Skip to main content

Advertisement

Log in

Differential gene expression of wheat progeny with contrasting levels of transpiration efficiency

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

High water use efficiency or transpiration efficiency (TE) in wheat is a desirable physiological trait for increasing grain yield under water-limited environments. The identification of genes associated with this trait would facilitate the selection for genotypes with higher TE using molecular markers. We performed an expression profiling (microarray) analysis of approximately 16,000 unique wheat ESTs to identify genes that were differentially expressed between wheat progeny lines with contrasting TE levels from a cross between Quarrion (high TE) and Genaro 81 (low TE). We also conducted a second microarray analysis to identify genes responsive to drought stress in wheat leaves. Ninety-three genes that were differentially expressed between high and low TE progeny lines were identified. One fifth of these genes were markedly responsive to drought stress. Several potential growth-related regulatory genes, which were down-regulated by drought, were expressed at a higher level in the high TE lines than the low TE lines and are potentially associated with a biomass production component of the Quarrion-derived high TE trait. Eighteen of the TE differentially expressed genes were further analysed using quantitative RT-PCR on a separate set of plant samples from those used for microarray analysis. The expression levels of 11 of the 18 genes were positively correlated with the high TE trait, measured as carbon isotope discrimination (Δ13C). These data indicate that some of these TE differentially expressed genes are candidates for investigating processes that underlie the high TE trait or for use as expression quantitative trait loci (eQTLs) for TE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ABA:

abscisic acid

eQTL:

expression quantitative trait locus

EST:

expressed sequence tag

QTL:

quantitative trait locus

RLWC:

relative leaf water content

RT-PCR:

reverse transcription-polymerase chain reaction

TE:

transpiration efficiency

TPR:

tetratricopeptide repeat

References

  • Aida M, Beis D, Heidstra R, Willemsen V, Blilou I, Galinha C, Nussaume L, Noh YS, Amasino R, Scheres B (2004) The PLETHORA genes mediate patterning of the Arabidopsis root stem cell niche. Cell 119:109–120

    Article  PubMed  CAS  Google Scholar 

  • Amthor JS (2000) The McCree–de Wit–Penning de Vries–Thornley respiration paradigms: 30 years later. Ann Bot 86:1–20

    Article  CAS  Google Scholar 

  • Ashok, Hussain ISA, Prasad TG, Kumar MU, Rao RCN, Wright GC (1999) Variation in transpiration efficiency and carbon isotope discrimination in cowpea. Aust J Plant Physiol 26:503–510

    Google Scholar 

  • Bertini L, Leonardi L, Caporale C, Tucci M, Cascone N, Berardino I.di, Buonocore V, Caruso C (2003) Pathogen-responsive wheat PR4 genes are induced by activators of systemic acquired resistance and wounding. Plant Sci 164:1067–1078

    Article  CAS  Google Scholar 

  • Brzobohaty B, Moore I, Kristoffersen P, Bako L, Campos N, Schell J, Palme K (1993) Release of active cytokinin by a beta-glucosidase localized to the maize root meristem. Science 262:1051–1054

    PubMed  CAS  Google Scholar 

  • Chaves MM, Pereira JS, Maroco J, Rodrigues ML, Ricardo CPP, Osorio ML, Carvalho I, Faria T, Pinheiro C (2002) How plants cope with water stress in the field. Photosynthesis and growth. Ann Bot 89:907–916

    Article  PubMed  CAS  Google Scholar 

  • Clarke B, Rahman S (2005) A microarray analysis of wheat grain hardness.Theor. Appl Genet 110:1259–1267

    Article  PubMed  CAS  Google Scholar 

  • Condon AG, Farquhar GD, Richards RA (1990) Genotypic variation in carbon isotope discrimination and transpiration efficiency in wheat. Leaf gas exchange and whole plant studies. Aust J Plant Physiol 17:9–22

    Google Scholar 

  • Condon AG, Richards RA, Rebetzke GJ, Farquhar GD (2002) Improving intrinsic water-use efficiency and crop yield. Crop Sci 42:122–131

    Article  PubMed  Google Scholar 

  • Condon AG, Richards RA, Rebetzke GJ, Farquhar GD (2004) Breeding for high water-use efficiency. J Exp Bot 55:2447–2460

    Article  PubMed  CAS  Google Scholar 

  • Farquhar GD, Richards RA (1984) Isotopic composition of plant carbon correlates with water-use efficiency of wheat genotypes. Aust J Plant Physiol 11:539–552

    Article  CAS  Google Scholar 

  • Fischer RA, Rees D, Sayre KD, Lu Z-M, Condon AG, Larque Saavedra A (1998) Wheat yield progress associated with higher stomatal conductance and photosynthetic rate, and cooler canopies. Crop Sci 38:1467–1475

    Article  Google Scholar 

  • Ghashghaie J, Badeck F-W, Lanigan G, Nogués S, Tcherkez G, Deléens E, Cornic G, Griffiths H (2003) Carbon isotope fractionation during dark respiration and photorespiration in C3 plants. Phytochem Rev 2:145–161

    Article  CAS  Google Scholar 

  • Hall AE, Richards RA, Condon AG, Wright GC, Farquhar GD (1994) Carbon isotope discrimination and plant breeding. Plant Breed Rev 12:81–113

    Google Scholar 

  • Hazen SP, Pathan MS, Sanchez A, Baxter I, Dunn M, Estes B, Chang HS, Zhu T, Kreps JA, Nguyen HT (2005) Expression profiling of rice segregating for drought tolerance QTLs using a rice genome array. Func Integr Genom 5:104–116

    Article  CAS  Google Scholar 

  • Hong SW, Jon JH, Kwak JM, Nam HG (1997) Identification of a receptor-like protein kinase gene rapidly induced by abscisic acid, dehydration, high salt, and cold treatments in Arabidopsis thaliana. Plant Physiol 113:1203–1212

    Article  PubMed  CAS  Google Scholar 

  • Hubick KT, Farquhar GD, Shorter R (1986) Correlation between water-use efficiency and carbon isotope discrimination in diverse peanut (Arachis) germplasm. Aust J Plant Physiol 13:803–816

    CAS  Google Scholar 

  • Hubick KT, Shorter R, Farquhar GD (1988) Heritability and genotype x environment interaction of carbon isotope discrimination and transpiration efficiency in peanut. Aust J Plant Physiol 15:799–813

    Google Scholar 

  • Hymus GJ, Maseyk K, Valentini R, Yakir D (2005) Large daily variation in 13C-enrichment of leaf-respired CO2 in two Quercus forest canopies. New Phytol 167: 377–384

    Article  PubMed  CAS  Google Scholar 

  • Iersel MW van (2003) Carbon use efficiency depends on growth respiration, maintenance respiration, and relative growth rate. A case study with lettuce. Plant Cell Environ 26:1441–1449

    Article  Google Scholar 

  • Jeter CR, Tang WQ, Henaff E, Butterfield T, Roux SJ (2004) Evidence of a novel cell signaling role for extracellular adenosine triphosphates and diphosphates in Arabidopsis. Plant Cell 16:2652–2664

    Article  PubMed  CAS  Google Scholar 

  • Jofuku KD, den Boer BG, Van Montagu M, Okamuro JK (1994) Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell 6:1211–1225

    Article  PubMed  CAS  Google Scholar 

  • Kang JY, Choi HI, Im MY, Kim SY (2002) Arabidopsis basic leucine zipper proteins that mediate stress-responsive abscisic acid signaling. Plant Cell 14:343–357

    Article  PubMed  CAS  Google Scholar 

  • Kendziorski C, Irizarry RA, Chen K-S, Haag JD, Gould MN (2005) On the utility of pooling biological samples in microarray experiments. Proc Natl Acad Sci USA 102:4252–4257

    Article  PubMed  CAS  Google Scholar 

  • Kerr MK, Martin M, Churchill GA (2001) Analysis of variance for gene expression microarray data. J Comput Biol 7:819–837

    Article  Google Scholar 

  • Kerr ML (2003) Design considerations fro efficient and effective microarray studies. Biometrics 59:822–828

    Article  PubMed  Google Scholar 

  • Kirkpatrick D, Solomon F (1994) Overexpression of yeast homologs of the mammalian checkpoint gene RCC1 suppresses the class of α-tubulin mutations that arrest with excess microtubules. Genetics 137:381–392

    PubMed  CAS  Google Scholar 

  • Kirst M, Myburg AA, Leon JPG de, Kirst ME, Scott J, Sederoff R (2004) Coordinated genetic regulation of growth and lignin revealed by quantitative trait locus analysis of cDNA microarray data in an interspecific backcross of eucalyptus. Plant Physiol 135:2368–2378

    Article  PubMed  CAS  Google Scholar 

  • Klumpp K, Schäufele R, Lötscher M, Lattanzi FA, Feneis W, Schnyder H (2005) C-isotope composition of CO2 respired by shoots and roots: fractionation during dark respiration? Plant Cell Environ 28:241–250

    Article  CAS  Google Scholar 

  • Lall S, Nettleton D, DeCook R, Che P, Howell SH (2004) Quantitative trait loci associated with adventitious shoot formation in tissue culture and the program of shoot development in Arabidopsis. Genetics 167:1883–1892

    Article  PubMed  CAS  Google Scholar 

  • Lambrides CJ, Chapman SC, Shorter R (2004) Genetic variation for carbon isotope discrimination in sunflower: association with transpiration efficiency and evidence for cytoplasmic inheritance. Crop Sci 44:1642–1653

    Article  Google Scholar 

  • Leeuwen W van, Ökrész L, Bögre L, Munnik T (2004) Learning the lipid language of plant signaling. Trends Plant Sci 9:378–384

    Article  PubMed  CAS  Google Scholar 

  • Li W, Faris JD, Muthukrishnan S, Liu D, Chen P, Gill BS (2001) Isolation and characterization of cDNA clones of acidic chitinases and beta-1,3-glucanases from wheat spike induced by Fusarium graminearum. Theor Appl Genet 102:353–362

    Article  CAS  Google Scholar 

  • Liao YC, Kreuzaler F, Fischer R, Reisener HJ, Tiburzy R (1994) Characterizaiotn of a wheat class Ib chitinase gene differentially induced in isogenic lines by infection with Puccinia graminis. Plant Sci 103:177–187

    Article  CAS  Google Scholar 

  • Marty C, Browning DD, Ye RD (2003) Identification of tetratricopeptide repeat 1 as an adaptor protein that interacts with heterotrimeric G proteins and the small GTPase Ras. Mol Cell Biol 23:3847–3858

    Article  PubMed  CAS  Google Scholar 

  • Masle J, Gilmore SR, Farguhar GD (2005) The ERECTA gene regulates plant transpiration efficiency in Arabidopsis. Nature 436:866–870

    Article  PubMed  CAS  Google Scholar 

  • Maurel M, Robin C, Simonneau T, Loustau D, Dreyer E, Desprez-Loustau ML (2004) Stomatal conductance and root-to-shoot signalling in chestnut saplings exposed to Phytophthora cinnamomi or partial soil drying. Func Plant Biol 31:41–51

    Article  CAS  Google Scholar 

  • McLachlan GJ, Bean RW, Peel D (2002) A mixture model-based approach to the clustering of microarray expression data. Bioinformatics 18:413–422

    Article  PubMed  CAS  Google Scholar 

  • McLachlan GJ, Bean RW, Ben-Tovim Jones L, Zhu JX (2005) Using mixture models to detect differentially expressed genes. Aust J Exp Agric 45:859–866

    Google Scholar 

  • Mohammady DS, Moore K, Ollerenshaw J, Shiran B (2005) Backcross reciprocal monosomic analysis of leaf relative water content, stomatal resistance, and carbon isotope discrimination in wheat under pre-anthesis water-stress conditions. Aust J Agric Res 56:1069–1077

    Article  Google Scholar 

  • Molina A, Gorlach J, Volrath S, Ryals J (2005) Wheat genes encoding two types of PR-1 proteins are pathogen-inducible, but do not respond to activators of systemic acquired resistance. GenBank Accession No. AJ007349

  • Monneveux P, Reynolds MP, Gonzalez-Santoyo H, Pena RJ, Mayr L, Zapata F (2004) Relationships between grain yield, flag leaf morphology, carbon isotope discrimination and ash content in irrigated wheat. J Agron Crop Sci 190:395–401

    Article  Google Scholar 

  • Morgan JA, LeCain DR (1991) Leaf gas exchange and related leaf traits among 15 winter wheat genotypes. Crop Sci 31:443–448

    Article  Google Scholar 

  • Morillon R, Chrispeels MJ (2001) The role of ABA and the transpiration stream in the regulation of the osmotic water permeability of leaf cells. Proc Nat Acad Sci USA 98:14138–14143

    Article  PubMed  CAS  Google Scholar 

  • Morris ER, Walker JC (2003) Receptor-like protein kinases: the keys to response. Curr Opi Plant Biol 6:339–342

    Article  CAS  Google Scholar 

  • Mustilli AC, Merlot S, Vavasseur A, Fenzi F, Giraudat J (2002) Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. Plant Cell 14:3089–3099

    Article  PubMed  CAS  Google Scholar 

  • Nail WR, Howell GS (2004) Effects of powdery mildew of grape on carbon assimilation mechanisms of potted ‘Chardonnay’ grapevines. HortSci. 39:1670–1673

    CAS  Google Scholar 

  • Nole-Wilson S, Tranby TL, Krizek BA (2005) AINTEGUMENTA-like (AIL) genes are expressed in young tissues and may specify meristematic or division-competent states. Plant Mol Biol 57:613–628

    Article  PubMed  CAS  Google Scholar 

  • Passmore LA (2004) The anaphase-promoting complex (APC): the sum of its parts? Biochem Soc Trans 32:724–727

    Article  PubMed  CAS  Google Scholar 

  • Pataki DE (2005) Emerging topics in stable isotope ecology: are there isotope effects in plant respiration? New Phytol 167:321–323

    Article  PubMed  CAS  Google Scholar 

  • Peters J-M (2002) The Anaphase-promoting complex: proteolysis in mitosis and beyond. Mol Cell 9:931–943

    Article  PubMed  CAS  Google Scholar 

  • Potokina E, Caspers M, Prasad M, Kota R, Zhang H, Sreenivasulu N, Wang M, Graner A (2004) Functional association between malting quality trait components and cDNA array based expression patterns in barley (Hordeum vulgare L.). Mol Breed 14:153–170

    Article  CAS  Google Scholar 

  • Price AH, Cairns JE, Horton P, Jones HG, Griffiths H (2002) Linking drought-resistance mechanisms to drought avoidance in upland rice using a QTL approach: progress and new opportunities to integrate stomatal and mesophyll responses. J Exp Bot 53:989–1004

    Article  PubMed  CAS  Google Scholar 

  • Ray S, Anderson JM, Urmeev FI, Goodwin SB (2003) Rapid induction of a protein disulfide isomerase and defense- related genes in wheat in response to the hemibiotrophic fungal pathogen Mycosphaerella graminicola. Plant Mol Biol 53:741–754

    Article  Google Scholar 

  • Rebetzke GJ, Condon AG, Richards RA, Read JJ (2001) Phenotypic variation and sampling for leaf conductance in wheat (Triticum aestivum L.) breeding populations. Euphytica 121:335–341

    Article  Google Scholar 

  • Rebetzke GJ, Condon AG, Richards RA, Farquhar GD (2002) Selection for reduced carbon isotope discrimination increases aerial biomass and grain yield of rainfed bread wheat. Crop Sci 42:739–745

    Article  Google Scholar 

  • Rebetzke GJ, Condon AG, Richards RA, Farquhar GD (2003) Gene action for leaf conductance in three wheat crosses. Aust J Agric Res 54:381–387

    Article  Google Scholar 

  • Reiss E, Horstmann C (2001) Drechslera teres-infected barley (Hordeum vulgare L.) leaves accumulate eight isoforms of thaumatin-like proteins. Physiol Mol Plant Pathol 58:183–188

    Article  CAS  Google Scholar 

  • Reverter A, Wang YH, Byrne KA, Tan SH, Harper GS, Lehnert SA (2004) Joint analysis of multiple cDNA microarray studies via multivariate mixed models applied to genetic improvement of beef cattle. J Ani Sci 82:3430–3439

    CAS  Google Scholar 

  • Reverter A, Barris W, McWilliam SM, Byrne KA, Wang YH, Tan SH, Hudson N, Dalrymple BP (2005) Validation of alternative methods of data normalization in gene co-expression studies. Bioinformatics 21:1112–1120

    Article  PubMed  CAS  Google Scholar 

  • Ribeiro RV, Machado EC, Oliveira RF (2003) Early photosynthetic responses of sweet orange plants infected with Xylella fastidiosa. Physiol Mol Plant Pathol 62:167–173

    Article  CAS  Google Scholar 

  • Riera M, Valon C, Fenzi F, Giraudat J, Leung J (2005) The genetics of adaptive responses to drought stress: abscisic acid-dependent and abscisic acid-independent signalling components. Physiol Plant 123:111–119

    Article  CAS  Google Scholar 

  • Schroeder JI, Allen GJ, Hugouvieux V, Kwak JM, Waner D (2001) Guard cell signal transduction. Annu Rev Plant Physiol Plant Mol Biol 52:627–658

    Article  PubMed  CAS  Google Scholar 

  • Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M, Akiyama K, Taji T, Yamaguchi-Shinozaki K, Carninci P, Kawai J, Hayashizaki Y, Shinozaki K (2002) Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J 31:279–292

    Article  PubMed  CAS  Google Scholar 

  • Serna L, Torres-Contreras J, Fenoll C (2002) Specification of stomatal fate in Arabidopsis: evidences for cellular interactions. New Phytol 153:399–404

    Article  CAS  Google Scholar 

  • Sinclair TR, Purcell LC, Sneller CH (2004) Crop Transformation and the Challenge to Increase Yield Potential. Trends Plant Sci 9:70–75

    Article  PubMed  CAS  Google Scholar 

  • Sivamani E, Bahieldin1 A, Wraith JM, Al-Niemi T, Dyer WE, Ho TD, Qu R (2000) Improved biomass productivity and water use efficiency under water deficit conditions in transgenic wheat constitutively expressing the barley HVA1 gene. Plant Sci 155:1–9

    Article  PubMed  CAS  Google Scholar 

  • Solomon KF, Labuschagne MT (2004) Inheritance of evapotranspiration and transpiration efficiencies in diallel F1 hybrids of durum wheat (Triticum turgidum L. var. durum). Euphytica 136:69–79

    Article  Google Scholar 

  • Teulat B, Merah O, Sirault X, Borries C, Waugh R, This D (2003) QTLs for grain carbon isotope discrimination in field-grown barley. Theor Appl Genet 106:118–126

    Google Scholar 

  • Tottman DR, Makepeace RJ, Broad H (1979) An explanation of the decimal code for the growth stages of cereals, with illustrations. Ann Appl Biol 93:221–234

    Article  Google Scholar 

  • Tran PH, Peiffer DA, Shin Y, Meek LM, Brody JP, Cho KWY (2002) Microarray optimisations: Increasing spot accuracy and automated identification of true microarray signals. Nucl Acids Res 30:e54

    Article  PubMed  Google Scholar 

  • Vanlerberghe GC, McIntosh L (1997) Alternative oxidase: from gene to function. Annu Rev Plant Physiol Plant Mol Biol 48:703–734

    Article  PubMed  CAS  Google Scholar 

  • Webb AAR, Baker AJ (2002) Stomatal biology: new techniques, new challenges. New Phytol 153:365–369

    Article  CAS  Google Scholar 

  • Weis K., (2003) Regulating access to the genome: nucleocytoplasmic transport throughout the cell cycle. Cell 112:441–451

    Article  PubMed  CAS  Google Scholar 

  • Wilson ID, Barker GLA, Beswick RW, Shepherd SK, Lu C, Coghill JA, Edwards D, Owen P, Lyons R, Parker JS, Lenton JR, Holdsworth MJ, Shewry PR, Edwards KJ (2004) A transcriptomics resource for wheat functional genomics. Plant Biotechnol J 2:495–506

    Article  PubMed  Google Scholar 

  • Wolfinger RD, Gibson G, Wolfinger ED, Bennett L, Hamadeh H, Bushel P, Afshari C, Paules RS (2001) Assessing gene significance from cDNA microarray expression data via mixed models. J Comput Biol 8:625–637

    Article  PubMed  CAS  Google Scholar 

  • Xu C-Y, Lin G-H, Griffin KL, Sambrotto RN (2004) Leaf respiratory CO2 is 13C-enriched relative to leaf organic components in five species of C3 plants. New Phytol 163:499–505

    Article  CAS  Google Scholar 

  • Xue GP, Loveridge CW (2004) HvDRF1 is involved in abscisic acid-mediated gene regulation in barley and produces two forms of AP2 transcriptional activators, interacting preferably to a CT-rich element. Plant J 37:326–339

    Article  PubMed  CAS  Google Scholar 

  • Xue GP, Bower NI, McIntyre CL, Riding GA, Kazan K, Shorter R (2006) TaNAC69 from the NAC superfamily of transcription factors is up-regulated by abiotic stresses in wheat and recognises two consensus DNA-binding sequences. Func Plant Biol 33:43–57

    Article  CAS  Google Scholar 

  • Xue QW, Weiss A, Arkebauer TJ, Baenziger PS (2004) Influence of soil water status and atmospheric vapor pressure deficit on leaf gas exchange in field-grown winter wheat. Environ Exp Bot 51:167–179

    Article  Google Scholar 

  • Zadoks JC, Chang TT, Konzak CF (1974) A decimal code for the growth stages of cereals. Weed Res 14:415–421

    Article  Google Scholar 

  • Zhang JZ, Creelman RA, Zhu JK (2004) From laboratory to field. Using information from Arabidopsis to engineer salt, cold, and drought tolerance in crops. Plant Physiol 135:615–621

    Article  PubMed  CAS  Google Scholar 

  • Zheng Y (2004) G protein control of microtubule assembly. Annu Rev Cell Dev Biol 20:867–894

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang-Ping Xue.

Electronic supplementary material

Electronic supplementary material

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xue, GP., McIntyre, C.L., Chapman, S. et al. Differential gene expression of wheat progeny with contrasting levels of transpiration efficiency. Plant Mol Biol 61, 863–881 (2006). https://doi.org/10.1007/s11103-006-0055-2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-006-0055-2

Keywords

Navigation