Skip to main content
Log in

The Influence of Silicon Dioxide on the Stability of the Phase Composition and Mechanical Properties of Alumina-Toughened Zirconia-Based Ceramics

  • PHYSICAL SCIENCE OF MATERIALS
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The influence of SiO2 impurity (with a concentration varying from 0 to 10 mol %) on the stability of tetragonal ZrO2 (t-ZrO2) and on a set of micro- and macromechanical properties of calcia-stabilized (CCaO = 6.5 mol %) alumina-toughened (\({{C}_{{{\text{A}}{{{\text{l}}}_{2}}{{{\text{O}}}_{3}}}}}\) = 5.8 mol %) zirconia-based ceramics (ATZ ceramics) has been studied. It has been found that the introduction of SiO2 (\({{C}_{{{\text{Si}}{{{\text{O}}}_{2}}}}}\) = 5 mol %) raises fracture toughness Kc by nearly twofold (from 7.05 to 12.43 MPa m1/2), slightly decreases hardness H (from 12.75 to 10.9 GPa), and improves ultimate compression strength σS (from 2.44 to 2.73 GPa) and ductility (compression strain ε grows from 5.3 to 7.3%) of ATZ ceramics. It has been shown that the above improvements were achieved by means of a reduction in t-ZrO2 stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. R. H. J. Hannink and P. M. Kelly, J. Am. Ceram. Soc. 83, 461 (2000). https://doi.org/10.1111/j.1151-2916.2000.tb01221.x

    Article  Google Scholar 

  2. R. C. Garvie, R. H. J. Hannink, and R.T. Pascoe, Nature 258, 703 (1975).

    Article  ADS  Google Scholar 

  3. B. Basu and K. Balani, Advanced Structural Ceramics. Hoboken (Wiley, 2011).

    Book  Google Scholar 

  4. G. Soon, B. Pingguan-Murphy, K. W. Lai, and S. A. Akbar, Ceram. Int. 4, 12543 (2016). https://doi.org/10.1016/j.ceramint.2016.05.077

    Article  Google Scholar 

  5. A. G. Evans, J. Am. Ceram. Soc. 73, 187 (1990).

    Article  Google Scholar 

  6. M. H. Ghaemi, S. Reichert, A. Krupa, A. Zykova, K. Lobach, S. Sayenko, and Y. Svitlychnyi, Ceram. Int. 43, 9746 (2017). https://doi.org/10.1016/j.ceramint.2017.04.150

    Article  Google Scholar 

  7. A. Maji and G. Choubey, Mater. Today: Proc. 5, 7457 (2018). https://doi.org/10.1016/j.matpr.2017.11.417

    Article  Google Scholar 

  8. M. C. Aragón-Duarte, A. Nevarez-Rascón, H. E. Esparza-Ponce, M. M. Nevarez-Rascón, R. P. Talamantes, C. Ornelas, J. Mendez-Nonell, J. González-Hernández, M. J. Yacamán, and A. Hurtado-Macías, Ceram. Int. 43 (5), 3931 (2017). https://doi.org/10.1016/j.ceramint.2016.12.033

    Article  Google Scholar 

  9. S. Sequeira, M. H. Fernandes, N. Neves, and M. M. Almeida, Ceram. Int. 43, 693 (2017). https://doi.org/10.1016/j.ceramint.2016.09.216

    Article  Google Scholar 

  10. J.-K. Lee, M. J. Kim, and E. G. Lee, J. Mater. Sci. Lett. 21, 259 (2002). https://doi.org/10.1023/A:1014737614591

    Article  Google Scholar 

  11. F. Zhang, L. F. Lin, and E. Z. Wang, Ceram. Int. 41, 2417 (2015). https://doi.org/10.1016/j.ceramint.2015.06.081

    Article  Google Scholar 

  12. S. Roya, J. Gibmeiera, K. G. Schell, E. C. Bucharsky, K. A. Weidenmann, A. Wanner, and M. J. Hoffmann, Mater. Sci. Eng., A 753, 247 (2019). https://doi.org/10.1016/j.msea.2019.03.049

    Article  Google Scholar 

  13. V. R. Khrustov, V. V. Ivanov, S. V. Zayats, A. S. Kaygorodov, S. N. Paranin, and S. O. Cholakh, Inorg. Mater.: Appl. Res. 5, 482 (2014). https://doi.org/10.1134/S2075113314050098

    Article  Google Scholar 

  14. A. Smirnov, J. F. Bartolome, H. D. Kurland, J. Grabow, and F. A. Muller, J. Am. Ceram. Soc. 99, 3205 (2016). https://doi.org/10.1111/jace.14460

    Article  Google Scholar 

  15. V. Verma and B. V. M. Kumar, Mater. Today: Proc. 4, 3062 (2017). https://doi.org/10.1016/j.matpr.2017.02.189

    Article  Google Scholar 

  16. J. Fan, T. Lin, F. Hu, Y. Yu, M. Ibrahim, R. Zheng, Sh. Huang, and J. Ma, Ceram. Int. 43, 3647 (2017). https://doi.org/10.1016/j.ceramint.2016.11.204

    Article  Google Scholar 

  17. M. Michálek, J. Sedláček, M. Parchoviansky, M. Michálková, and D. Galusek, Ceram. Int. 40 (1), 1289 (2014). https://doi.org/10.1016/j.ceramint.2013.07.008

    Article  Google Scholar 

  18. A. A. Dmitrievskii, A. O. Zhigachev, D. G. Zhigacheva, and A. I. Tyurin, Tech. Phys. 64 (1), 86 (2019). https://doi.org/10.1134/S1063784219010092

    Article  Google Scholar 

  19. S. E. Porozova and V. B. Kulmetyeva, Inorg. Mater.: Appl. Res. 5, 420 (2014). https://doi.org/10.1134/S2075113314040406

    Article  Google Scholar 

  20. I. Danilenko, G. Lasko, I. Brykhanova, V. Burkhovetski, and L. Ahkhozov, Nanoscale Res. Lett. 12, 125 (2017). https://doi.org/10.1186/s11671-017-1901-7

    Article  ADS  Google Scholar 

  21. A. O. Zhigachev, V. V. Rodaev, A. V. Umrikhin, and Yu. I. Golovin, Ceram. Int. 45, 627 (2019). https://doi.org/10.1016/j.ceramint.2018.09.220

    Article  Google Scholar 

  22. M. L. Mecartney, J. Am. Ceram. Soc. 70, 54 (1987). https://doi.org/10.1111/j.1151-2916.1987.tb04853.x

    Article  Google Scholar 

  23. L. Gremillard, J. Chevalier, T. Epicier, and G. Fantozzi, J. Am. Ceram. Soc. 85, 401 (2002). https://doi.org/10.1111/j.1151-2916.2002.tb00103.x

    Article  Google Scholar 

  24. J. Binner, K. Annapoorani, A. Paul, and I. Santacruz, J. Eur. Ceram. Soc. 28, 973 (2008). https://doi.org/10.1016/j.jeurceramsoc.2007.09.002

    Article  Google Scholar 

  25. D. Galusek, K. Ghillányová, J. Sedláček, J. Kozánkova, and P. Šajgalík, J. Eur. Ceram. Soc. 32 (9), 1965 (2012). https://doi.org/10.1016/j.jeurceramsoc.2011.11.038

    Article  Google Scholar 

  26. A. A. Dmitrievskii, A. I. Tyurin, A. O. Zhigachev, D. G. Guseva, and P. N. Ovchinnikov, Tech. Phys. Lett. 44, 141 (2018). https://doi.org/10.1134/S1063785018020219

    Article  Google Scholar 

  27. A. Moradkhani and H. Baharvandi, Eng. Fract. Mech. 191, 446 (2018). https://doi.org/10.1016/j.engfracmech.2017.12.033

    Article  Google Scholar 

  28. Yu. I. Golovin. Phys. Solid State 50, 2205 (2008). https://doi.org/10.1134/S1063783408120019

    Article  ADS  Google Scholar 

  29. M. Arciniegas, Y. Gaillard, J. Pena, J. M. Manero, and F. J. Gil, Intermetallics 17, 784 (2009). https://doi.org/10.1016/j.intermet.2009.03.020

    Article  Google Scholar 

  30. D. R. Clarke and F. Adar, J. Am. Ceram. Soc. 65, 284 (1982). https://doi.org/10.1111/j.1151-2916.1982.tb10445.x

    Article  Google Scholar 

  31. A. M. Limarga, J. Iveland, M. Gentleman, D. M. Lipkin, and D. R. Clarke, Acta Mater. 59, 1162 (2011). https://doi.org/10.1016/j.actamat.2010.10.049

    Article  ADS  Google Scholar 

  32. L. Kurpaska, J. Jasinski, E. Wyszkowska, K. Nowakowska-Langier, and M. Sitarz, Spectrochim. Acta, Part A 195, 184 (2018). https://doi.org/10.1016/j.saa.2018.01.074

    Article  ADS  Google Scholar 

  33. C. M. Ramos, P. F. Cesar, R. F. L. Mondelli, A. Sh. Tabata, J. de Souza Santos, and A. F. S. Borges, J. Prosthet. Dent. 112 (4), 886 (2014). https://doi.org/10.1016/j.prosdent.2014.02.009

    Article  Google Scholar 

  34. A. Nevarez-Rascon, A. Aguilar-Elguezabal, E. Orrantia, and M. H. Bocanegra-Bernal, Int. J. Refract. Met. Hard Mater. 27, 962 (2009). https://doi.org/10.1016/j.ijrmhm.2009.06.001

    Article  Google Scholar 

  35. Z. Fan, Y. Zhao, Q. Tan, N. Mo, M.-X. Zhang, M. Lu, and H. Huang, Acta Mater. 170, 24 (2019). https://doi.org/10.1016/j.actamat.2019.03.020

    Article  ADS  Google Scholar 

  36. I. A. Aksay and J. A. Pask, Science 11, 69 (1974). https://doi.org/10.1126/science.183.4120.69

    Article  ADS  Google Scholar 

  37. S. Kwon, W. Y. Kim, P. Hudon, and I.-H. Jung, J. Eur. Ceram. Soc. 37, 1095 (2017). https://doi.org/10.1016/j.jeurceramsoc.2016.10.011

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

Experiments were conducted at the Derzhavin State University Center for Collective Use (Tambov, Russia). The authors thank V. Korenkov, V. Vasyukov, and A. Zhigachev for assistance.

Funding

This study was supported by the Russian Foundation for Basic Research, projects nos. 19-03-00634 and 18-29-17047.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Dmitrievskii.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Isaakyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dmitrievskii, A.A., Zhigachev, A.O., Zhigacheva, D.G. et al. The Influence of Silicon Dioxide on the Stability of the Phase Composition and Mechanical Properties of Alumina-Toughened Zirconia-Based Ceramics. Tech. Phys. 65, 2016–2025 (2020). https://doi.org/10.1134/S1063784220120075

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784220120075

Navigation