Skip to main content
Log in

Polymerization study and rheological behavior of a RTM6 epoxy resin system during preprocessing step

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Curing process and rheological behaviors of a monocomposant epoxy resin used in structural aeronautic applications are investigated. This study helped settle the basic parameters in order to optimize the infusion process of carbon fibers in an epoxy matrix. The effect of carbon nanotube dispersion during the preinjection step is also studied to improve electrical behavior of composite parts. The curing process has been analyzed at isothermal temperature using differential scanning calorimetry technique. Viscosity measurements were achieved with a Couette geometry, suitable for low viscosity resin. A shear-thinning effect caused by adding CNTs in the epoxy matrix is detected. It is more pronounced at high temperature for increasing CNT mass content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wang S, Chung DDL. Interlaminar interface in carbon fiber polymer-matrix. Compos Interfaces. 1998;6:497–505.

    Article  Google Scholar 

  2. Iijima S. Helical microtubules of graphitic carbon. Nature. 1991;354:56–8.

    Article  CAS  Google Scholar 

  3. Lonjon A, Demont P, Dantras E, Lacabanne C. Electrical conductivity improvement of aeronautical carbon fiber reinforced polyepoxy composites by insertion of carbon nanotubes. J Non-Cryst Solids. 2012;358:1859–62 Elsevier B.V.

    Article  CAS  Google Scholar 

  4. Bauhofer W, Kovacs JZ. A review and analysis of electrical percolation in carbon nanotube polymer composites. Compos Sci Technol. 2009;69:1486–98 Elsevier Ltd.

    Article  CAS  Google Scholar 

  5. Lux F. Review models proposed to explain the electrical conductivity of mixtures made of conductive and insulating materials. J Mater. 1993;28:285–301.

    Article  CAS  Google Scholar 

  6. Barrau S, Demont P, Peigney A. DC and AC conductivity of carbon nanotubes-polyepoxy composites. Macromolecules. 2003;36:5187–94.

    Article  CAS  Google Scholar 

  7. Gojny FH, Wichmann MHG, Fiedler B, Bauhofer W, Schulte K. Influence of nano-modification on the mechanical and electrical properties of conventional fibre-reinforced composites. Compos Part A Appl Sci Manuf. 2005;36:1525–35.

    Article  Google Scholar 

  8. Qiu J, Zhang C, Wang B, Liang R. Carbon nanotube integrated multifunctional multiscale composites. Nanotechnology. 2007;18:275708.

    Article  Google Scholar 

  9. Zeng X, Yu S, Sun R. Effect of functionalized multiwall carbon nanotubes on the curing kinetics and reaction mechanism of bismaleimide–triazine. J Therm Anal Calorim. 2013;114:387–95 Springer Netherlands.

    Article  CAS  Google Scholar 

  10. Gude MR, Prolongo SG, Ureña A. Effect of the epoxy/amine stoichiometry on the properties of carbon nanotube/epoxy composites. J Therm Anal Calorim. 2012;108:717–23 Springer Netherlands.

    Article  CAS  Google Scholar 

  11. Schulz SC, Faiella G, Buschhorn ST, Prado LASA, Giordano M, Schulte K, et al. Combined electrical and rheological properties of shear induced multiwall carbon nanotube agglomerates in epoxy suspensions. Eur Polym J. 2011;47:2069–77 Elsevier Ltd.

    Article  CAS  Google Scholar 

  12. Hexcel. HexFlow® RTM 6 Product Data [Internet]. http://www.hexcel.com/Resources/DataSheets/RTM-Data-Sheets/RTM6_global.pdf. Accessed 15 Apr 2014.

  13. Skordos AA, Partridge IK. Determination of the degree of cure under dynamic and isothermal curing conditions with electrical impedance. J Polym Sci Part B Polym Phys. 2003;42:146–54.

    Article  Google Scholar 

  14. Aduriz XA, Lupi C, Boyard N, Bailleul J-L, Leduc D, Sobotka V, et al. Quantitative control of RTM6 epoxy resin polymerisation by optical index determination. Compos Sci Technol. 2007;67:3196–201.

    Article  CAS  Google Scholar 

  15. El Sawi I, Olivier PA, Demont P, Bougherara H. Investigation of the effect of double-walled carbon nanotubes on the curing reaction kinetics and shear flow of an epoxy resin. J Appl Polym Sci. 2012;126:358–66.

    Article  Google Scholar 

  16. Karkanas PI, Partridge IK. Cure modeling and monitoring of epoxy/amine resin systems. I. Cure kinetics modeling. J Appl Polym Sci. 2000;77:1419–31.

    Article  CAS  Google Scholar 

  17. Moosburger-Will J, Greisel M, Sause MGR, Horny R, Horn S. Influence of partial cross-linking degree on basic physical properties of RTM6 epoxy resin. J Appl Polym Sci. 2013;130:4339–46.

    Google Scholar 

  18. Mukherjee G. Evaluation of processing temperature in the production of fibre reinforced epoxy composites. J Therm Anal Calorim. 2012;108:947–50 Springer Netherlands.

    Article  CAS  Google Scholar 

  19. Turi EA. Thermal characterization of polymeric materials. New York: Adcademic Press; 1997. p. 1396–418.

    Google Scholar 

  20. Pascault JP, Williams RJJ. Glass transition temperature versus conversion relationships for thermosetting polymers. J Polym Sci Part B Polym Phys. 1990;28:85–95 Wiley.

    Article  CAS  Google Scholar 

  21. Kaelbe DH. Physical and chemical properties of cured resins. In: May CA, Tanaka Y, editors. Epoxy resins: chemistry and technology. New York: Marcel Dekker; 1973. p. 327–371.

  22. Pascault J, Sautereau H, Verdu J, Williams R. Thermosetting polymers. Boca Raton: CRC Press; 2002.

    Book  Google Scholar 

  23. Hutchinson JM. Interpretation of glass transition phenomena in the light of the strength-fragility concept. Polym Int. 1998;47:56–64.

    Article  CAS  Google Scholar 

  24. Hutchinson JM. Physical aging of polymers. Prog Polym Sci. 1995;20:703–30.

    Article  CAS  Google Scholar 

  25. Hutchinson JM, McCarthy D, Montserrat S, Cortés P. Enthalpy relaxation in a partially cured epoxy resin. J Polym Sci Part B Polym Phys. 1996;34:229–39 Wiley.

    Article  CAS  Google Scholar 

  26. Odegard GM, Bandyopadhyay A. Physical aging of epoxy polymers and their composites. J Polym Sci Part B Polym Phys. 2011;49:1695–716 Wiley.

    Article  CAS  Google Scholar 

  27. Fogel M, Parlevliet P, Geistbeck M, Olivier P, Dantras E. Thermal, rheological and electrical characterization of MWCNTs/epoxy matrices for an innovative spray process. Compos Sci Technol (Under revision).

  28. Rahatekar SS, Koziol KKK, Butler SA, Elliott JA, Shaffer MSP, Mackley, et al. Optical microstructure and viscosity enhancement for an epoxy resin matrix containing multiwall carbon nanotubes. J Rheol. 2006;50:599 N. Y. N. Y.

    Article  CAS  Google Scholar 

  29. Ma A, Chinesta F, Mackley M. The rheology and modeling of chemically treated carbon nanotubes suspensions. J Rheol. 2009;53:547 N. Y. N. Y.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Dantras.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Causse, N., Benchimol, S., Martineau, L. et al. Polymerization study and rheological behavior of a RTM6 epoxy resin system during preprocessing step. J Therm Anal Calorim 119, 329–336 (2015). https://doi.org/10.1007/s10973-014-4147-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-4147-y

Keywords

Navigation