Skip to main content
Log in

Correlation between the parameters of contingent negative variation and characteristics of variational pulsometry in Parkinsonian patients

  • Published:
Neurophysiology Aims and scope

In patients suffering from Parkinson's disease (PD), we analyzed correlations between the parameters of contingent negative variation (CNV) and data of variational pulsometry (according to the measurements of R-R ECG intervals). Studies were carried out on 35 patients (group PD), 49 to 74 years old, with the stage of disease of 1.5 to 3.0 according to the Hoehn-Yahr international classification. In the course of CNV recording (i.e., in the state of a certain functional loading), we observed significant negative correlations between the integral magnitude (area) of this potential and indices of variational pulsometry (RMSSD, SDNN, C. var, and HF) that characterize the intensity of parasympathetic (respiratory) influences on the cardiovascular system. In the control group, such correlations were absent. We found significant correlations between the autonomic balance, CNV magnitude, and stage of PD reflecting the level of generalization of the pathological process. In the subgroup of patients with the PD stage 1.5 to 2.0, significant changes in the mean values of indices of parasympathetic influences during recording of the CNV were not observed, while in another subgroup (the PD stage 2.5 to 3.0), these values increased significantly (P < 0.05 and P < 0.01). If the estimates of the PD stage were low, the CNV area demonstrated greater values (P < 0.01). The disturbance of coordination of muscle-to-muscle interactions in the PD group is, probably, an important factor responsible for parasympathetic dysregulation and suppression of the CNV generation. We found positive correlation between the intensity of parasympathetic influences in the course of CNV recording and the level of postural disorders (r = 0.37, P < 0.05). On the contrary, the CNV magnitude demonstrated a negative correlation with the intensity of these disorders (r = −0.36, P < 0.05), as well as with the level of postural instability (r = −0.55, P < 0.001). We hypothesize that alterations of the autonomic balance and the activity of those cerebral structures, which are responsible for the motor readiness, result, to a significant extent, from weakening of the activity of the noradrenergic system due to degenerative processes developing in cells of the locus coeruleus. The impairment of the latter structure, together with degeneration of neurons of the substantia nigra and a decrease in the level of nigro-striatal dopamine, underlies the pathomorphological pattern of PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. V. Gnezditskii, Evoked Potentials of the Brain in Clinical Practice [in Russian], MEDpress-Inform, Moscow (2003).

    Google Scholar 

  2. Y. Nagai, H. D. Critchley, E. Featherstone, et al., “Brain activity relating to the contingent negative variation: an fMRI investigation,” Neuroimage, 21, No. 4, 1232–1241 (2004).

    Article  PubMed  CAS  Google Scholar 

  3. H. Shibasaki, G. Barrett, E. Halliday, and A. M. Halliday, “Components of the movement-related cortical potential and their scalp topography,” Electroencephalogr. Clin. Neurophysiol., 49, Nos. 3/4, 213–226 (1980).

    PubMed  CAS  Google Scholar 

  4. A. Ikeda, H. Shibasaki, R. Kaji, et al., “Dissociation between contingent negative variation (CNV) and Bereitschaftspotential (BP) in patients with parkinsonism,” Electroencephalogr. Clin. Neurophysiol., 102, No. 2, 142–151 (1997).

    Article  PubMed  CAS  Google Scholar 

  5. M. Oishi, Y. Mochizuki, C. Du, and T. Takasu, “Contingent negative variation and movement-related cortical potentials in parkinsonism,” Electroencephalogr. Clin. Neurophysiol., 95, No. 5, 346–349 (1995).

    Article  PubMed  CAS  Google Scholar 

  6. I. N. Krylov, “Characteristics of psychomotor reaction-evoked endogenous potentials in the norm and dysfunction of basal ganglia in humans,” Sechenov Ross. Fiziol. Zh., 81, No. 4, 51–62 (1995).

    CAS  Google Scholar 

  7. S. Yazawa, A. Ikeda, R. Kaji, et al., “Abnormal cortical processing of voluntary muscle relaxation in patients with focal hand dystonia studied by movement-related potentials,” Brain, 122, Part 7, 1357–1366 (1999).

    Article  PubMed  Google Scholar 

  8. E. P. Lukhanina, I. N. Karaban', Yu. A. Burenok, et al., “Two phases of contingent negative variation in humans: relation to motor and mental functions,” Sechenov. Ross. Fiziol. Zh., 91, No. 4, 364–373 (2005).

    CAS  Google Scholar 

  9. L. Deecke, “Clinical neurophysiology of Parkinson's disease. Bereitschaftspotential and contingent negative variation,” Adv. Neurol., 86, 257–271 (2001).

    PubMed  CAS  Google Scholar 

  10. R. Verleger, E. Wascher, V. Arolt, et al., “Slow EEG potentials (contingent negative variation and post-imperative negative variation) in schizophrenia: their association to the present state and to Parkinsonian medication effects,” Clin. Neurophysiol., 110, No. 7, 1175–1192 (1999).

    Article  PubMed  CAS  Google Scholar 

  11. G. Amabile, F. Fattapposta, F. Pierelli, et al., “Endogenous evoked potentials and vigilance levels variations,” Funct. Neurol., 2, No. 4, 523–527 (1987).

    PubMed  CAS  Google Scholar 

  12. V. L. Golubev, Ya. I. Levin, and A. M. Vein, Parkinson's Disease and Parkinsonian Syndrome [in Russian], MEDpress, Moscow (2000).

    Google Scholar 

  13. S. P. Moskovko, “Variability of cardiac rhythm in Parkinson's disease and parkinsonian syndrome,” Biomed. Biosoc. Anthropol., No. 5, 14–18 (2005).

  14. T. H. Haapaniemi, V. Pursiainen, J. T. Korpelainen, et al., “Ambulatory ECG and analysis of heart rate variability in Parkinson's disease,” J. Neurol., Neurosurg., Psychiat., 70, No. 3, 305–310 (2001).

    Article  CAS  Google Scholar 

  15. M. Kallio, T. Haapaniemi, J. Turkka, et al., “Heart rate variability in patients with untreated Parkinson's disease,” Eur. J. Neurol., 7, No. 6, 667–672 (2000).

    Article  PubMed  CAS  Google Scholar 

  16. M. M. Hoehn and M. D. Yahr, “Parkinsonism: onset, progression and mortality,” Neurology, 17, 427–442 (1967).

    Article  PubMed  CAS  Google Scholar 

  17. S. P. Moskovko, V. M. Ioltukhovskii, G. S. Moskovko, and M. P. Kostenko, “Standardization of the technique of computer variational pulsometry in order to qualify the state of autonomic regulaiton,” Visn. Vinnytsk. Derzh. Med. Univ., 4, No. 1, 238–239 (2000).

    Google Scholar 

  18. R. M. Baevskii, O. I. Kirillov, and S. Z. Kletskin, Mathematical Analysis of Changes in Cardiac Rhythm in Stress [in Russian], Nauka, Moscow (1984).

    Google Scholar 

  19. V. B. Shatilo, I. A. Antonyuk-Shcheglova, “Dependence of reaction of the cardiovascular system to psychoemotional stress influence on the initial state of autonomic regulation in humans of elderly age,” Probl. Stareniya Dolgoletiya, 4, Nos. 3/4, 347–355 (1994).

    Google Scholar 

  20. E. A. Alimova and V. L. Golubev, “Autonomic dysfunction in Parkinson's disease,” Korsakov Zh. Nevrol. Psychiat., 92, No. 5, 48–52 (1992).

    Google Scholar 

  21. E. B. Andersen and F. Boesen, “Sympathetic vasoconstrictor reflexes in Parkinson's disease with autonomic dysfunction,” Clin. Auton. Res., 7, No. 1, 5–11 (1997).

    Article  PubMed  CAS  Google Scholar 

  22. R. Sandyk and G. I. Awerbuch, “Dysautonomia in Parkinson's disease: relationship to motor disability,” Int. J. Neurosci., 64, Nos. 1/4, 23–31 (1992).

    Article  PubMed  CAS  Google Scholar 

  23. I. S. Breslav and V. D. Glebovskii, Control of Respiration [in Russian], Leningrad (1981).

  24. G. N. Kryzhanovskii, I. N. Karaban', S. V. Magaeva, and N. V. Karaban', Compensatory and Recovery Processes in Parkinson's Disease [in Russian], Institute of Gerontology, Acad. Med Sci. of Ukraine, Kyiv (1995).

    Google Scholar 

  25. I. V. Litvinenko, Parkinson's Disease [in Russian], Miklosh, Moscow (2006).

    Google Scholar 

  26. Ch. Brefel-Courbon, “Importance of dopamine and noradrenergic decline in Parkinson's disease,” Synapse Newslett., No. 19, 2–4 (2008).

    Google Scholar 

  27. K. A. Jellinger, “Alpha-synuclein pathology in Parkinson's and Alzheimer's disease brain: incidence and topographic distribution — a pilot study,” Acta Neuropathol. Berl., 106, No. 3, 191–201 (2003).

    Article  PubMed  Google Scholar 

  28. C. Zarow, S. A. Lyness, J. A. Mortimer, and H. C. Chui, “Neuronal loss is greater in the locus coeruleus than nucleus basalis and substantia nigra in Alzheimer and Parkinson diseases,” Arch. Neurol., 60, No. 3, 337–341 (2003).

    Article  PubMed  Google Scholar 

  29. V. M. Smirnov, Physiology of the Central Nervous System [in Russian], Nauka, Moscow (2002).

    Google Scholar 

  30. G. Micieli, P. Tosi, S. Marcheselli, and A. Cavallini, “Autonomic dysfunction in Parkinson's disease,” Neurol. Sci., 24, Suppl. 1, 32–34 (2003).

    Article  Google Scholar 

  31. H. Takahashi and K. Wakabayashi, “Controversy: is Parkinson's disease a single disease entity? Yes,” Parkinsonism Relat. Disord., 11, Suppl. 1, 31–37 (2005).

    Article  Google Scholar 

  32. T. Amino, S. Orimo, Y. Itoh, et al., “Profound cardiac sympathetic denervation occurs in Parkinson disease,” Brain Pathol., 15, No. 1, 29–34 (2005).

    Article  PubMed  Google Scholar 

  33. D. S. Goldstein, Y. Sharabi, B. I. Karp, et al., “Cardiac sympathetic denervation preceding motor signs in Parkinson disease,” Clin. Auton. Res., 17, No. 2, 118–121 (2007).

    Article  PubMed  Google Scholar 

  34. S. Saiki, G. Hirose, K. Sakai, et al., “Cardiac 1231-MIBG scintigraphy can assess the disease severity and phenotype of PD,” J. Neurol. Sci., 220, Nos. 1/2, 105–111 (2004).

    Article  PubMed  Google Scholar 

  35. E. P. Lukhanina, N. A. Mel'nik, N. M. Berezetskaya, and I. N. Karaban', “Correlations between indices of P300 EEG potential, cognitive tests, and variational pulsometry in parkinsonian patients,” Neurophysiology, 40, No. 1, 39–47 (2008).

    Article  Google Scholar 

  36. V. V. Frol'kis, S. G. Burchinskii, and Yu. E. Rushkevich, “Age-related prerequisites for development of Parkinson's disease,” Korsakov Zh. Nevrol. Psykhiat., 88, No. 9, 137–145 (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. P. Lukhanina.

Additional information

Neirofiziologiya/Neurophysiology, Vol. 40, No. 3, pp. 242–253, May–June, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lukhanina, E.P., Karaban’, I.N., Mel’nik, N.A. et al. Correlation between the parameters of contingent negative variation and characteristics of variational pulsometry in Parkinsonian patients. Neurophysiology 40, 204–214 (2008). https://doi.org/10.1007/s11062-008-9038-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-008-9038-z

Keywords

Navigation