Skip to main content
Log in

Targeting mTOR in cancer: renal cell is just a beginning

  • Review
  • Published:
Targeted Oncology Aims and scope Submit manuscript

Abstract

The mammalian target of rapamycin (mTOR) is a key regulator of cell growth and proliferation. The mTOR pathway integrates signals from nutrients, energy status and extracellular growth factors to regulate many processes, including cell cycle progression, angiogenesis, ribosome biogenesis, and metabolism. Growth factors such as insulin-like growth factor, epidermal growth factor and vascular endothelial growth factor bind to and activate their corresponding tyrosine kinase receptors (TKR) located on the cell surface, to induce signal transduction to the nucleus. TKR induces intracellular signaling cascades via the phosphorylation of the phosphatidylinositol 3-kinase, which in turn phosphorylates Akt. Of particular interest among the Akt targets is the downstream effect on mTOR, which is responsible for protein synthesis of molecules necessary for nutrient uptake, angiogenesis, ribosome biogenesis, cell growth, and proliferation. Growing evidence suggests that mTOR deregulation is associated with many types of human cancer. The importance of mTOR signaling in tumor biology is now widely accepted. Consequently, a number of agents that selectively target mTOR are being developed for cancer treatment and currently temsirolimus and everolimus are approved for the treatment of advanced renal cell cancer. However, the therapeutic benefit of mTOR inhibitors in the clinic may vary depending on the activation state of the different components of the mTOR pathway in a given case. Therefore it seems clear that predicting sensitivity to rapamycins in different cancers will likely require assessing multiple molecular markers related to mTOR signaling pathway, such as phosphatase and tensin homolog (PTEN), phospho-Akt, cytoplasmic p27, and phospho-S6 kinase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Vezina C, Kudelski A, Sehgal SN (1975) Rapamycin (AY-22, 989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle. J Antibiot (Tokyo) 28:721–726

    CAS  Google Scholar 

  2. Martel RR, Klicius J, Galet S (1977) Inhibition of the immune response by rapamycin, a new antifungal antibiotic. Can J Physiol Pharmacol 55:48–51

    CAS  PubMed  Google Scholar 

  3. Kino T, Hatanaka H, Hashimoto M, Nishiyama M, Goto T, Okuhara M et al (1987) FK-506, a novel immunosuppressant isolated from a Streptomyces. I. Fermentation, isolation, and physico-chemical and biological characteristics. J Antibiot (Tokyo) 40:1249–1255

    CAS  Google Scholar 

  4. Wullschleger S, Loewith R, Hall MN (2006) TOR signaling in growth and metabolism. Cell 124:471–484

    Article  CAS  PubMed  Google Scholar 

  5. Nave BT, Ouwens M, Withers DJ, Alessi DR, Shepherd PR (1999) Mammalian target of rapamycin is a direct target for protein kinase B: identification of a convergence point for opposing effects of insulin and amino-acid deficiency on protein translation. Biochem J 344:427–431

    Article  CAS  PubMed  Google Scholar 

  6. Kwiatkowski DJ (2003) Rhebbing up mTOR: new insights on TSC1 and TSC2, and the pathogenesis of tuberous sclerosis. Cancer Biol Ther 2:471–476

    CAS  PubMed  Google Scholar 

  7. Kodaki T, Woscholski R, Hallberg B, Rodriguez-Viciana P, Downward J, Parker PJ (1994) The activation of phosphatidylinositol 3-kinase by Ras. Curr Biol 4:798–806

    Article  CAS  PubMed  Google Scholar 

  8. Sansal I, Sellers WR (2004) The biology and clinical relevance of the PTEN tumor suppressor pathway. J Clin Oncol 22:2954–2963

    Article  CAS  PubMed  Google Scholar 

  9. Shi W, Zhang X, Pintilie M, Ma N, Miller N, Banerjee D et al (2003) Dysregulated PTENPKB and negative receptor status in human breast cancer. Int J Cancer 104:195–203

    Article  CAS  PubMed  Google Scholar 

  10. Nassif NT, Lobo GP, Wu X, Henderson CJ, Morrison CD, Eng C et al (2004) PTEN mutations are common in sporadic microsatellite stable colorectal cancer. Oncogene 23:617–628

    Article  CAS  PubMed  Google Scholar 

  11. Fei G, Ebert MP, Mawron C, Leodolter A, Schmidt N, Dietzmann K, Malfertheiner P (2002) Reduced PTEN expression in gastric cancer and in the gastric mucosa of gastric cancer relatives. Eur J Gastroenterol Hepatol 14:297–303

    Article  PubMed  Google Scholar 

  12. Nobukuni T, Joaquin M, Roccio M, Dann SG, Kim SY, Gulati P et al (2005) Amino acids mediate mTOR/raptor signaling through activation of class 3 phosphatidylinositol 3OH-kinase. Proc Natl Acad Sci USA 102:14238–14243

    Article  CAS  PubMed  Google Scholar 

  13. Edinger AL, Thompson CB (2002) Akt maintains cell size and survival by increasing mTOR-dependent nutrient uptake. Mol Biol Cell 13:2276–2288

    Article  CAS  PubMed  Google Scholar 

  14. Tokunaga C, Yoshino K, Yonezawa K (2004) mTOR integrates amino acid- and energy sensing pathways. Biochem Biophys Res Commun 313:443–446

    Article  CAS  PubMed  Google Scholar 

  15. Burnett PE, Barrow RK, Cohen NA, Snyder SH, Sabatini DM (1998) RAFT1 phosphorylation of the translational regulators p70 S6 kinase and 4E-BP1. Proc Natl Acad Sci USA 95:1432–1437

    Article  CAS  PubMed  Google Scholar 

  16. Bjornsti MA, Houghton PJ (2004) The TOR pathway: a target for cancer therapy. Nat Rev Cancer 4:335–348

    Article  CAS  PubMed  Google Scholar 

  17. Dufner A, Andjelkovic M, Burgering BM, Hemmings BA, Thomas G (1999) Protein kinase B localization and activation differentially affect S6 kinase 1 activity and eukaryotic translation initiation factor 4E-binding protein 1 phosphorylation. Mol Cell Biol 19:4525–4534

    CAS  PubMed  Google Scholar 

  18. Peterson RT, Desai BN, Hardwick JS, Schreiber SL (1999) Protein phosphatase 2A interacts with the 70-kDa S6 kinase and is activated by inhibition of FKBP12-rapamycinassociated protein. Proc Natl Acad Sci USA 96:4438–4442

    Article  CAS  PubMed  Google Scholar 

  19. Rosenwald IB, Kaspar R, Rousseau D, Gehrke L, Leboulch P, Chen JJ et al (1995) Eukaryotic translation initiation factor 4E regulates expression of cyclin D1 at transcriptional and post-transcriptional levels. J Biol Chem 270:21176–21180

    Article  CAS  PubMed  Google Scholar 

  20. Fingar DC, Richardson CJ, Tee AR, Cheatham L, Tsou C, Blenis J (2004) mTOR controls cell cycle progression through its cell growth effectors S6K1 and 4E-BP1/eukaryotic translation initiation factor 4E. Mol Cell Biol 24:200–216

    Article  CAS  PubMed  Google Scholar 

  21. Jiang BH, Jiang GQ, Zheng JZ, Lu ZM, Hunter T, Vogt PK (2001) Phosphatidylinositol 3- kinase signaling controls levels of hypoxia-inducible factor. Cell Growth Differ 12:363–369

    CAS  PubMed  Google Scholar 

  22. Hudson CC, Liu M, Chiang GG, Otterness DM, Loomis DC, Kaper F et al (2002) Regulation of hypoxia-inducible factor 1alpha expression and function by the mammalian target of rapamycin. Mol Cell Biol 22:7004–7014

    Article  CAS  PubMed  Google Scholar 

  23. Clemens MJ (2004) Targets and mechanisms for the regulation of translation in malignant transformation. Oncogene 23:3180–3188

    Article  CAS  PubMed  Google Scholar 

  24. Braunstein S, Karpisheva K, Pola C, Goldberg J, Hochman T, Yee H et al (2007) A hypoxia-controlled cap-dependent to cap-independent translation switch in breast cancer. Mol Cell 28:501–512

    Article  CAS  PubMed  Google Scholar 

  25. Jefferies HB, Fumagalli S, Dennis PB, Reinhard C, Pearson RB, Thomas G (1997) Rapamycin suppresses 5_TOP mRNA translation through inhibition of p70s6k. EMBO J 16:3693–3704

    Article  CAS  PubMed  Google Scholar 

  26. Dufner A, Thomas G (1999) Ribosomal S6 kinase signaling and the control of translation. Exp Cell Res 253:100–109

    Article  CAS  PubMed  Google Scholar 

  27. Holland EC, Sonenberg N, Pandolfi PP, Thomas G (2004) Signaling control of mRNA translation in cancer pathogenesis. Oncogene 23:3138–3144

    Article  CAS  PubMed  Google Scholar 

  28. Rohde J, Heitman J, Cardenas ME (2001) The TOR kinases link nutrient sensing to cell growth. J Biol Chem 276:9583–9586

    Article  CAS  PubMed  Google Scholar 

  29. Taha C, Liu Z, Jin J, Al-Hasani H, Sonenberg N, Klip A (1999) Opposite translational control of GLUT1 and GLUT4 glucose transporter mRNAs in response to insulin. Role of mammalian target of rapamycin, protein kinase b, and phosphatidylinositol 3-kinase in GLUT1 mRNA translation. J Biol Chem 274:33085–33091

    Article  CAS  PubMed  Google Scholar 

  30. Kim DH, Sarbassov DD, Ali SM, King JE, Latek RR, Erdjument-Bromage H et al (2002) mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110:163–175

    Article  CAS  PubMed  Google Scholar 

  31. Zick Y (2005) Ser/Thr phosphorylation of IRS proteins: a molecular basis for insulin resistance. Sci STKE 2005: pe4

  32. O’Reilly KE, Rojo F, She QB, Solit D, Mills GB, Smith D et al (2006) mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res 66:1500–1508

    Article  PubMed  Google Scholar 

  33. Bosotti R, Isacchi A, Sonnhammer EL (2000) FAT: a novel domain in PIK-related kinases. Trends Biochem Sci 25:225–227

    Article  CAS  PubMed  Google Scholar 

  34. Dames SA, Mulet JM, Rathgeb-Szabo K, Hall MN, Grzesiek S (2005) The solution structure of the FATC domain of the protein kinase target of rapamycin suggests a role for redox-dependent structural and cellular stability. J Biol Chem 280:20558–20564

    Article  CAS  PubMed  Google Scholar 

  35. Hara K, Maruki Y, Long X, Yoshino K, Oshiro N, Hidayat S, Tokunaga C et al (2002) Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell 110:177–189

    Article  CAS  PubMed  Google Scholar 

  36. Kim DH, Sarbassov DD, Ali SM, King JE, Latek RR, Erdjument-Bromage H et al (2002) mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110:163–175

    Article  CAS  PubMed  Google Scholar 

  37. Schalm SS, Fingar DC, Sabatini DM, Blenis J (2002) TOS motif-mediated raptor binding regulates 4E-BP1 multisite phosphorylation and function. Curr Biol 13:797–806

    Article  Google Scholar 

  38. Oshiro N, Yoshino K, Hidayat S, Tokunaga C, Hara K, Eguchi S et al (2004) Dissociation of raptor from mTOR is a mechanism of rapamycin-induced inhibition of mTOR function. Genes Cells 9:359–366

    Article  CAS  PubMed  Google Scholar 

  39. Huang S, Bjornsti MA, Houghton PJ (2003) Rapamycins: mechanism of action and cellular resistance. Cancer Biol Ther 2:222–232

    CAS  PubMed  Google Scholar 

  40. Sarbassov DD, Ali SM, Kim DH, Guertin DA, Latek RR, Erdjument-Bromage H et al (2004) Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol 14:1296–1302

    Article  CAS  PubMed  Google Scholar 

  41. Jacinto E, Loewith R, Schmidt A, Lin S, Ruegg MA, Hall A et al (2004) Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol 6:1122–1131

    Article  CAS  PubMed  Google Scholar 

  42. Sarbassov DD, Guertin DA, Ali SM, Sabatini DM (2005) Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307:1098–1101

    Article  CAS  PubMed  Google Scholar 

  43. Birkenkamp KU, Coffer PJ (2003) Regulation of cell survival and proliferation by the FOXO (Forkhead box, class O) subfamily of Forkhead transcription factors. Biochem Soc Trans 31:292–297

    Article  CAS  PubMed  Google Scholar 

  44. Loewith R, Jacinto E, Wullschleger S, Lorberg A, Crespo JL, Bonenfant D et al (2002) Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol Cell 10:457–468

    Article  CAS  PubMed  Google Scholar 

  45. Samuels Y, Ericson K (2006) Oncogenic PI3K and its role in cancer. Curr Opin Oncol 18:77–82

    Article  CAS  PubMed  Google Scholar 

  46. Hidalgo M, Rowinsky EK (2000) The rapamycin-sensitive signal transduction pathway as a target for cancer therapy. Oncogene 19:6680–6686

    Article  CAS  PubMed  Google Scholar 

  47. Faivre S, Kroemer G, Raymond E (2006) Current development of mTOR inhibitors as anticancer agents. Nat Rev Drug Discov 5:671–688

    Article  CAS  PubMed  Google Scholar 

  48. Samuels Y, Wang Z, Bardelli A, Silliman N, Ptak J, Szabo S et al (2004) High frequency of mutations of the PIK3CA gene in human cancers. Science 304:554

    Article  CAS  PubMed  Google Scholar 

  49. Luo J, Manning BD, Cantley LC (2003) Targeting the PI3K–Akt pathway in human cancer: rationale and promise. Cancer Cell 4:257–262

    Article  CAS  PubMed  Google Scholar 

  50. Philp AJ, Campbell IG, Leet C, Vincan E, Rockman SP, Whitehead RH et al (2001) The phosphatidylinositol 3′-kinase p85alpha gene is an oncogene in human ovarian and colon tumors. Cancer Res 61:7426–7429

    CAS  PubMed  Google Scholar 

  51. Nicholson KM, Anderson NG (2002) The protein kinase B/Akt signaling pathway in human malignancy. Cell Signal 14:381–395

    Article  CAS  PubMed  Google Scholar 

  52. Chalhoub N, Baker SJ (2009) PTEN and the PI3-kinase pathway in cancer. Ann Rev Pathol 4:127–150

    Article  CAS  Google Scholar 

  53. Mills GB, Lu Y, Kohn EC (2001) Linking molecular therapeutics to molecular diagnostics: inhibition of the FRAP/RAFT/TOR component of the PI3K pathway preferentially blocks PTEN mutant cells in vitro and in vivo. Proc Natl Acad Sci USA 98:10031–10033

    Article  CAS  PubMed  Google Scholar 

  54. Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang SI et al (1997) PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 275:1943–1947

    Article  CAS  PubMed  Google Scholar 

  55. Pandolfi PP (2008) P-TEN exciting years: from the cytosol to the nucleus and back to keep cancer at bay. Oncogene 27:5386

    Article  CAS  PubMed  Google Scholar 

  56. Hudson CC, Liu M, Chiang GG, Otterness DM, Loomis DC, Kaper F et al (2002) Regulation of hypoxia-inducible factor 1alpha expression and function by the mammalian target of rapamycin. Mol Cell Biol 22:7004–7014

    Article  CAS  PubMed  Google Scholar 

  57. Peponi E, Drakos E, Reyes GG, Leventaki V, Rassidakis GZ, Medeiros LJ (2006) Activation of mammalian target of rapamycin signaling promotoes cell cycle progression and protects cells from apoptosis in mantle cell lymphoma. Am J Pathol 169:2171–2180

    Article  CAS  PubMed  Google Scholar 

  58. Bjornsti MA, Houghton PJ (2004) The TOR pathway: a target for cancer therapy. Nat Rev Cancer 4:335–348

    Article  CAS  PubMed  Google Scholar 

  59. Hedberg Y, Ljungberg B, Roos G, Landberg G (2003) Expression of cyclin D1, D3, E, and p27 in human renal cell carcinoma analysed by tissue microarray. Br J Cancer 88:1417–1723

    Article  CAS  PubMed  Google Scholar 

  60. Beuvink I, Boulay A, Fumagalli S, Zibermann F, Ruetz S, O’Reilly T et al (2005) The mTOR inhibitor RAD001 sensitizes tumor cells to DNA-damaged induced apoptosis through inhibition of p21 translation. Cell 120:747–759

    Article  CAS  PubMed  Google Scholar 

  61. Gozuacik D, Kimchi A (2004) Autophagy as a cell death and tumor suppressor mechanism. Oncogene 23:2891–2906

    Article  CAS  PubMed  Google Scholar 

  62. Reggiori F, Klionsky DJ (2005) Autophagosomes: biogenesis from scratch? Curr Opin Cell Biol 17:415–422

    Article  CAS  PubMed  Google Scholar 

  63. Paglin S, Lee NY, Nakar C, Fitzgerald M, Plotkin J, Deuel B et al (2005) Rapamycin sensitive pathway regulates mitochondrial membrane potential, autophagy, and survival in irradiated MCF-7 cells. Cancer Res 65:11061–11070

    Article  CAS  PubMed  Google Scholar 

  64. Kim KW, Mutter RW, Cao C, Albert JM, Freeman M, Hallahan DE et al (2006) Autophagy for cancer therapy through inhibition of pro-apoptotic proteins and mammalian target of rapamycin signaling. J Biol Chem 281:36883–36890

    Article  CAS  PubMed  Google Scholar 

  65. Del Bufalo D, Ciuffreda L, Trisciuoglio D, Desideri M, Cognetti F, Zupi G et al (2006) Antiangiogenic potential of the mammalian target of rapamycin inhibitor temsirolimus. Cancer Res 66:5549–5554

    Article  PubMed  Google Scholar 

  66. Guba M, von Breitenbuch P, Steinbauer M, Koehl G, Flegel S, Hornung M et al (2002) Rapamycin inhibits primary and metastatic tumor growth by antiangiogenesis: involvement of vascular endothelial growth factor. Nat Med 8:128–135

    Article  CAS  PubMed  Google Scholar 

  67. Wan X, Harkavy B, Shen N, Grohar P, Helman LJ (2007) Rapamycin induces feedback activation of Akt signaling through an IGF-1R-dependent mechanism. Oncogene 26:1932–1940

    Article  CAS  PubMed  Google Scholar 

  68. Oliveira JC, Souza KK, Dias MM, Faria MC, Ropelle ER, Flores MB et al (2008) Antineoplastic effect of rapamycin is potentiated by inhibition of IRS-1 signaling in prostate cancer cells xenografts. J Cancer Res Clin Oncol 134:833–839

    Article  CAS  PubMed  Google Scholar 

  69. Atzori F, Traina TA, Ionta MT, Massidda B (2009) Targeting insulin-like growth factor type 1 receptor in cancer therapy. Target Oncol 4:255–266

    Article  PubMed  Google Scholar 

  70. Garcia JA, Danielpour D (2008) Mammalian target of rapamycin inhibition as a therapeutic strategy in the management of urologic malignancies. Mol Cancer Ther 7:1347–54

    Article  CAS  PubMed  Google Scholar 

  71. Iliopoulos O, Levy AP, Jiang C, Kaelin WG Jr, Goldberg MA (1996) Negative regulation of hypoxia-inducible genes by the von Hippel-Lindau protein. Proc Natl Acad Sci USA 93:10595–10599

    Article  CAS  PubMed  Google Scholar 

  72. Maynard MA, Ohh M (2004) Von Hippel-Lindau tumor suppressor protein and hypoxia-inducible factor in kidney cancer. Am J Nephrol 24:1–13

    Article  CAS  PubMed  Google Scholar 

  73. Webb JD, Coleman ML, Pugh CW (2009) Hypoxia, hypoxia-inducible factors (HIF), HIF hydroxylases and oxygen sensing. Cell Mol Life Sci 66:3539–3554

    Article  CAS  PubMed  Google Scholar 

  74. Hu CJ, Iyer S, Sataur A, LA Covello C, Simon MC (2006) Differential regulation of the transcriptional activities of hypoxia-inducible factor 1 alpha (HIF-1α) and HIF-2α in stem cells. Mol Cell Biol 26:3514–3526

    Article  CAS  PubMed  Google Scholar 

  75. Semenza GL (2009) Regulation of oxygen homeostasis by hypoxia inducible factor 1. Physiology (Bethesda) 24:97–106

    CAS  Google Scholar 

  76. Chen L, Endler A, Shibasaki F (2009) Hypoxia and angiogenesis: regulation of hypoxia-inducible factors via novel binding factors 41:849–857

    CAS  Google Scholar 

  77. Lidgren A, Hedberg Y, Grankvist K, Rasmuson T, Vasko J, Ljungberg B (2005) the expression of hypoxia-inducible factor 1alpha is a favorable independent prognostic factor in renal cell carcinoma. Clin Cancer Res 11:1129–1135

    CAS  PubMed  Google Scholar 

  78. Lidgren A, Hedberg Y, Grankvist K, Rasmuson T, Bergh A, Ljungberg B (2006) Hypoxia inducible factor 1alpha expression in renal cell carcinoma analyzed by tissue microarray. Eur Urol 60:1272–1277

    Article  Google Scholar 

  79. Klatte T, Seligson DB, Riggs SB, Leppert JT, Berkman MK, Kleid MD et al (2007) Hypoxia-inducible factor 1 alpha in clear cell renal cell carcinoma. Clin Cancer Res 13:7388–7393

    Article  CAS  PubMed  Google Scholar 

  80. Figlin RA, de Souza P, McDermott D, Dutcher JP, Berkenblit A, Thiele A et al (2009) Analysis of PTEN and HIF-1alpha and correlation with efficacy in patients with advanced renal cell carcinoma treated with temsirolimus versus interferon-alpha. Cancer 115:3651–3660

    Article  CAS  PubMed  Google Scholar 

  81. Thomas GV, Tran C, Mellinghoff IK, Welsbie DS, Chan E, Fueger B et al (2006) Hypoxia inducible factor determines sensitivity to inhibitors of mTOR in kidney cancer. Nat Med 12:122–127

    Article  CAS  PubMed  Google Scholar 

  82. Hudes G, Carducci M, Tomczak P, Dutcher J, Figlin R, Kapoor A et al (2007) Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. N Engl J Med 356:2271–2281

    Article  CAS  PubMed  Google Scholar 

  83. Motzer RJ, Escudier B, Oudard S, Hutson TE, Porta C, Bracarda S et al (2008) Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial. Lancet 372:449–456

    Article  CAS  PubMed  Google Scholar 

  84. Neshat MS, Mellinghoff IK, Tran C, Stiles B, Thomas G, Petersen R, Frost P et al (2001) Enhanced sensitivity of PTEN-deficient tumors to inhibition of FRAP/mTOR. Proc Natl Acad Sci USA 98:10314–10319

    Article  CAS  PubMed  Google Scholar 

  85. Dutcher JP, de Souza P, McDermott D, Figlin RA, Berkenblit A, Thiele A et al (2009) Effect of temsirolimus versus interferon-alpha on outcome of patients with advanced renal cell carcinoma of different tumor histologies. Med Oncol 26:202–209

    Article  CAS  PubMed  Google Scholar 

  86. Cho D, Signoretti S, Dabora S, Regan M, Seeley A, Mariotti M et al (2007) Potential histologic and molecular predictors of response to temsirolimus in patients with advanced renal cell carcinoma. Clin Genitourin Cancer 5:379–385

    Article  CAS  PubMed  Google Scholar 

  87. Fang Y, Vilella-Bach M, Bachmann R, Flanigan A, Chen J (2001) Phosphatidic acid mediated mitogenic activation of mTOR signaling. Science (Wash DC) 294:1942–1945

    Article  CAS  Google Scholar 

  88. Chen Y, Zheng Y, Foster DA (2003) Phospholipase D confers rapamycin resistance in human breast cancer cells. Oncogene 22:3937–3942

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Hatem A. Azim Jr is supported by a PhD grant from the Universite Libre De Bruxelles (ULB).

Conflict of interest statement

No funds were received in support of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hatem A. Azim Jr..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Azim, H., Azim, H.A. & Escudier, B. Targeting mTOR in cancer: renal cell is just a beginning. Targ Oncol 5, 269–280 (2010). https://doi.org/10.1007/s11523-010-0141-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11523-010-0141-x

Keywords

Navigation