Skip to main content
Log in

Agrobacterium-Mediated In Planta Transformation of Field Bean (Lablab purpureus L.) and Recovery of Stable Transgenic Plants Expressing the cry1AcF Gene

  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

The amenability and reproducibility of a tissue culture-independent Agrobacterium tumefaciens-mediated transformation strategy was analyzed in field bean and the stability of the transgenes was examined. The protocol involves in planta inoculation of embryo axes of germinating seeds and allowing them to grow into seedlings ex vitro. Transformants were raised using a chimeric Bt gene, cry1AcF, and putative transformants were analyzed by PCR for both cry1AcF as well as the nptII genes. Bioassays against Helicoverpa armigera, the major pod borer, showed that several T1 plants performed well with 17% of T1 plants harboring the transgene. Further, enzyme-linked immunosorbent assay (ELISA) and quick dip strip test confirmed the expression of the chimeric Bt toxin. The stability of the transgenes was checked in three generations for integration, expression, and efficacy against the two insects, H. armigera and Spodoptera litura. Southern blot analysis of 10 high expressing plants confirmed the integration of the transgene, whereas single copy integration of the T-DNA in 5 events was also evident. Transcript accumulation of the cry1AcF gene by Northern analysis supported the expression analysis by ELISA. Likewise, Western blot analysis for the NPTII protein further confirmed the transgenic nature of the plants. At the end of the analysis in the T3 generation, five plants from five T1 events were selected as promising. Therefore, the study proved not only the amenability of the field bean to the transformation protocol but also the stability of the introduced genes through three generations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bradford M (1976). A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of a protein-dye binding. Ann Bio 72:248–254

    Google Scholar 

  • Brahmaprakash GP, Chandraprakash J, Ganeshaiah KN, Uma Shaanker R (2004) Pulse yields: feeling the pulse. Curr Sci 87(7):859–861

    Google Scholar 

  • Brookes G, Barfoot P (2009) Global impact of biotech crops: income and production effects, 1996–2007. AgBioForum 12:184–208

    Google Scholar 

  • Cheng M, Jarret RL, Li Z, Xing A, Demski JW (1996) Production of fertile transgenic peanut (Arachis hypogeae L.) plants using Agrobacterium tumefaciens. Plant Cell Rep 15:653–657. doi:10.1007/BF00231918

    Article  CAS  Google Scholar 

  • Chowrira GM, Akella V, Lurquin PF (1995) Electroporation-mediated gene transfer into intact nodal meristems in planta: generating transgenic plants without in vitro tissue culture. Mol Biotechnol 3:17–23. doi:10.1007/BF02821331

    Article  PubMed  CAS  Google Scholar 

  • Clough S, Bent A (1998) Floral dip: a simplified method for Agrobacterium mediated transformation of Arabidopsis thaliana. Plant J 16(6):743–745. doi:10.1046/j.1365-313x.1998.00343.x

    Article  Google Scholar 

  • Datta K, Schmidt A, Marcus A (1989) Characterization of two soybean repetitive proline-rich proteins and a cognate cDNA from germinated axes. Plant Cell 1:945–952

    Google Scholar 

  • Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA minipreparation: version II. Plant Mol Biol Rep 1:19–21. doi:10.1007/BF02712670

    Article  CAS  Google Scholar 

  • Desfeux C, Clough SI, Bent AF (2000) Female reproductive tissues are the primary target of Agrobacterium mediated transformation by the Arabidopsis floral dip method. Plant Physiol 123:895–904. doi:10.1104/pp.123.3.895, http://www.pgeconomics.co.uk/pdf/2009socioeconimpactsagbioforumpaper.pdf

    Article  PubMed  CAS  Google Scholar 

  • Hood EE, Gelvin SB, Melchers S, Hoekema A (1993) New Agrobacterium helper plasmids for gene transfer to plants (EHA105). Trans Res 2:208–218

    Google Scholar 

  • James C (2009) Global status of commercialized biotech/GM crops: 2009. ISAAA, Ithaca

    Google Scholar 

  • Keshamma E, Sreevathsa R, Madhusudhan B, Prasad TG (2008a) Transformability in field bean (uidA::nptII) by Agrobacterium tumefaciens-mediated in planta strategy. J Plant Biol 35–1:31–37

    Google Scholar 

  • Keshamma E, Sreevathsa R, Sankara Rao K, Madhusudhan B, Udaya Kumar M (2008b) Tissue culture-independent in planta transformation strategy: an Agrobacterium tumefaciens-mediated gene transfer method to overcome recalcitrance in cotton (Gossypium hirsutum L.). J Cot Sci 12:264–272

    CAS  Google Scholar 

  • Keshamma E, Sreevathsa R, Manoj Kumar A, Kumar A, Kumar ARV, Madhusudhan B, Udaya Kumar M (2008c) A chimeric cry1X gene imparts resistance to Spodoptera litura (Fabricus) and Helicoverpa armigera (Hubner) in transgenic groundnut. Eur J Biosci 2:53–65

    Google Scholar 

  • Khan M, Masroor A, Naeem M, Siddiqui MH (2005) Calcium fertilization ameliorates growth, yield and quality of hyacinth bean (Lablab purpureus L.). Proceedings of the 1st International Edible Legume Conference in Conjunction with the 4th World Cowpea Congress, Durban, South Africa, 17–21 April 2005, 133 pp

  • Kundori V, Godwin ID, Liu CJ (2000) Genetic mapping of Lablab purpureus genome suggest the presence of ‘cuckoo’ gene(s) in this species. Theor Appl Genet 100:866–871

    Article  Google Scholar 

  • Li MS, Je YH, Lee IH, Chang JH, Roh JY, Kim HS, Oh HW, Boo KS (2002) Isolation and characterization of strains of Bacillus thuringiensis subspecies kurstaki containing new delta endotoxin gene. Curr Microbiol 45:299–302. doi:10.1007/s00284-002-3755-0

    Article  PubMed  CAS  Google Scholar 

  • Maass BL, Ayisi KK, Bopape PM, Usongo M, Pengelly BC (2003) Appropriate germplasm facilities new interest in integrated crops—the case of Lablab purpureus in the Limpopo Provina, South Africa. International Workshop on Underutilized Plant Species. 6–8 May 2003, Leipzing Germany. pp 37–45

  • Manoj Kumar A, Reddy KN, Sreevathsa R, Ganeshan G, Udaya Kumar M (2009) Towards crop improvement in bell pepper (Capsicum annuum L.) by a tissue culture independent Agrobacterium mediated in planta approach. Sci Horti 119:362–370. doi:10.1016/j.scienta.2008.08.034

    Article  Google Scholar 

  • Nandeshwar SB, Moghe S, Chakrabarty PK, Deshattiwar MK, Kranthi K, Anandkumar P, Mayee CD, Khadi BM (2009) Agrobacterium-mediated transformation of cry1Ac gene into shoot-tip meristem of diploid cotton Gossypium arboreum cv. RG8 and regeneration of transgenic plants. Plant Mol Biol Rep 27:549–557

    Article  CAS  Google Scholar 

  • Pengelly BC, Maass BL (2001) Lablab purpureus diversity potential uses and determination of a core collection of this multipurpose tropical legume. Genet Resour Crop Evol 48:261–272

    Article  Google Scholar 

  • Rai N, Kumar A, Singh PK, Singh M, Datta D, Rai M (2010) Genetic relationship among Hyacinth bean (Lablab purpureus) genotypes cultivars from different races based on quantitative traits and random amplified polymorphic DNA marker. Afr J Biotechnol 9(2):137–144

    CAS  Google Scholar 

  • Ranjekar PK, Patankar A, Gupta V, Bhatnagar R, Bentur J, Kumar PA (2003) Genetic engineering of crop plants for insect resistance. Curr Sci 84:321–329

    Google Scholar 

  • Rao KS, Sreevathsa R, Pinakee Sharma D, Keshamma E, Udayakumar M (2008) In planta transformation of pigeon pea: a method to overcome recalcitrancy of the crop to regeneration in vitro. Physiol Mol Biol Plants 14(4):321–328

    Article  CAS  Google Scholar 

  • Rashid MM (1999) Shabjibiggan (in Bengali). Bangla Academy, Dhaka, pp 357–400

    Google Scholar 

  • Rekha S, Mallapur CP (2007) Abundance and seasonability of sucking pests of Dolichos bean. Karnataka Journal of Agricultural Sciences 20(2):397–398

    Google Scholar 

  • Rohini VK, Rao KS (2000a) Transformation of peanut (Arachis hypogaea L.): a non-tissue culture based approach for generating transgenic plants. Plant Sci 151:41–49

    Article  Google Scholar 

  • Rohini VK, Rao KS (2000b) Embryo transformation, a practical approach for realizing transgenic plants of safflower (Carthamus tinctorius L.). Ann Bot 86:1043–1049

    Article  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning. Cold Spring Harbor Laboratory, New York

    Google Scholar 

  • Sharma KK, Anjaiah V (2000) An efficient method for the production of transgenic plants of peanut (Arachis hypogaea L.) through Agrobacterium tumefaciens-mediated genetic transformation. Plant Sci 159:7–19

    Article  PubMed  CAS  Google Scholar 

  • Shivashankar GRS, Kulkarni HE, Shashidhar, Mahishi DM (1993) Improvement of field bean. In: Chandha KL, Kallo G (eds) Advances in horticulture vol. 5. Vegetable crops. Malhotra, New Delhi, pp 277–286

    Google Scholar 

  • Snedecor GN, Cochran WG (1967) Statistical methods. Oxford and IBH, New Delhi, p 593

    Google Scholar 

  • Sokal RR, Rohlf FJ (1969) Biometry: the principle and practices of statistics in biological research. Freeman, San Francisco, 776

    Google Scholar 

  • Somers DA, Deborah A, Samac P, Olhoft PM (2003) Recent advances in legume transformation. Plant Physiol 131:892–899. doi:10.1104/pp.102.017681

    Article  PubMed  CAS  Google Scholar 

  • Sprent JI, Odee DW, Dakora FD (2010) African legumes: a vital but under-utilized resource. J Exp Bot 61(5):1257–1265

    Article  PubMed  CAS  Google Scholar 

  • Sultana N (2001) Genetic variation of morphology and its application to breeding in lablab bean (Lablab purpureus (L.) Sweet). A Ph.D. thesis, Kyushu University, Fukuoka, Japan. 143 p

  • Thiruvengadam M, Jayabalan N (2000) Plant regeneration from cotyledonary nodes of Lablab bean (Lablab purpureus L). J Phytal Res 13(1):41–44

    Google Scholar 

  • Trieu A, Burleigh TSH, Kardailsky Maldonado-Mendoza V, Versaw IE, Blaylock WK, Shin LA, Chiou H, Katagi TJ, Dewbre GR (2000) Transformation of Medicago truncatula via infiltration of seedlings or flowering plants with Agrobacterium. Plant J 22:531–541. doi:10.1046/j.1365-313x.2000.00757.x

    Article  PubMed  CAS  Google Scholar 

  • Vikram M, Koiwa H (2009) Glyphosate resistance as a versatile selection marker for Arabidopsis treansformation. Plant Mol Biol Rep 27(2):132–138

    Article  CAS  Google Scholar 

  • Winans SC, Kerstetter RA, Nester EW (1988) Transcriptional regulation of the virA and virG genes of Agrobacterium tumefaciens. J Bacteriol 170:4047–4054

    PubMed  CAS  Google Scholar 

  • Xia H, Chen L, Wang F, Bao-Rong Lu (2010) Yield benefit and underlying cost of insect-resistance transgenic rice: implication in breeding and deploying transgenic crops. Field Crop Res 118:215–220

    Article  Google Scholar 

  • Xu W, Shi W (2008) A “nonsterile” method for selecting and growing Arabidopsis thaliana transformants (T2 transgenic lines) resistant to kanamycin. Plant Mol Biol Rep 26:350–357

    Article  CAS  Google Scholar 

  • Yasmeen A, Mirza B, Inayatullah S, Safdar N, Jamil M, Ali S, Choudhry MF (2009) In planta transformation of tomato. Plant Mol Biol Rep 27:20–28

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors wish to acknowledge Bio control Research laboratories for providing the larvae of Helicoverpa armigera and Spodoptera litura and Prof. P. Ananda Kumar, NRCPB, IARI for the kind gift of cry1AcF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rohini Sreevathsa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keshamma, E., Sreevathsa, R., Kumar, A.M. et al. Agrobacterium-Mediated In Planta Transformation of Field Bean (Lablab purpureus L.) and Recovery of Stable Transgenic Plants Expressing the cry1AcF Gene. Plant Mol Biol Rep 30, 67–78 (2012). https://doi.org/10.1007/s11105-011-0312-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-011-0312-7

Keywords

Navigation