

  56. Metcalfe C, de Sauvage FJ. Hedgehog fights back: mechanisms of acquired resistance against Smoothened antagonists. Cancer Res. 2011;71:5057. The authors are addressing the issue of acquired resistance to hedgehog pathway inhibitors. Understanding these mechanisms is very important to overcome the current limitation of otherwise very promising agents.

    Article  CAS  PubMed  Google Scholar 

  57. Pérez-Martínez A, Lassaletta A, González-Vicent M, et al. High-dose chemotherapy with autologous stem cell rescue for children with high risk and recurrent medulloblastoma and supratentorial primitive neuroectodermal tumors. J Neurooncol. 2005;71:33.

    Article  PubMed  Google Scholar 

  58. Geyer JR, Sposto R, Jennings M, et al. Multi-agent chemotherapy and deferred radiotherapy in infants with malignant brain tumors: a report from the Children's Cancer Group. J Clin Oncol. 2005;23:7621.

    Article  PubMed  Google Scholar 

  59. Timmermann B, Kortmann RD, Kühl J, et al. Role of radiotherapy in supratentorial primitive neuroectodermal tumor in young children: results of the German HIT-SKK87 and HIT-SKK92 trials. J Clin Oncol. 2006;24:1554.

    Article  PubMed  Google Scholar 

  60. Cohen BH, Zeltzer PM, Boyett JM, et al. Prognostic factors and treatment results for supratentorial primitive neuroectodermal tumors in children using radiation and chemotherapy: a Children’s Cancer Group randomized trial. J Clin Oncol. 1995;13:1687.

    CAS  PubMed  Google Scholar 

  61. Reddy AT, Janss AJ, Phillips PC, et al. Outcome for children with supratentorial primitive neuroectodermal tumors treated with surgery, radiation, and chemotherapy. Cancer. 2000;88:2189.

    Article  CAS  PubMed  Google Scholar 

  62. Ironside JW, Moss TH, Louis DN, et al. Vascular, Melanocytic and Soft Tissue Tumors. In: Diagnostic Pathology of Nervous System Tumors. New York: Churchill Livingstone; 2002. p. 189.

  63. Korshunov A, Sturm D, Ryzhova M, et al. Embryonal tumor with abundant neuropil and true rosettes (ETANTR), ependymoblastoma, and medulloepithelioma share molecular similarity and comprise a single clinicopathological entity. Acta Neuropathol. 2014;128(2):279–89.

  64. Depper MH, Hart BL. Pediatric Brain Tumors. In: Neuroimaging, Orrison WW, editor. Philadelphia, PA: WB Saunders; 2000. p. 1628.

  65. Gerber NU, von Hoff K, von Bueren AO, et al. Outcome of 11 children with ependymoblastoma treated within the prospective HIT-trials between 1991 and 2006. J Neurooncol. 2011;102:459.

    Article  PubMed  Google Scholar 

  66. Woehrer A, Slavc I, Waldhoer T, et al. Incidence of atypical teratoid/rhabdoid tumors in children: a population-based study by the Austrian Brain Tumor Registry, 1996-2006. Cancer. 2010;116:5725.

    Article  PubMed  Google Scholar 

  67. Versteege I, Sévenet N, Lange J, et al. Truncating mutations of hSNF5/INI1 in aggressive paediatric cancer. Nature. 1998;394:203.

    Article  CAS  PubMed  Google Scholar 

  68. Bruggers CS, Bleyl SB, Pysher T, et al. Clinicopathologic comparison of familial vs sporadic atypical teratoid/rhabdoid tumors (AT/RT) of the central nervous system. Pediatr Blood Cancer. 2011;56:1026.

    Article  PubMed Central  PubMed  Google Scholar 

  69. Eaton KW, Tooke LS, Wainwright LM, et al. Spectrum of SMARCB1/INI1 mutations in familial and sporadic rhabdoid tumors. Pediatr Blood Cancer. 2011;56:7.

    Article  PubMed Central  PubMed  Google Scholar 

  70. Rorke LB, Packer RJ, Biegel JA. Central nervous system atypical teratoid/rhabdoid tumors of infancy and childhood: definition of an entity. J Neurosurg. 1996;85:56.

    Article  CAS  PubMed  Google Scholar 

  71. Buscariollo DL, Park HS, Roberts KB, Yu JB. Survival outcomes in atypical teratoid rhabdoid tumor for patients undergoing radiotherapy in a surveillance, epidemiology, and end results analysis. Cancer. 2012;118:4212.

    Article  PubMed  Google Scholar 

  72. Athale UH, Duckworth J, Odame I, Barr R. Childhood atypical teratoid rhabdoid tumor of the central nervous system: a meta-analysis of observational studies. J Pediatr Hematol Oncol. 2009;31:651.

    Article  PubMed  Google Scholar 

  73. Tekautz TM, Fuller CE, Blaney S, et al. Atypical teratoid/rhabdoid tumors (ATRT): improved survival in children 3 years of age and older with radiation therapy and high-dose alkylator-based chemotherapy. J Clin Oncol. 2005;23:1491.

    Article  CAS  PubMed  Google Scholar 

  74. Chi SN, Zimmerman MA, Yao X, et al. Intensive multimodality treatment for children with newly diagnosed CNS atypical teratoid rhabdoid tumor. J Clin Oncol. 2009;27:385.

    Article  PubMed Central  PubMed  Google Scholar 

  75. De Amorim Bernstein K, Sethi R, Trofimov A, et al. Early clinical outcomes using proton radiation for children with central nervous system atypical teratoid rhabdoid tumors. Int J Radiat Oncol Biol Phys. 2013;86:114.

    Article  PubMed  Google Scholar 

  76. Pimentel J, Fernandes A, Távora L, et al. Benign isolated fibrohistiocytic tumor arising from the central nervous system. Considerations about two cases. Clin Neuropathol. 2002;21:93.

    CAS  PubMed  Google Scholar 

  77. Doppenberg EMR, Zacko JC, Chen MY, Broaddus WC. Fibrous tumors. In: Berger MS, Prados MD, editors. Textbook of Neuro-oncology. Philadelphia: Elsevier Saunders; 2005. p. 282.

    Chapter  Google Scholar 

  78. Akimoto J, Takeda Y, Hasue M, et al. Primary meningeal malignant fibrous histiocytoma with cerebrospinal dissemination and pulmonary metastasis. Acta Neurochir (Wien). 1998;140:1191.

    Article  CAS  Google Scholar 

  79. Neumann HP, Eggert HR, Weigel K, et al. Hemangioblastomas of the central nervous system. A 10-year study with special reference to von Hippel-Lindau syndrome. J Neurosurg. 1989;70:24.

    Article  CAS  PubMed  Google Scholar 

  80. Aldape KD, Plate KH. Vortmeyer AO, et al Haemangioblastoma. In: Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, editors. WHO classification of tumours of the nervous system. Lyon: IARC Press; 2007.

    Google Scholar 

  81. Waldmann TA, Levin EH, Baldwin M. The association of polycythemia with a cerebellar hemangioblastoma. The production of an erythropoiesis stimulating factor by the tumor. Am J Med. 1961;31:318.

    Article  CAS  PubMed  Google Scholar 

  82. Kühne M, Sidler D, Hofer S, et al. Challenging manifestations of malignancies. Case 1. Polycythemia and high serum erythropoietin level as a result of hemangioblastoma. J Clin Oncol. 2004;22:3639.

    Article  PubMed  Google Scholar 

  83. Bohling T, Hatva E, Plate KH, et al. Von Hippel-Lindau disease and capillary haemangioblastoma. In: Kleihues P, Cavenee WK, editors. Tumor of the nervous system pathology and genetics. Lyon: IARC Press; 1997. p. 179.

    Google Scholar 

  84. Burger PC, Scheithauer BW. Tumors of the central nervous system. Washington: Armed Forces Institute of Pathology; 1994. p. 239.

    Google Scholar 

  85. Omulecka A, Lach B, Alwasiak J, Gregor A. Immunohistochemical and ultrastructural studies of stromal cells in hemangioblastoma. Folia Neuropathol. 1995;33:41.

    CAS  PubMed  Google Scholar 

  86. Gläsker S, Bender BU, Apel TW, et al. Reconsideration of biallelic inactivation of the VHL tumour suppressor gene in hemangioblastomas of the central nervous system. J Neurol Neurosurg Psychiatry. 2001;70:644.

    Article  PubMed Central  PubMed  Google Scholar 

  87. Gijtenbeek JM, Jacobs B, Sprenger SH, et al. Analysis of von Hippel-Lindau mutations with comparative genomic hybridization in sporadic and hereditary hemangioblastomas: possible genetic heterogeneity. J Neurosurg. 2002;97:977.

    Article  CAS  PubMed  Google Scholar 

  88. Krieg M, Marti HH, Plate KH. Co-expression of erythropoietin and vascular endothelial growth factor in nervous system tumors associated with von Hippel-Lindau tumor suppressor gene loss of function. Blood. 1998;92:3388.

    CAS  PubMed  Google Scholar 

  89. Frantzen C, Kruizinga RC, van Asselt SJ, et al. Pregnancy-related hemangioblastoma progression and complications in von Hippel-Lindau disease. Neurology. 2012;79:793.

    Article  CAS  PubMed  Google Scholar 

  90. Weil RJ, Lonser RR, DeVroom HL, et al. Surgical management of brainstem hemangioblastomas in patients with von Hippel-Lindau disease. J Neurosurg. 2003;98:95.

    Article  PubMed  Google Scholar 

  91. Eskridge JM, McAuliffe W, Harris B, et al. Preoperative endovascular embolization of craniospinal hemangioblastomas. Am J Neuroradiol. 1996;17:525.

    CAS  PubMed  Google Scholar 

  92. Moss JM, Choi CY, Adler Jr JR, et al. Stereotactic radiosurgical treatment of cranial and spinal hemangioblastomas. Neurosurgery. 2009;65:79.

    Article  PubMed  Google Scholar 

  93. Koh ES, Nichol A, Millar BA, et al. Role of fractionated external beam radiotherapy in hemangioblastoma of the central nervous system. Int J Radiat Oncol Biol Phys. 2007;69:1521.

    Article  PubMed  Google Scholar 

  94. Forsyth PA, Shaw EG, Scheithauer BW, et al. Supratentorial pilocytic astrocytomas. A clinicopathologic, prognostic, and flow cytometric study of 51 patients. Cancer. 1993;72:1335.

    Article  CAS  PubMed  Google Scholar 

  95. Jones DT, Kocialkowski S, Liu L, et al. Tandem duplication producing a novel oncogenic BRAF fusion gene defines the majority of pilocytic astrocytomas. Cancer Res. 2008;68:8673.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  96. Armstrong GT, Conklin HM, Huang S, et al. Survival and long-term health and cognitive outcomes after low-grade glioma. Neuro Oncol. 2011;13:223.

    Article  PubMed Central  PubMed  Google Scholar 

  97. Ellis JA, Waziri A, Balmaceda C, et al. Rapid recurrence and malignant transformation of pilocytic astrocytoma in adult patients. J Neurooncol. 2009;95:377.

    Article  PubMed  Google Scholar 

  98. Fangusaro J, Gururangan S, Poussaint TY, et al. Bevacizumab (BVZ)-associated toxicities in children with recurrent central nervous system tumors treated with BVZ and irinotecan (CPT-11): a Pediatric Brain Tumor Consortium Study (PBTC-022). Cancer. 2013;119:4180.

    Article  CAS  PubMed  Google Scholar 

  99. Maldaun MV, Suki D, Lang FF, Prabhu S, Shi W, Fuller GN, et al. Cystic glioblastoma multi-form: survival outcomes in 22 cases. J Neurosurg. 2004;100(1):61–7.

    Article  PubMed  Google Scholar 

  100. Kaur G, Bloch O, Jian BJ, Kaur R, Sughrue ME, Aghi MK, et al. A critical evaluation of cystic features in primary glioblastoma as a prognostic factor for survival. J Neurosurg. 2011;115(4):754–9.

    Article  PubMed  Google Scholar 

  101. Utsuki S, Oka H, Suzuki S, Shimizu S, Tanizaki Y, Kondo K, et al. Pathological and clinical features of cystic and noncystic glioblastomas. Brain Tumor Pathol. 2006;23(1):29–34.

    Article  PubMed  Google Scholar 

  102. Adn M, Saikali S, Guegan Y, Hamlat A. Pathophysiology of glioma cyst formation. Med Hypotheses. 2006;66(4):801–4.

    Article  CAS  PubMed  Google Scholar 

  103. Reddy JS, Mishra AM, Behari S, et al. The role of diffusion-weighted imaging in the differential diagnosis of intracranial cystic mass lesions: a report of 147 lesions. Surg Neurol. 2006;66(3):246–50.

    Article  PubMed  Google Scholar 

  104. Mishra AM, Gupta RK, Jaggi RS, et al. Role of diffusion-weighted imaging and in vivo proton magnetic resonance spectroscopy in the differential diagnosis of ring-enhancing intracranial cystic mass lesions. J Comp Assist Tomogr. 2004;28:540–7.

    Article  Google Scholar 

  105. Ebinu JO, Lwu S, Monsalves E, Arayee M, Chung C, Laperriere NJ, et al. Gamma knife radiosurgery for the treatment of cystic cerebral metastases. Int J Radiat Oncol Biol Phys. 2013;85(3):667–71.

    Article  PubMed  Google Scholar 

  106. Higuchi F, Kawamoto S, Abe Y, Kim P, Ueki K. Effectiveness of a 1-day aspiration plus Gamma Knife surgery procedure for metastatic brain tumor with a cystic component. J Neurosurg. 2012;117(Suppl):17–22.

    PubMed  Google Scholar 

  107. Liu X, Yu Q, Zhang Z, Zhang Y, Li Y, Liu D, et al. Same-day stereotactic aspiration and Gamma Knife surgery for cystic intracranial tumors. J Neurosurg. 2012;117(Suppl):45–8.

    PubMed  Google Scholar 

  108. Yamanaka Y, Shuto T, Kato Y, Okada T, Inomori S, Fujino H, et al. Ommaya reservoir placement followed by Gamma Knife surgery for large cystic metastatic brain tumors. J Neurosurg. 2006;105(Suppl):79–81.

    PubMed  Google Scholar 

  109. Salzman KL. Parasites, miscellaneous. In: Diagnostic imaging: brain. Salt Lake City, Utah: Amirsys; 2004; I-8–53.

  110. Osborn AG. Infections of the brain and its linings. In: Diagnostic neuroradiology. St Louis, MO: Mosby; 1994inf. p. 709–13.

  111. Garcia HH, Gonzalez AE, Evans CA, Gilman RH. Taenia solium cysticercosis. Lancet. 2003;362(9383):547–54.

    Article  PubMed Central  PubMed  Google Scholar 

  112. Nash TE, Pretell EJ, Lescano AG, et al. Perilesional brain oedema and seizure activity in patients with calcified neurocysticercosis: a prospective cohort and nested case-control study. Lancet Neurol. 2008;7:1099.

    Article  PubMed Central  PubMed  Google Scholar 

  113. Baird RA, Wiebe S, Zunt JR, et al. Evidence-based guideline: treatment of parenchymal neurocysticercosis: report of the Guideline Development Subcommittee of the American Academy of Neurology. Neurology. 2013;80:1424. This is a report of the Guideline Development Subcommittee of the American Academy of Neurology proposing evidence-based guideline for the medical treatment of neurocysticercosis. Respective roles of cysticidal drugs and steroids are detailed based on the data of the literature.

    Article  PubMed Central  PubMed  Google Scholar 

  114. Rangel-Castilla L, Serpa JA, Gopinath SP, et al. Contemporary neurosurgical approaches to neurocysticercosis. Am J Trop Med Hyg. 2009;80:373.

    PubMed  Google Scholar 

  115. Ellison D, Love S, Chimelli L, Harding BN, Lowe J, Vinters H. Parasitic infections. In: Neuropathology: a reference text of CNS pathology. 2nd ed. Philadelphia: Mosby; 2004. p. 379–81.

    Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Marc C. Chamberlain declares that he has no conflict of interest. Sophie Taillibert has received board membership payments from Roche and consultancy fees and paid travel accommodations from Roche and Mundipharma. Emilie Le Rhun has received consultancy fees and paid travel accommodations from Roche and Mundipharma.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc C. Chamberlain.

Additional information

This article is part of the Topical Collection on Neuro-Oncology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taillibert, S., Le Rhun, E. & Chamberlain, M.C. Intracranial Cystic Lesions: A Review. Curr Neurol Neurosci Rep 14, 481 (2014). https://doi.org/10.1007/s11910-014-0481-5

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11910-014-0481-5

Keywords

Navigation