Skip to main content
Log in

Synthesis and Study of Composite Materials in the ZrO2(Y2O3)–MgAl2O4 System

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

Powders–precursors of a tetragonal solid solution based on partially stabilized zirconium dioxide (t-ZrO2) and aluminum-magnesium spinel (MgAl2O4) are synthesized using the method of the cocrystallization of solutions of nitrate salts from which nanocrystalline (<100 nm) composite materials are fabricated at 1400°C in the ZrO2(Y2O3)–MgAl2O4 system with an open porosity of 3%. The structure, physical–mechanical properties, and thermal stability of the nanocomposites are investigated. It is established that the introduction of MgAl2O4 into the matrix of the solid t-ZrO2 solution increases the thermal resistance of the ceramics under the thermal cycling conditions (20–1000°С). The effect of thermal cycling on the phase composition, hardness, and bending strength of the ceramics in the ZrO2(Y2O3)–MgAl2O4 system is investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Lukin, E.S., Makarov, N.A., Kozlov, A.I., et al., Novel oxide ceramics and fields of its application, Konstrukts. Kompoz. Mater., 2007, no. 1, pp. 3–13.

  2. Syarif, D.G., Hildayanti, S., Mulyani, R.H., and Soepriyanto, S., Characteristics of ZrO2 added—MgAl2O4 ceramics for matrix nuclear fuel (IMF), Indones. J. Nucl. Sci. Technol., 2011, vol. 12, no. 1, pp. 9–16.

    Google Scholar 

  3. Deinega, G.I., Popova, N.A., and Lukin, E.S., The influence of additives alumomagnesium spinel on sintering and properties of ceramics based on partially stabilized zirconium dioxide, Usp. Khim. Khim. Tekhnol., 2016, vol. 30, no. 7, pp. 34–35.

    Google Scholar 

  4. Lodha, R., Ghosh, A., Mukherjee, B., and Agrawa, G., Zirconia-magnesium aluminate spinel composite, Am. Ceram. Soc. Bull., 2006, vol. 85, no. 7, pp. 9201–9204.

    CAS  Google Scholar 

  5. Zaidan, S.A. and Majeed, S.M., Effect of MgAl2O4 particles on characterization of Y2O3–ZrO2 system, Eng. Tech. J., 2015, vol. 33, no. 4, pp. 621–630.

    Google Scholar 

  6. Gusev, A.I., Characterization of nanocrystalline materials by the size of particles (grains), Metallofiz. Noveishie Tekhnol., 2008, vol. 30, no. 5, pp. 679–694.

    CAS  Google Scholar 

  7. GOST (Interstate Standard) No. 2409-2014.

  8. GOST (RF State Standard) No. R 8.747-2011.

  9. GOST (Interstate Standard) No. 473.8-81.

  10. GOST (RF State Standard) No. 52542-2006.

  11. GOST (Interstate Standard) No. 10978-2014.

  12. Morozova, L.V., Kalinina, M.V., Khamova, T.V., Vasil’eva, E.A., and Shilova, O.A., Porous ceramics based on the ZrO2(Y2O3)–Al2O3 system for filtration membranes, Glass Phys. Chem., 2016, vol. 42, no. 4, pp. 408–413.

    Article  CAS  Google Scholar 

  13. Morozova, L.V., Kalinina, M.V., Drozdova, I.A., Polyakova, I.G., and Shilova, O.A., Synthesis and investigation of nanoceramics class of spinels, Glass Phys. Chem., 2015, vol. 41, no. 6, pp. 650–655.

  14. Boldyrev, V.V., Mechanochemical methods of activation of inorganic substances, Zh. VKhO im. D.I. Mendeleeva, 1988, vol. 33, no. 4, pp. 14–23.

    Google Scholar 

  15. Avvakumov, E.G., Mekhanicheskie metody aktivirovaniya khimicheskikh protsessov (Mechanical Methods of Activating Chemical Processes), Novosibirsk: Nauka, 1986, pp. 48–59.

  16. Dudnik, E.V., Zaitseva, Z.A., Shevchenko, A.V., and Lopato, L.M., Sintering ultrafine zirconium dioxide powders, Poroshk. Metall., 1995, nos. 5–6, pp. 43–56.

  17. Morozova, L.V., Kalinina, M.V., Panova, T.I., Popov, V.P., Drozdova, I.A., and Shilova, O.A., Synthesis of the study of solid solutions based on the ZrO2–HfO2–Y2O3(CeO2) system, Glass Phys. Chem., 2017, vol. 43, no. 5, pp. 464–470.

    Article  CAS  Google Scholar 

  18. Gogotsi, G.A., Kushnerenko, A.M., and Kryukova, O.N., Investigation of refractory ceramics under thermal shock loading, Probl. Prochn., 1977, no. 6, pp. 69–73.

  19. Andrianov, N.T., Sobko, R.M., and Dyagilets, S.M., Determination of the heat resistance of ceramics, Steklo Keram., 1999, no. 7, pp. 24–26.

  20. Hannink, R.H.J., Kelly, P.M., and Muddle, B.C., Transformation toughening in zirconia containing ceramics, J. Am. Ceram. Soc., 2000, vol. 83, no. 3, pp. 461–487.

    Article  CAS  Google Scholar 

  21. Gyngazov, S.A., Frangul’yan, T.S., and Vasil’yev, I.P., On the issue of determination of phase composition in bulk zirconia ceramics, Syst. Methods. Technol., 2013, vol. 18, no. 2, pp. 102–105.

    Google Scholar 

  22. Deville, S. and Guenin, G., Chevalier martensitic transformation in zirconia. Part I. Nanometer scale prediction and measurement of transformation induced relief, J. Acta Mater., 2004, vol. 52, no. 19, pp. 5697–5707.

    CAS  Google Scholar 

  23. Deville, S., Guenin, G., and Chevalier, J., Martensitic transformation in zirconia. Part II. Martensite growth, J. Acta Mater., 2004, vol. 52, no. 19, pp. 5709–5721.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. V. Morozova.

Additional information

Translated by D. Marinin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morozova, L.V., Drozdova, I.A. & Kalinina, M.V. Synthesis and Study of Composite Materials in the ZrO2(Y2O3)–MgAl2O4 System. Glass Phys Chem 45, 388–394 (2019). https://doi.org/10.1134/S1087659619050092

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659619050092

Keywords:

Navigation