Skip to main content

Advertisement

Log in

Response difference of transgenic and conventional rice (Oryza sativa) to nanoparticles (γFe2O3)

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Nanoparticles (NPs) are an increasingly common contaminant in agro-environments, and their potential effect on genetically modified (GM) crops has been largely unexplored. GM crop exposure to NPs is likely to increase as both technologies develop. To better understand the implications of nanoparticles on GM plants in agriculture, we performed a glasshouse study to quantify the uptake of Fe2O3 NPs on transgenic and non-transgenic rice plants. We measured nutrient concentrations, biomass, enzyme activity, and the concentration of two phytohormones, abscisic acid (ABA) and indole-3-acetic acid (IAA), and malondialdehyde (MDA). Root phytohormone inhibition was positively correlated with Fe2O3 NP concentrations, indicating that Fe2O3 had a significant influence on the production of these hormones. The activities of antioxidant enzymes were significantly higher as a factor of low Fe2O3 NP treatment concentration and significantly lower at high NP concentrations, but only among transgenic plants. There was also a positive correlation between the treatment concentration of Fe2O3 and iron accumulation, and the magnitude of this effect was greatest among non-transgenic plants. The differences in root phytohormone production and antioxidant enzyme activity between transgenic and non-transgenic rice plants in vivo suggests that GM crops may react to NP exposure differently than conventional crops. It is the first study of NPs that may have an impact on GM crops, and a realistic significance for food security and food safety.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alidoust D, Isoda A (2013) Effect of γFe2O3 nanoparticles on photosynthetic characteristic of soybean (Glycine max (L.) Merr.): foliar spray versus soil amendment. Acta Physiol Plant 35:3365–3375

    Article  CAS  Google Scholar 

  • Alidoust D, Isoda A (2014) Phytotoxicity assessment of γ-Fe2O3 nanoparticles on root elongation and growth of rice plant. Environ Earth Sci 71:5173–5182

    Article  CAS  Google Scholar 

  • Basnet P, Larsen GK, Jadeja RP, Hung Y-C, Zhao Y (2013) α-Fe2O3 nanocolumns and nanorods fabricated by electron beam evaporation for visible light photocatalytic and antimicrobial applications. ACS Appl Mater Interfaces 5:2085–2095

    Article  CAS  Google Scholar 

  • Boonyanitipong P, Kositsup B, Kumar P, Baruah S, Dutta J (2011) Toxicity of ZnO and TiO2 nanoparticles on germinating rice seed Oryza sativa L. Int J Biosci Biochem Bioinforma 1:282–285

    Google Scholar 

  • Choudhary SP, Kanwar M, Bhardwaj R, Yu J-Q, Tran L-SP (2012) Chromium stress mitigation by polyamine-brassinosteroid application involves phytohormonal and physiological strategies in Raphanus sativus L. PLoS One 7:e33210

    Article  CAS  Google Scholar 

  • Cui D, Zhang P, Ma Y, He X, Li Y, Zhang J, Zhao Y, Zhang Z (2014) Effect of cerium oxide nanoparticles on asparagus lettuce cultured in an agar medium. Environ Sci Nano 1:459–465

    Article  CAS  Google Scholar 

  • Das M, Saxena N, Dwivedi PD (2008) Emerging trends of nanoparticles application in food technology: Safety paradigms. Nanotoxicology 3:10–18

    Article  Google Scholar 

  • Doane TL, Burda C (2012) The unique role of nanoparticles in nanomedicine: imaging, drug delivery and therapy. Chem Soc Rev 41:2885–2911

    Article  CAS  Google Scholar 

  • Gawronska H, Deji A, Sakakibara H, Sugiyama T (2003) Hormone-mediated nitrogen signaling in plants: implication of participation of abscissic acid in negative regulation of cytokinin-inducible expression of maize response regulator. Plant Physiol Biochem 41:605–610

    Article  CAS  Google Scholar 

  • Ghafariyan MH, Malakouti MJ, Dadpour MR, Stroeve P, Mahmoudi M (2013) Effects of magnetite nanoparticles on soybean chlorophyll. Environ Sci Technol 47:10645–10652

    CAS  Google Scholar 

  • Haselman M, Hauck S (2010) The future of integrated circuits: a survey of nanoelectronics. Proc IEEE 98:11–38

    Article  CAS  Google Scholar 

  • He H-Y, He L-F, Gu M-H, Li X-F (2012) Nitric oxide improves aluminum tolerance by regulating hormonal equilibrium in the root apices of rye and wheat. Plant Sci 183:123–130

    Article  CAS  Google Scholar 

  • Kennedy D (2002) The importance of rice. Science 296:13

    Article  CAS  Google Scholar 

  • Kim JH, Oh Y, Yoon H, Hwang I, Chang YS (2014) Iron nanoparticle-induced activation of plasma membrane H + −ATPase promotes stomatal opening in Arabidopsis thaliana. Environ Sci Technol 49(2):1113–1119

    Article  Google Scholar 

  • Koelmel J, Leland T, Wang H, Amarasiriwardena D, Xing B (2013) Investigation of gold nanoparticles uptake and their tissue level distribution in rice plants by laser ablation-inductively coupled-mass spectrometry. Environ Pollut 174:222–228

    Article  CAS  Google Scholar 

  • Kumar S, Asif MH, Chakrabarty D, Tripathi RD, Dubey RS, Trivedi PK (2013) Expression of a rice Lambda class of glutathione S-transferase, OsGSTL2, in Arabidopsis provides tolerance to heavy metal and other abiotic stresses. J Hazard Mater 248:228–237

    Article  Google Scholar 

  • Larue C, Pinault M, Czarny B, Georgin D, Jaillard D, Bendiab N, Mayne-L’Hermite M, Taran F, Dive V, Carrière M (2012) Quantitative evaluation of multi-walled carbon nanotube uptake in wheat and rapeseed. J Hazard Mater 227:155–163

    Article  Google Scholar 

  • Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108:2064–2110

    Article  CAS  Google Scholar 

  • Le VN, Rui Y, Gui X, Li X, Liu S, Han Y (2014) Uptake, transport, distribution and bio-effects of SiO2 nanoparticles in Bt-transgenic cotton. J Nanobiotechnol 12(1):50

    Article  Google Scholar 

  • Le VN, Ma C, Rui Y, Liu S, Li X, Xing B, Liu L (2015) Phytotoxic mechanism of nanoparticles: destruction of chloroplasts and vascular bundles and alteration of nutrient absorption. Sci Rep 5:11618

    Article  Google Scholar 

  • Lee S-H, Ahsan N, Lee K-W, Kim D-H, Lee D-G, Kwak S-S, Kwon S-Y, Kim T-H, Lee B-H (2007) Simultaneous overexpression of b, oth CuZn superoxide dismutase and ascorbate peroxidase in transgenic tall fescue plants confers increased tolerance to a wide range of abiotic stresses. J Plant Physiol 164:1626–1638

    Article  CAS  Google Scholar 

  • Lee WM, An YJ, Yoon H, Kweon HS (2008) Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (Triticum aestivum): plant agar test for water‐insoluble nanoparticles. Environ Toxicol Chem 27:1915–1921

    Article  CAS  Google Scholar 

  • Li X, Gui X, Rui Y, Ji W, Van Nhan L, Yu Z, Peng S (2014) Bt-transgenic cotton is more sensitive to CeO2 nanoparticles than its parental non-transgenic cotton. J Hazard Mater 274:173–180

    Article  CAS  Google Scholar 

  • Liao S, Pan B, Li H, Zhang D, Xing B (2014) Detecting free radicals in biochars and determining their ability to inhibit the germination and growth of corn, wheat and rice seedlings. Environ Sci Technol 48:8581–8587

    Article  CAS  Google Scholar 

  • Ma C, Chhikara S, Xing B, Musante C, White JC, Dhankher OP (2013) Physiological and molecular response of Arabidopsis thaliana (L.) to nanoparticle CERIUM and indium oxide exposure. ACS Sustainable Chem Eng 1:768–778

    Article  CAS  Google Scholar 

  • Mahmoudi M, Sant S, Wang B, Laurent S, Sen T (2011) Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy. Adv Drug Deliv Rev 63:24–46

    Article  CAS  Google Scholar 

  • Martinez-Ballesta MC, Carvajal M (2014) New challenges in plant aquaporin biotechnology. Plant Sci Int J Exp Plant Biol 217–218:71–77

    Google Scholar 

  • Marusenko Y, Shipp J, Hamilton GA, Morgan JL, Keebaugh M, Hill H, Dutta A, Zhuo X, Upadhyay N, Hutchings J (2013) Bioavailability of nanoparticulate hematite to Arabidopsis thaliana. Environ Pollut 174:150–156

    Article  CAS  Google Scholar 

  • Mazumdar H, Ahmed G (2011) Phytotoxicity effect of silver nanoparticles on Oryza sativa. Int J Chem Technol Res 3:1494–1500

    CAS  Google Scholar 

  • Meloni DA, Oliva MA, Martinez CA, Cambraia J (2003) Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Environ Exp Bot 49:69–76

    Article  CAS  Google Scholar 

  • Rico CM, Morales MI, McCreary R, Castillo-Michel H, Barrios AC, Hong J, Tafoya A, Lee W-Y, Varela-Ramirez A, Peralta-Videa JR (2013) Cerium oxide nanoparticles modify the antioxidative stress enzyme activities and macromolecule composition in rice seedlings. Environ Sci Technol 47:14110–14118

    Article  CAS  Google Scholar 

  • Saito N, Aoki K, Usui Y, Shimizu M, Hara K, Narita N, Ogihara N, Nakamura K, Ishigaki N, Kato H (2011) Application of carbon fibers to biomaterials: a new era of nano-level control of carbon fibers after 30-years of development. Chem Soc Rev 40:3824–3834

    Article  CAS  Google Scholar 

  • Shah V, Collins D, Walker VK, Shah S (2014) The impact of engineered cobalt, iron, nickel and silver nanoparticles on soil bacterial diversity under field conditions. Environ Res Lett 9:024001

    Article  Google Scholar 

  • Shen C-X, Zhang Q-F, Li J, Bi F-C, Yao N (2010) Induction of programmed cell death in Arabidopsis and rice by single-wall carbon nanotubes. Am J Bot 97:1602–1609

    Article  CAS  Google Scholar 

  • Trujillo-Reyes J, Vilchis-Nestor A, Majumdar S, Peralta-Videa J, Gardea-Torresdey J (2013) Citric acid modifies surface properties of commercial CeO2 nanoparticles reducing their toxicity and cerium uptake in radish (Raphanus sativus) seedlings. J Hazard Mater 263:677–684

    Article  CAS  Google Scholar 

  • Trujillo-Reyes J, Majumdar S, Botez C, Peralta-Videa J, Gardea-Torresdey J (2014) Exposure studies of core–shell Fe/Fe3O4 and Cu/CuO NPs to lettuce (Lactuca sativa) plants: are they a potential physiological and nutritional hazard? J Hazard Mater 267:255–263

    Article  CAS  Google Scholar 

  • Wu Z-S, Zhou G, Yin L-C, Ren W, Li F, Cheng H-M (2012) Graphene/metal oxide composite electrode materials for energy storage. Nano Energy 1:107–131

    Article  CAS  Google Scholar 

  • Yan Z, Tam NFY (2013) Effects of lead stress on anti-oxidative enzymes and stress-related hormones in seedlings of Excoecaria agallocha Linn. Plant Soil 367:327–338

    Article  CAS  Google Scholar 

  • Zhang P, Ma Y, Zhang Z, He X, Zhang J, Guo Z, Tai R, Zhao Y, Chai Z (2012) Biotransformation of ceria nanoparticles in cucumber plants. ACS Nano 6:9943–9950

    Article  CAS  Google Scholar 

  • Zhang P, Ma Y, Zhang Z, He X, Li Y, Zhang J, Zheng L, Zhao Y (2013) Species-specific toxicity of ceria nanoparticles to Lactuca plants. Nanotoxicology 9:1–8

    Article  CAS  Google Scholar 

  • Zhao J, Wang Z, White JC, Xing B (2014) Graphene in the Aquatic Environment: Adsorption, Dispersion, Toxicity and Transformation. Environ Sci Technol 48(17):9995–10009

Download references

Acknowledgments

The project was supported by the Key National Natural Science Foundation of China (No. 41130526) and the National Natural Science Foundation of China (No. 41371471). The authors gratefully acknowledge technical assistance with ICP-MS and ICP-OES provided by the Key Laboratory for Biological Effects of Nanomaterials and Nanosafety of Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yukui Rui.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gui, X., Deng, Y., Rui, Y. et al. Response difference of transgenic and conventional rice (Oryza sativa) to nanoparticles (γFe2O3). Environ Sci Pollut Res 22, 17716–17723 (2015). https://doi.org/10.1007/s11356-015-4976-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-4976-7

Keywords

Navigation