Skip to main content
Log in

A short and long range study of mullite–zirconia–zircon composites

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

In the field of refractory materials, ceramics containing mullite–zirconia are the basis of those most used in the industry of glass and steel. It is known that the addition of zircon improves the behavior of the refractory used in service. Knowing that some mullite–zirconia composites properties as fracture strength and the elastic modulus E are associated with the material microstructure integrity, the eventual thermal decomposition of zircon into zirconia and silica could seriously alter the material elastic properties. In this paper the phase content of a series of mullite–zirconia–zircon (3Al2O3.2SiO2–ZrO2–ZrSiO4) composites is determined at atomic level via perturbed angular correlations (PAC) and compared with that derived from the long range X-ray diffraction technique. PAC results on the as-prepared materials indicate that all nominal zircon is present and that it involves two types of nanoconfigurations, one of them describing aperiodic regions. The thermomechanical properties already reported for these materials could be related to the crystalline to aperiodic zircon concentrations ratio they exhibit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rietveld, H.M.: A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 2, 65–71 (1969)

    Article  Google Scholar 

  2. Bish, D.L., Post, J.E.: Quantitative mineralogical analysis using the Rietveld full-pattern fitting method. Am. Mineral. 78, 932–940 (1993)

    Google Scholar 

  3. Caracoche, M.C., Martínez, J.A., Rivas, P.C., Taylor, M.A., Pasquevich, A.F., Barolin, S., de Santis, O.A.: Nanostructures in calcia stabilized hafnia thin films observed by PAC as a function of temperature. Hyperfine Interact. 179, 87–93 (2007)

    Article  ADS  Google Scholar 

  4. Rendtorff, N.M., Conconi, M.S., Aglietti, E.F., Chain, C.Y., Pasquevich, A.F., Rivas, P.C., Martínez, J.A., Caracoche, M.C.: Phase quantification of mullite–zirconia and zircon commercial powders using PAC and XRD techniques. Hyperfine Interact. (2010). doi:10.1007/s10751-010-0177-4

    Google Scholar 

  5. Farges, F.: The structure of metamict zircon: a temperature-dependent EXAFS study. Phys. Chem. Miner. 20, 504–514 (1994)

    Article  ADS  Google Scholar 

  6. Frauenfelder, H., Steffen, R.M.: Angular correlation. In: Siegbahn, K. (ed.) Alpha-, Beta- and Gamma-Ray Spectroscopy, p. 997. North Holland, Amsterdam (1965)

    Google Scholar 

  7. Thomas, E.A., Weichert, T.: Trends in usage in glass industry. Anales UNITECR, 730–760 (1989)

  8. Mori, J., Watanbe, N., Yoshimura, M., Oguchi, Y., Kawakami, T., Matsuo, A.: Materials design of monolithic refractories for steel ladle. Anales UNITECR, 541–553 (1989)

  9. Garrido, L.B., Aglietti, E.F.: Zircon based ceramics by colloidal processing. Ceram. Int. 5, 491–499 (2001)

    Article  Google Scholar 

  10. Torrecillas, R., Calderon, J., Moya, J., Reece, M., Davies, C., Olagnond, C., Fantozzi, G.: Suitability of mullite for high temperature applications. J. Eur. Ceram. Soc. 19, 2519–2527 (1999)

    Article  Google Scholar 

  11. Hamidouche, M., Bouaouadja, N., Olagnon, C., Fantozzi, G.: Thermal shock behavior of mullite ceramic. Ceram. Int. 29, 599–609 (2003)

    Article  Google Scholar 

  12. Schneider, H., Schreuer, J., Hildmann, B.: Structure and properties of mullite—A review. J. Eur. Ceram. Soc. 28, 329–344 (2008)

    Article  Google Scholar 

  13. Rendtorff, N.M., Garrido, L.B., Aglietti, E.F.: Thermal shock behavior of dense mullite–zirconia composites obtained by two processing route. Ceram. Int. 34, 2017–2024 (2007). doi:10.1016/j.ceramint.2007.07.035

    Article  Google Scholar 

  14. Rendtorff, N.M., Garrido, L.B., Aglietti, E.F.: Mullite–zirconia–zircon composites: properties and thermal shock resistance. Ceram. Int. 35, 779–786 (2009)

    Article  Google Scholar 

  15. Lathabai, S., Hay, D.G., Wagner, F., Claussen, N.: Reaction-bonded mullite/zirconia composites. J. Am. Ceram. Soc. 79, 248–256 (1996)

    Article  Google Scholar 

  16. Koyama, T., Hayashi, S., Yasumori, A., Okada, K., Schmucker, M., Schneider, H.: Microstructure and mechanical properties of mullite/zirconia composites prepared from alumina and zircon under various firing conditions. J. Eur. Ceram. Soc. 16(Mullite ’94), 231–237 (1996)

    Article  Google Scholar 

  17. Rocha-Rangel, E., Díaz-de-la-Torre, S., Umemoto, M., Miyamoto, H., Balmori-Ramirez, H.: Zirconia-mullite composites consolidated by spark plasma reaction sintering from zircon and alumina. J. Am. Ceram. Soc. 88, 1150–1157 (2005)

    Article  Google Scholar 

  18. Shiga, H., Ismail, M.G.M.U., Katayama, K.: Sintering of ZrO2 toughened mullite ceramics and its microstructure. J. Ceram. Soc. Jpn. 99, 798–802 (1991)

    Google Scholar 

  19. Lin, Y., Chen, Y.: Fabrication of mullite composites by cyclic infiltration and reaction sintering. Mater. Sci. Eng. A298, 179–186 (2001)

    Google Scholar 

  20. Lange, F.F.: Transformation toughening. J. Mater. Sci. 17, 225–234 (1982)

    Article  ADS  Google Scholar 

  21. Jaeger, H., McBride, S.P.: Perturbed angular correlation measurement of the electric field gradient at 181Ta in ZrSiO4 and HfSiO4. Hyperfine Interact. 177, 51–56 (2007)

    Article  ADS  Google Scholar 

  22. Scian, A.N., Aglietti, E.F., Caracoche, M.C., Rivas, P.C., Pasquevich, A.F., López García, A.R.: Phase transformation in monoclinic zirconia caused by milling and subsequent annealing. J. Am. Ceram Soc. 77, 1525–1530 (1994)

    Article  Google Scholar 

  23. Rodriguez Carbajal, J.: FULLPROF, a program for Rietveld refinement and pattern matching analysis. In: Abstract of the Satellite Meeting on Powder Diffraction of the IUCr, Toulouse, France, p. 12 (1990)

  24. Rodríguez-Carbajal, J.: Program FullProf. 98, version 0.2 (1998)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge A. Martínez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rendtorff, N.M., Conconi, M.S., Aglietti, E.F. et al. A short and long range study of mullite–zirconia–zircon composites. Hyperfine Interact 198, 219–228 (2010). https://doi.org/10.1007/s10751-010-0178-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10751-010-0178-3

Keywords

Navigation