Skip to main content
Log in

The Q-type C2H2 zinc finger subfamily of transcription factors in Triticum aestivum is predominantly expressed in roots and enriched with members containing an EAR repressor motif and responsive to drought stress

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Q-type C2H2 zinc finger proteins (ZFPs) form a subfamily of transcription factors that contain a plant-specific QALGGH amino acid motif. A total of 47 expressed Q-type C2H2 zinc finger genes in bread wheat (Triticum aestivum) (designated TaZFP) were identified from the current databases. Protein sequence analysis for the presence of ERF-associated amphiphilic repressor (EAR) motif sequences from known transcriptional repressors revealed that 26% of the TaZFP subfamily members contain an EAR motif. Quantitative RT-PCR analysis of the mRNA distribution of 44 TaZFP genes in various organs revealed that 30 genes were predominantly expressed in the roots. The majority of the TaZFP genes showed significant changes in their mRNA levels during leaf development and aging. Expression of 37 TaZFP genes in the leaves and roots responded to drought stress at least in one organ with 74% of the drought-responsive TaZFP genes being down-regulated in the drought-stressed roots. In contrast, only 6 out of the 44 TaZFP genes showed expression changes in the leaves with sucrose treatment. Expression of 50% of the drought-responsive TaZFP genes in the leaves (16 genes analysed) did not respond to ABA treatment, indicating that some TaZFP genes are involved in ABA-independent signalling pathways. These results indicate that the Q-type TaZFP subfamily is likely to have an important role in wheat roots and is enriched with members that are potentially involved in regulating cellular activities during changes of the physiological status of plant cells, as it occurs during drought stress or leaf development/aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

AEL:

Apparent expression level

C2H2 :

Cysteine2/Histidine2

EAR:

ERF-associated amphiphilic repression

ZFP:

C2H2 zinc finger protein

TaZFP:

Triticum aestivum ZFP

TaGI:

Triticum aestivum gene index

RWC:

Relative water content

References

  • Agarwal P, Arora R, Ray S, Singh AK, Singh VP, Takatsuji H, Kapoor S, Tyagi AK (2007) Genome-wide identification of C2H2 zinc-finger gene family in rice and their phylogeny and expression analysis. Plant Mol Biol 65:467–485

    Article  PubMed  CAS  Google Scholar 

  • Araus JL, Slafer GA, Reynolds MP, Royo C (2002) Plant breeding and drought in C3 cereals: what should we breed for? Ann Bot 89:925–940

    Article  PubMed  Google Scholar 

  • Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24:23–58

    Article  CAS  Google Scholar 

  • Bateman A, Coin L, Durbin R, Finn RD, Hollich V, Griffiths-Jones S, Khanna A, Marshall M, Moxon S, Sonnhammer ELL, Studholme DJ, Yeats C, Eddy SR (2004) The Pfam protein families database. Nucleic Acids Res 32:D138–D141

    Article  PubMed  CAS  Google Scholar 

  • Bray EA (2004) Genes commonly regulated by water-deficit stress in Arabidopsis thaliana. J Exp Bot 55:2331–2341

    Article  PubMed  CAS  Google Scholar 

  • Campbell SA, Close TJ (1997) Dehydrins: genes, proteins, and associations with phenotypic traits. New Phytol 137:61–74

    Article  CAS  Google Scholar 

  • Chinnusamy V, Schumaker K, Zhu J-K (2004) Molecular genetic perspectives on cross-talk and specificity in abiotic stress signalling in plants. J Exp Bot 55:225–236

    Article  PubMed  CAS  Google Scholar 

  • Chinnusamy V, Zhu J, Zhu J-K (2006) Gene regulation during cold acclimation in plants. Physiol Plant 126:52–61

    Article  CAS  Google Scholar 

  • Ciftci-Yilmaz S, Morsy MR, Song L, Coutu A, Krizek BA, Lewis MW, Warren D, Cushman J, Connolly EL, Mittler R (2007) The EAR-motif of the Cys2/His2-type zinc finger protein Zat7 plays a key role in the defense response of Arabidopsis to salinity stress. J Biol Chem 282:9260–9268

    Article  PubMed  CAS  Google Scholar 

  • Davletova S, Schlauch K, Coutu J, Mittler R (2005) The zinc-finger protein Zat12 plays a central role in reactive oxygen and abiotic stress signaling in Arabidopsis. Plant Physiol 139:847–856

    Article  PubMed  CAS  Google Scholar 

  • Englbrecht CC, Schoof H, Böhm S (2004) Conservation, diversification and expansion of C2H2 zinc finger proteins in the Arabidopsis thaliana genome. BMC Genomics 5:39

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (2005) PHYLIP (Phylogeny Inference Package) version 3.6. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle

    Google Scholar 

  • Guo Y, Cai Z, Gan S (2004) Transcriptome of Arabidopsis leaf senescence. Plant Cell Environ 27:521–549

    Article  CAS  Google Scholar 

  • Heim MA, Jakoby M, Werber M, Martin C, Weisshaar B, Bailey PC (2003) The basic Helix-Loop-Helix transcription factor family in plants: a genome-wide study of protein structure and functional diversity. Mol Biol Evol 20:735–747

    Article  PubMed  CAS  Google Scholar 

  • Hiratsu K, Ohta M, Matsui K, Ohme-Takagi M (2002) The SUPERMAN protein is an active repressor whose carboxy-terminal repression domain is required for the development of normal flowers. FEBS Lett 514:351–354

    Article  PubMed  CAS  Google Scholar 

  • Hiratsu K, Matsui K, Koyama T, Ohme-Takagi M (2003) Dominant repression of target genes by chimeric repressors that include the EAR motif, a repression domain, in Arabidopsis. Plant J 34:733–739

    Article  PubMed  CAS  Google Scholar 

  • Ho S-L, Chao Y-C, Tong W-F, Yu S-M (2001) Sugar coordinately and differentially regulates growth- and stress-related gene expression via a complex signal transduction network and multiple control mechanisms. Plant Physiol 125:877–890

    Article  PubMed  CAS  Google Scholar 

  • Huang B, Gao H (2000) Root physiological characteristics associated with drought resistance in tall fescue cultivars. Crop Sci 40:196–203

    Article  Google Scholar 

  • Huang J, Wang JF, Wang QH, Zhang HS (2005) Identification of a rice zinc finger protein whose expression is transiently induced by drought, cold but not by salinity and abscisic acid. DNA Seq 16:130–136

    Article  PubMed  CAS  Google Scholar 

  • Huang J, Yang X, Wang MM, Tang HJ, Ding LY, Shen Y, Zhang HS (2007) A novel rice C2H2-type zinc finger protein lacking DLN-box/EAR-motif plays a role in salt tolerance. BBA 1769:220–227

    PubMed  CAS  Google Scholar 

  • Huntley S, Baggott DM, Hamilton AT, Tran-Gyamfi M, Yang S, Kim J, Gordon L, Branscomb E, Stubbs L (2006) A comprehensive catalog of human KRAB-associated zinc finger genes: insights into the evolutionary history of a large family of transcriptional repressors. Genome Res 16:669–677

    Article  PubMed  CAS  Google Scholar 

  • Isernia C, Bucci E, Leone M, Zaccaro L, Di Lello P, Digilio G, Esposito S, Saviano M, Di Blasio B, Pedone C, Pedone PV, Fattorusso R (2003) NMR structure of the single QALGGH zinc finger domain from the Arabidopsis thaliana SUPERMAN protein. Chembiochem 3:171–180

    Article  Google Scholar 

  • Jeanmougin F, Thompson JD, Gouy M, Higgins DG, Gibson TJ (1998) Multiple sequence alignment with Clustal X. Trends Biochem Sci 23:403–405

    Article  PubMed  CAS  Google Scholar 

  • Kazan K (2006) Negative regulation of defence and stress genes by EAR-motif-containing repressors. Trends Plant Sci 11:109–112

    Article  PubMed  CAS  Google Scholar 

  • Kam J, Gresshoff P, Shorter R, Xue GP (2007) Expression analysis of RING zinc finger genes from Triticum aestivum and identification of TaRZF70 that contains four RING-H2 domains and differentially responds to water deficit between leaf and root. Plant Sci 173:650–659

    Article  CAS  Google Scholar 

  • Kim JC, Lee SH, Cheong YH, Yoo C-M, Lee SI, Chun HJ, Yun D-J, Hong JC, Lee SY, Lim CO, Cho MJ (2001) A novel cold-inducible zinc finger protein from soybean, SCOF-1, enhances cold tolerance in transgenic plants. Plant J 25:247–259

    Article  PubMed  CAS  Google Scholar 

  • Koch KE (1996) Carbohydrate-modulated gene expression in plants. Ann Rev Plant Physiol Plant Mol Biol 47:509–540

    Article  CAS  Google Scholar 

  • Koroleva OA, Tomos AD, Farrar JF, Gallagher J, Pollock CJ (2001) Carbon allocation and sugar status in individual cells of barley leaves affects expression of sucrose: fructan 6-fructosyltransferase gene. Ann Appl Biol 138:27–32

    Article  CAS  Google Scholar 

  • Krichevsky A, Gutgarts H, Kozlovsky SV, Tzfira T, Sutton A, Sternglanz R, Mandel G, Citovsky V (2007) C2H2 zinc finger-SET histone methyltransferase is a plant-specific chromatin modifier. Dev Biol 303:259–269

    Article  PubMed  CAS  Google Scholar 

  • Kubo K-I, Sakamoto A, Kobayashi A, Rybka Z, Kanno Y, Nakagawa H, Nishino T, Takatsuji H (1998) Cys2/His2 zinc-finger protein family of petunia : evolution and general mechanism of target-sequence recognition. Nucleic Acids Res 26:608–615

    Article  PubMed  CAS  Google Scholar 

  • Lee HJ, Xiong LM, Gong ZZ, Ishitani M, Stevenson B, Zhu JK (2001) The Arabidopsis HOS1 gene negatively regulates cold signal transduction and encodes a RING finger protein that displays cold-regulated nucleo-cytoplasmic partitioning. Genes Dev 15:912–924

    Article  PubMed  CAS  Google Scholar 

  • Lin JF, Wu SH (2004) Molecular events in senescing Arabidopsis leaves. Plant J 39:612–628

    Article  PubMed  CAS  Google Scholar 

  • Malamy JE (2005) Intrinsic and environmental response pathways that regulate root system architecture. Plant Cell Environ 28:67–77

    Article  PubMed  CAS  Google Scholar 

  • Mitsuda N, Seki M, Shinozaki K, Ohme-Takagi M (2005) The NAC transcription factors NST1 and NST2 of Arabidopsis regulate secondary wall thickenings and are required for anther dehiscence. Plant Cell 17:2993–3006

    Article  PubMed  CAS  Google Scholar 

  • Mitsuda N, Hiratsu K, Todaka D, Nakashima K, Yamaguchi-Shinozaki K, Ohme-Takagi M (2006) Efficient production of male and female sterile plants by expression of a chimeric repressor in Arabidopsis and rice. Plant Biotechnol J 4:325–332

    Article  PubMed  CAS  Google Scholar 

  • Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11:15–19

    Article  PubMed  CAS  Google Scholar 

  • Mittler R, Kim YS, Song LH, Coutu J, Coutu A, Ciftci-Yilmaz S, Lee HJ, Stevenson B, Zhu JK (2006) Gain- and loss-of-function mutations in Zat10 enhance the tolerance of plants to abiotic stress. FEBS Lett 580:6537–6542

    Article  PubMed  CAS  Google Scholar 

  • Morita MT, Sakaguchi K, Kiyose S-i, Taira K, Kato T, Nakamura M, Tasaka M (2006) A C2H2-type zinc finger protein, SGR5, is involved in early events of gravitropism in Arabidopsis inflorescence stems. Plant J 47:619–628

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa H, Ferrario S, Angenent GC, Kobayashi A, Takatsuji H (2004) The petunia ortholog of Arabidopsis SUPERMAN plays a distinct role in floral organ morphogenesis. Plant Cell 16:920–932

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa H, Jiang CJ, Sakakibara H, Kojima M, Honda I, Ajisaka H, Nishijima T, Koshioka M, Homma T, Mander LN, Takatsuji H (2005) Overexpression of a petunia zinc-finger gene alters cytokinin metabolism and plant forms. Plant J 41:512–523

    Article  PubMed  CAS  Google Scholar 

  • Nasir KHB, Takahashi Y, Ito A, Saitoh H, Matsumura H, Kanzaki H, Shimizu T, Ito M, Fujisawa S, Sharma PC, Ohme-Takagi M, Kamoun S, Terauchi R (2005) High-throughput in planta expression screening identifies a class II ethylene-responsive element binding factor-like protein that regulates plant cell death and non-host resistance. Plant J 43:491–505

    Article  PubMed  CAS  Google Scholar 

  • Ohta M, Matsui K, Hiratsu K, Shinshi H, Ohme-Takagi M (2001) Repression domains of class II ERF transcriptional repressors share an essential motif for active repression. Plant Cell 13:1959–1968

    Article  PubMed  CAS  Google Scholar 

  • Papworth M, Kolasinska P, Minczuk M (2006) Designer zinc-finger proteins and their applications. Gene 366:27–38

    Article  PubMed  CAS  Google Scholar 

  • Pařenicová L, Folter Sd, Kieffer M, Horner DS, Favalli C, Busscher J, Cook HE, Ingram RM, Kater MM, Davies B, Angenent GC, Colombo L (2003) Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis: new openings to the MADS world. Plant Cell 15:1538–1551

    Article  PubMed  CAS  Google Scholar 

  • Price AH, Tomos AD, Virk DS (1997) Genetic dissection of root growth in rice (Oryza sativa L.). I: a hydrophonic screen. Theor Appl Genet 95:132–142

    Article  Google Scholar 

  • Riaño-Pachón DM, Ruzicic S, Dreyer I, Mueller-Roeber B (2007) PlnTFDB: an integrative plant transcription factor database. BMC Bioinformatics 8:42

    Article  PubMed  CAS  Google Scholar 

  • Rizhsky L, Davletova S, Liang H, Mittler R (2004) The zinc finger protein Zat12 is required for cytosolic ascorbate peroxidase 1 expression during oxidative stress in Arabidopsis. J Biol Chem 279:11736–11743

    Article  PubMed  CAS  Google Scholar 

  • Rorat T (2006) Plant dehydrins—Tissue location, structure and function. Cell Mol Biol Lett 11:536–556

    Article  PubMed  CAS  Google Scholar 

  • Sakai H, Medrano LJ, Meyerowitz EM (1995) Role of SUPERMAN in maintaining Arabidopsis floral whorl boundaries. Nature 378:199–202

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto A, Minami M, Huh GH, Iwabuchi M (1993) The putative zinc-finger protein WZF1 interacts with a cis-acting element of wheat histone genes. Eur J Biochem 217:1049–1056

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto H, Araki T, Meshi T, Iwabuchi M (2000) Expression of a subset of the Arabidopsis Cys2/His2-type zinc-finger protein gene family under water stress. Gene 248:23–32

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto H, Maruyama K, Sakuma Y, Meshi T, Iwabuchi M, Shinozaki K, Yamaguchi-Shinozaki K (2004) Arabidopsis Cys2/His2-type zinc-finger proteins function as transcription repressors under drought, cold, and high-salinity stress conditions. Plant Physiol 136:2734–2746

    Article  PubMed  CAS  Google Scholar 

  • Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M, Akiyama K, Taji T, Yamaguchi-Shinozaki K, Carninci P, Kawai J, Hayashizaki Y, Shinozaki K (2002) Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J 31:279–292

    Article  PubMed  CAS  Google Scholar 

  • Sekimata M, Homma Y (2004) Sequence-specific transcriptional repression by an MBD2-interacting zinc finger protein MIZF. Nucleic Acids Res 32:590–597

    Article  PubMed  CAS  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58:221–227

    Article  PubMed  CAS  Google Scholar 

  • Stephenson TJ, McIntyre CL, Collet C, Xue GP (2007) Genome-wide identification and expression analysis of the NF-Y family of transcription factors in Triticum aestivum. Plant Mol Biol 65:77–92

    Article  PubMed  CAS  Google Scholar 

  • Sugano S, Kaminaka H, Rybka Z, Catala R, Salinas J, Matsui K, Ohme-Takagi M, Takatsuji H (2003) Stress-responsive zinc finger gene ZPT2-3 plays a role in drought tolerance in petunia. Plant J 36:830–841

    Article  PubMed  CAS  Google Scholar 

  • Takatsuji H (1999) Zinc-finger proteins: the classical zinc finger emerges in contemporary plant science. Plant Mol Biol 39:1073–1078

    Article  PubMed  CAS  Google Scholar 

  • Takatsuji H, Mori M, Benfey PN, Ren L, Chua NH (1992) Characterization of a zinc finger DNA-binding protein expressed specifically in Petunia petals and seedlings. EMBO J 11:241–249

    PubMed  CAS  Google Scholar 

  • Tardieu F (1996) Drought perception by plants Do cells of droughted plants experience water stress? Plant Growth Regul 20:93–104

    Article  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  • Tiwari SB, Hagen G, Guilfoyle TJ (2004) Aux/IAA proteins contain a potent transcriptional repression domain. Plant Cell 16:533–543

    Article  PubMed  CAS  Google Scholar 

  • Tsukagoshi H, Saijo T, Shibata D, Morikami A, Nakamura K (2005) Analysis of a sugar response mutant of Arabidopsis identified a novel B3 domain protein that functions as an active transcriptional repressor. Plant Physiol 138:675–685

    Article  PubMed  CAS  Google Scholar 

  • Uehara Y, Takahashi Y, Berberich T, Miyazaki A, Takahashi H, Matsui K, Ohme-Takagi M, Saitoh H, Terauchi R, Kusano T (2005) Tobacco ZFT1, a transcriptional repressor with a Cys2/His2 type zinc finger motif that functions in spermine-signaling pathway. Plant Mol Biol 59:435–448

    Article  PubMed  CAS  Google Scholar 

  • Urrutia R (2003) KRAB-containing zinc-finger repressor proteins. Genome Biol 4:Art. No. 231

  • Vogel JT, Zarka DG, Van Buskirk HA, Fowler SG, Thomashow MF (2005) Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis. Plant J 41:195–211

    Article  PubMed  CAS  Google Scholar 

  • Wolfe SA, Nekludova L, Pabo CO (2000) DNA recognition by Cys2His2 zinc finger proteins. Ann Rev Biophys Biomol Struct 29:183–212

    Article  CAS  Google Scholar 

  • Wu Y, Cosgrove DJ (2000) Adaptation of roots to low water potentials by changes in cell wall extensibility and cell wall proteins. J Exp Bot 51:1543–1553

    Article  PubMed  CAS  Google Scholar 

  • Xue GP, Loveridge CW (2004) HvDRF1 is involved in abscisic acid-mediated gene regulation in barley and produces two forms of AP2 transcriptional activators, interacting preferably with a CT-rich element. Plant J 37:326–339

    Article  PubMed  CAS  Google Scholar 

  • Xue GP, McIntyre CL, Chapman S, Bower NI, Way H, Reverter A, Clarke B, Shorter R (2006) Differential gene expression of wheat progeny with contrasting levels of transpiration efficiency. Plant Mol Biol 61:863–881

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Ann Rev Plant Biol 57:781–803

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are grateful to Troy Stephenson for his help in phylogenetic analysis and Dr. Kemal Kazan for his valuable suggestion in EAR motifs. The work was supported by the Australian Grains Research & Development Corporation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang-Ping Xue.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kam, J., Gresshoff, P.M., Shorter, R. et al. The Q-type C2H2 zinc finger subfamily of transcription factors in Triticum aestivum is predominantly expressed in roots and enriched with members containing an EAR repressor motif and responsive to drought stress. Plant Mol Biol 67, 305–322 (2008). https://doi.org/10.1007/s11103-008-9319-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-008-9319-3

Keywords

Navigation