Skip to main content
Log in

Morphology, rheological, and electrical properties of flexible epoxy/carbon composites cured by UV technique

  • Organic and Hybrid Functional Materials
  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The aim of this research was to develop the UV-cured epoxy/carbon composites. The rheological properties of the uncured neat epoxy and epoxy composite with graphite, graphene, and multi-walled carbon nanotube (MWCNT) were evaluated to observe the macroscopic flow behavior and the microstructure by shear force. The results showed that epoxy/carbon composites at high filler content exhibited shear-thinning behavior with a high yield stress value and epoxy/MWCNT at 30 phr showed this characteristic obviously. The fractured surface and particle dispersion in the epoxy matrix were evaluated by scanning electron microscopy and transmission electron microscopy, respectively. Epoxy/carbon composites at high filler content displayed rough fracture surface with particle agglomeration, thus the electrical conductivity increased. The result showed that the epoxy/MWCNT composites had high potential to use as a conductive adhesive with a 3D printing process due to high electrical conductivity with high viscosity that could be formed easily during processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. R.D. Farahani, M. Dube, and D. Therriault: Three-dimensional printing of multifunctional nanocomposites: Manufacturing techniques and applications. Adv. Mater. 28, 5794–5821 (2016).

    Article  CAS  Google Scholar 

  2. Z. Weng, Y. Zhou, W. Lin, T. Senthil, and L. Wu: Structure-property relationship of nano enhanced stereolithography resin for desktop SLA 3D printer. Composites, Part A 88, 234–242 (2016).

    Article  CAS  Google Scholar 

  3. J.Z. Manapat, J.D. Mangadlao, B.D.B. Tiu, G.C. Tritchler, and R.C. Advincula: High-strength stereolithographic 3D printed nanocomposites: Graphene oxide metastability. ACS Appl. Mater. Interfaces 9, 10085–10093 (2017).

    Article  CAS  Google Scholar 

  4. J.Z. Manapat, Q.Y. Chen, P. Ye, and R.C. Advincula: 3D printing of polymer nanocomposites via stereolithography. Macromol. Mater. Eng. 302, 1–13 (2017).

    Article  CAS  Google Scholar 

  5. R. Yu, X. Yang, Y. Zhang, X. Zhao, X. Wu, T. Zhao, Y. Zhao, and W. Huang: Three-dimensional printing of shape memory composites with epoxy-acrylate hybrid photopolymer. ACS Appl. Mater. Interfaces 9, 1820–1829 (2017).

    Article  CAS  Google Scholar 

  6. P.J. Bartolo and J. Gaspar: Metal filled resin for stereolithography metal part. CIRP Ann. Manuf. Technol. 57, 235–238 (2008).

    Article  Google Scholar 

  7. T.Y. Kim, S.I. Kim, and J.J. Park: Fabrication of thermally stable silver-organic complex (TS-SOC) based conductible filament materials for 3D printing. Adv. Mater. Technol. 2, 1–9 (2017).

    Google Scholar 

  8. G. Szebenyi, T. Czigany, B. Magyar, and J. Karger-Kocsis: 3D printing-assisted interphase engineering of polymer composites: Concept and feasibility. Express Polym. Lett. 11, 525–530 (2017).

    Article  CAS  Google Scholar 

  9. X. Kuang, Z. Zhao, K.J. Chen, D.N. Fang, G.Z. Kang, and H.J. Qi: High-speed 3D printing of high-performance thermosetting polymers via two-stage curing. Macromol. Rapid Commun. 39, 1–8 (2018).

    Article  CAS  Google Scholar 

  10. D.W. Abueidda, R.K. Abu Al-Rub, A.S. Dalaq, H.A. Younes, A.A. Al Ghaferi, and T.K. Shah: Electrical conductivity of 3D periodic architectured interpenetrating phase composites with carbon nanostructured-epoxy reinforcements. Compos. Sci. Technol. 118, 127–134 (2015).

    Article  CAS  Google Scholar 

  11. H. Sun, Y. Kim, Y.C. Kim, I.K. Park, J. Suhr, D. Byun, H.R. Choi, K. Kuk, O.H. Baek, Y.K. Jung, H.J. Choi, K.J. Kim, and J.D. Nam: Self-standing and shape-memorable UV-curing epoxy polymers for three-dimensional (3D) continuous-filament printing. J. Mater. Chem. 6, 2996–3003 (2018).

    CAS  Google Scholar 

  12. K. Chen, X. Kuang, V. Li, G. Kang, and H.J. Qi: Fabrication of tough epoxy with shape memory effects by UV-assisted direct-ink write printing. Soft Matter 14, 1879–1886 (2018).

    Article  CAS  Google Scholar 

  13. N.S. Hmeidat, J.W. Kemp, and B.G. Compton: High-strength epoxy nanocomposites for 3D printing. Compos. Sci. Technol. 160, 9–20 (2018).

    Article  CAS  Google Scholar 

  14. K. Chizari, M. Arjmand, Z. Liu, U. Sundararaj, and D. Therriault: Three-dimensional printing of highly conductive polymer nanocomposites for EMI shielding applications. Mater. Today Commun. 11, 112–118 (2017).

    Article  CAS  Google Scholar 

  15. B.G. Compton, N.S. Hmeidat, R.C. Pack, M.F. Heres, and J.R.S. Sangoro: Electrical and mechanical properties of 3D-printed graphene-reinforced epoxy. JOM 70, 292–297 (2018).

    Article  CAS  Google Scholar 

  16. N. Nguyen, E. Melamed, J.G. Park, S.L. Zhang, A.Y. Hao, and R. Liang: Direct printing of thermal management device using low-cost composite Ink. Macromol. Mater. Eng. 302, 1–6 (2017).

    Article  CAS  Google Scholar 

  17. Z. Fahem and W. Bauhofer: Free radical fast photo-cured gate dielectric for top-gate polymer field effect transistors. Org. Electron. 13, 1382–1385 (2012).

    Article  CAS  Google Scholar 

  18. M. Atif, J.L. Yang, H.T. Yang, N. Jun, and R. Bongiovanni: Effect of novel UV-curing approach on thermo-mechanical properties of colored epoxy composites in outsized dimensions. J. Compos. Mater. 50, 3147–3156 (2016).

    Article  CAS  Google Scholar 

  19. M. Atif, R. Bongiovanni, and J. Yang: Cationically UV-cured epoxy composites. Polym. Rev. 55, 90–106 (2015).

    Article  CAS  Google Scholar 

  20. C. V. James and L. Saoshi: Photoinitiated cationic polymerization of epoxy alcohol monomers. J. Polym. Sci. A Polym. Chem. 38, 389–401 (2000).

    Article  Google Scholar 

  21. G.D. Liu, X.Q. Zhu, B.B. Xu, X.C. Qian, G.Q. Song, and J. Nie: Cationic photopolymerization of bisphenol A diglycidyl ether epoxy under 385 nm. J. Appl. Polym. Sci. 130, 3698–3703 (2013).

    Article  CAS  Google Scholar 

  22. C. V. James and A.O. Ricardo: Benzyl alcohols as accelerators in the photoinitiated cationic polymerization of epoxide monomers. Polym. Sci. A Polym. Chem. 40, 2298–2309 (2002).

    Article  CAS  Google Scholar 

  23. M. Sangermano, G. Malucelli, F. Morel, C. Decker, and A. Priola: Cationic photopolymerization of vinyl ether systems: Influence of the presence of hydrogen donor additives. Eur. Polym. J. 35, 639–645 (1999).

    Article  CAS  Google Scholar 

  24. J.P. Zhou, S.J. Jia, W.L. Fu, Z.L. Liu, and Z.Y. Tan: Fast curing of thick components of epoxy via modified UV-triggered frontal polymerization propagating horizontally. Mater. Lett. 176, 228–231 (2016).

    Article  CAS  Google Scholar 

  25. M. Sangermano, M. Periolatto, V. Signore, and P.R. Spena: Improvement of the water-vapor barrier properties of an UV-cured epoxy coating containing graphite oxide nanoplatelets. Prog. Org. Coat. 103, 152–155 (2017).

    Article  CAS  Google Scholar 

  26. Y. Chen, X. Jia, M. Wang, and T. Wang: A synergistic effect of a ferrocenium salt on the diaryliodonium salt-induced visible-light curing of bisphenol-A epoxy resin. RSC Adv. 5, 33171–33176 (2015).

    Article  CAS  Google Scholar 

  27. M. Sharif, B. Pourabbas, M. Sangermano, F.S. Moghadam, M. Mohammadi, I. Roppolo, and A. Fazli: The effect of graphene oxide on UV curing kinetics and properties of SU8 nanocomposites. Polym. Int. 66, 405–417 (2017).

    Article  CAS  Google Scholar 

  28. H. Alhumade, A. Yu, A. Elkamel, L. Simon, and A. Abdala: Enhanced protective properties and UV stability of epoxy/graphene nanocomposite coating on stainless steel. Express Polym. Lett. 10, 1034–1046 (2016).

    Article  CAS  Google Scholar 

  29. U. Boro and N. Karak: Tannic acid based hyperbranched epoxy/reduced graphene oxide nanocomposites as surface coating materials. Prog. Org. Coat. 104, 180–187 (2017).

    Article  CAS  Google Scholar 

  30. M. Martin-Gallego, M. Hernández, V. Lorenzo, R. Verdejo, M.A. Lopez-Manchado, and M. Sangermano: Cationic photocured epoxy nanocomposites filled with different carbon fillers. Polymer 53, 1831–1838 (2012).

    Article  CAS  Google Scholar 

  31. P. Uraiwan and S. Anongnat: Effective thermal conductivity of 3,5-diaminobenzoyl-functionalized multiwalled carbon nanotubes/epoxy composites. J. Appl. Polym. Sci. 130, 3184–3196 (2013).

    Article  CAS  Google Scholar 

  32. P. Uraiwan, S. Chavakorn, and S. Anongnat: Direct functionalization with 3,5-substituted benzoic acids of multiwalled carbon nanotube/epoxy composites. Polym. Eng. Sci. 53, 2194–2204 (2013).

    Google Scholar 

  33. P. Uraiwan, S. Chavakorn, P. Piyasan, and S. Anongnat: Influence of diaminobenzoyl-functionalized multiwalled carbon nanotubes on the nonisothermal curing kinetics, dynamic mechanical properties, and thermal conductivity of epoxy–anhydride composites. J. Appl. Polym. Sci. 133, 1–10 (2016).

    Google Scholar 

  34. D. Samali, H. Maung, and C.D. Webster: Cationic UV-curable conductive composites from exfoliated graphite. Macrosmol. Mater. Eng. 296, 70–82 (2011).

    Article  CAS  Google Scholar 

  35. D.B. Genovese: Shear rheology of hard-sphere, dispersed, and aggregated suspensions, and filler-matrix composites. Adv. Colloid Interface Sci. 171–172, 1–16 (2012).

    Article  CAS  Google Scholar 

  36. M.K. Abdelhalim, M.M. Mady, and M.M. Ghannam: Rheological and dielectric properties of different gold nanoparticle sizes. Lipids Health Dis. 10, 1–10 (2011).

    Article  CAS  Google Scholar 

  37. K.N. Moelants, R. Cardinaels, R.P. Jolie, T.A.J. Verrijssen, S. Van Buggenhout, L.M. Zumalacarregui, A.M. Van Loey, P. Moldenaers, and M.E. Hendrickx: Relation between particle properties and rheological characteristics of carrot-derived suspensions. Food Bioprocess Technol. 6, 1127–1143 (2013).

    Article  CAS  Google Scholar 

  38. S.S. Zhang, Y.J. Zhang, and H.W. Wang: Effect of particle size distributions on the rheology of Sn/Ag/Cu lead-free solder pastes. Mater. Des. 31, 594–598 (2010).

    Article  CAS  Google Scholar 

  39. F. Khalkhal and P.J. Carreau: Scaling behavior of the elastic properties of non-dilute MWCNT-epoxy suspensions. Rheol. Acta 50, 717–728 (2011).

    Article  CAS  Google Scholar 

  40. Y. Aoki: Rheology of carbon black suspensions. IV. Effect of suspending media on the sol-gel transition behavior. Rheol. Acta 50, 779–785 (2011).

    Article  CAS  Google Scholar 

  41. T.F. Tadros: Rheology of Dispersions (Wiley-VCH Verlag GmbH & Co. KGaA, Germany, 2010); pp. 42–87.

    Book  Google Scholar 

  42. H.L. Calambas Pulgarin, L.B. Garrido, and M.P. Albano: Rheological properties of aqueous alumina-alumina-doped Y-PSZ suspensions. Ceram. Int. 38, 1843–1849 (2012).

    Article  CAS  Google Scholar 

  43. M.J. Solomon, A.S. Almusallam, K.F. Seefeldt, A. Somwangthanaroj, and P. Varadan: Rheology of polypropylene/clay hybrid materials. Macromolecules 34, 1864–1872 (2001).

    Article  CAS  Google Scholar 

  44. Z. Liu, H. Li, J. Gu, D. Wang, and C. Qu: Performances of an epoxy-amine network after introducing the MWCNTs: Rheology, thermal and electrical conductivity, mechanical properties. J. Adhes. Sci. Technol. 33, 382–394 (2019).

    Article  CAS  Google Scholar 

  45. I. Levy, E.M. Wormser, M. Varenik, M. Buzaglo, R. Nadiv, and O. Regev: Graphene-graphite hybrid epoxy composites with controllable workability for thermal management. Beilstein J. Nanotechnol. 10, 95–104 (2019).

    Article  CAS  Google Scholar 

  46. V.N. Matveenko and E.A. Kirsanov: The viscosity and structure of dispersed systems. Mosc. Univ. Chem. Bull. 4, 243–276 (2011).

    Google Scholar 

  47. M. Castellino, A. Chiolerio, M.I. Shahzad, P.V. Jagdale, and A. Tagliaferro: Electrical conductivity phenomena in an epoxy resin–carbon-based materials composite. Composites, Part A 61, 108–114 (2014).

    Article  CAS  Google Scholar 

  48. F.H. Gojny, M.G. Wichmann, B. Fiedler, I.A. Kinloch, W. Bauhofer, A.H. Windle, and K. Schulte: Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites. Polymer 47, 2036–2045 (2006).

    Article  CAS  Google Scholar 

  49. J. Chang, G. Liang, A. Gu, S. Cai, and L. Yuan: The production of carbon nanotube/epoxy composites with a very high dielectric constant and low dielectric loss by microwave curing. Carbon 50, 689–698 (2012).

    Article  CAS  Google Scholar 

  50. A. Moisala, Q. Li, I.A. Kinloch, and A.H. Windle: Thermal and electrical conductivity of single- and multi-walled carbon nanotube-epoxy composites. Compos. Sci. Technol. 66, 1285–1288 (2006).

    Article  CAS  Google Scholar 

  51. J.W. Sandler, J.E. Kirk, I.A. Kinloch, M.P. Shaffer, and A.H. Windle: Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites. Polymer 44, 5893–5899 (2003).

    Article  CAS  Google Scholar 

  52. Q. Li, Q. Xue, L. Hao, X. Gao, and Q. Zheng: Large dielectric constant of the chemically functionalized carbon nanotube/polymer composites. Compos. Sci. Technol. 68, 2290–2296 (2008).

    Article  CAS  Google Scholar 

  53. C.A. Martin, J.W. Sandler, M.P. Shaffer, M.K. Schwarz, W. Bauhofer, K. Schulte, and A.H. Windle: Formation of percolating networks in multi-wall carbon-nanotube–epoxy composites. Compos. Sci. Technol. 64, 2309–2316 (2004).

    Article  CAS  Google Scholar 

  54. C. Min, D. Yu, J. Cao, G. Wang, and L. Feng: A graphite nanoplatelet/epoxy composite with high dielectric constant and high thermal conductivity. Carbon 55, 116–125 (2013).

    Article  CAS  Google Scholar 

  55. J. Sandler, M.S.P. Shaffer, T. Prasse, W. Bauhofer, K. Schulte, and A.H. Windle: Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties. Polymer 40, 5967–5971 (1999).

    Article  CAS  Google Scholar 

  56. P. Charoeythornkhajhornchai, P. Arthanu, and N. Poonsap: Cure behavior, morphology and dielectric constant of flexible epoxy composite with Cu particle, SWCNT and MWCNT nanoparticles by UV-Cure technique. Burapha Sci. J. 24, 489–499 (2018).

    Google Scholar 

Download references

Acknowledgments

We would like to acknowledge Aditya Birla Chemicals Ltd., Rayong, Thailand, for chemical support. We would like to thank Prof. Dr. Piyasan Praserthdam and Associate Prof. Dr. Anongnat Somwangthanaroj for analytical instrument support. P. Charoeythornkhajhornchai would like to acknowledge Faculty of Engineering (VJP 12/2560), Burapha University, for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pollawat Charoeythornkhajhornchai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Charoeythornkhajhornchai, P., Samthong, C. Morphology, rheological, and electrical properties of flexible epoxy/carbon composites cured by UV technique. Journal of Materials Research 35, 1874–1887 (2020). https://doi.org/10.1557/jmr.2020.156

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2020.156

Navigation