Skip to main content
Log in

Numerical estimation of the sensitivity of INPOP planetary ephemerides to general relativity parameters

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

In this paper, are given numerical estimations of the sensitivity of the latest version of the INPOP planetary ephemerides (INPOP13c) to GR parameters: the PPN parameters \(\beta \), \(\gamma \), and the oblateness of the Sun J\(_{2}^{\odot }\). Time variations of the gravitational mass of the Sun \(\mu \) are also considered. A first estimation is obtained by fitting these parameters with the classic method of least squares to planetary observations together with other parameters used for planetary ephemeris construction. A second approach is investigated using a new method of construction of alternative ephemerides. They are based on the same dynamical modeling and observational samples but in a non-GR framework with non-zero or non-unity GR parameters. Some alternative ephemerides are found to be close to INPOP13c and acceptable intervals of GR parameters are then defined at the light of the present INPOP13c accuracy. These intervals are compared with the one obtained with the direct least square estimation and with those extracted from the literature. No violation of GR is at this point noticeable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. Genetic operator used for varying the parameters from one generation to another. In our case, a simple swap is used (Magnin 1998).

  2. Set of parameters defining a proposed solution to the problem and randomly modified by the algorithm (Magnin 1998).

References

  • Armstrong, J., Kuhn, J.R.: Interpreting the solar limb shape distortions. Astrophys. J. 525, 533–538 (1999)

    Article  ADS  Google Scholar 

  • Ashby, N., Bender, P.L., Wahr, J.M.: Future gravitational physics tests from ranging to the BepiColombo Mercury planetary orbiter. Phys. Rev. D 75(2), 022001 (2007)

    Article  ADS  Google Scholar 

  • Bambi, C., Giannotti, M., Villante, F.L.: Response of primordial abundances to a general modification of \(g_{\rm n}\) and/or of the early universe expansion rate. Phys. Rev. D 71, 123524 (2005)

    Article  ADS  Google Scholar 

  • Beaugé, C., Ferraz-Mello, S., Michtchenko, T.A.: Multi-planet extrasolar systems detection and dynamics. Res. Astron. Astrophys. 12, 1044–1080 (2012)

    Article  ADS  Google Scholar 

  • Bertotti, B., Iess, L., Tortora, P.: A test of general relativity using radio links with the Cassini spacecraft. Nature 425, 374–376 (2003)

    Article  ADS  Google Scholar 

  • Blanchet, L., Novak, J.: External field effect of modified Newtonian dynamics in the solar system. Mon. Not. R. Astron. Soc. 412, 2530–2542 (2011)

    Article  ADS  Google Scholar 

  • Charbonneau, P.: Genetic algorithms in astronomy and astrophysics. Astrophys. J. 101, 309 (1995)

    Article  ADS  Google Scholar 

  • Damour, T., Nordtvedt, K.: Tensor-scalar cosmological models and their relaxation toward general relativity. Phys. Rev. D 48, 3436–3450 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  • Damour, T., Polyakov, A.M.: String theory and gravity. Gen. Relat. Gravit. 26, 1171–1176 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  • Damour, T., Gibbons, G.W., Gundlach, C.: Dark matter, time-varying G, and a dilaton field. Phys. Rev. Lett. 64, 123–126 (1990)

    Article  ADS  Google Scholar 

  • Einstein, A.: Source text 1913: on the present state of the problem of gravitation. In: Renn, J., Janssen, M., Norton, J.D., Sauer, T., Stachel, J., Divarci, L., Schemmel, M., Smeenk, C., Martin, C. (eds.) The Genesis of General Relativity, p. 543 (1913)

  • Fienga, A., Laskar, J., Morley, T., Manche, H., Kuchynka, P., Le Poncin-Lafitte, C., et al.: INPOP08, a 4-D planetary ephemeris: from asteroid and time-scale computations to ESA Mars Express and Venus Express contributions. Astron. Astrophys. 507, 1675–1686 (2009)

    Article  ADS  Google Scholar 

  • Fienga, A., Laskar, J., Kuchynka, P., Le Poncin-Lafitte, C., Manche, H., Gastineau, M.: Gravity tests with INPOP planetary ephemerides. In: Klioner, S.A., Seidelmann, P.K., Soffel, M.H. (eds.) IAU Symposium #261. Cambridge University Press, pp. 159–169 (2010)

  • Fienga, A., Laskar, J., Manche, H., Kuchynka, P., Desvignes, G., Gastineau, M., et al.: The planetary ephemerides INPOP10a and its applications in fundamental physics. Celest. Mech. Dyn. Astron. 111, 363 (2011)

    Article  ADS  Google Scholar 

  • Folkner, W.M., Williams, J.G., Boggs, D.H., Park, R.S., Kuchynka, P.: The planetary and lunar ephemerides DE430 and DE431. Interplanet. Netw. Prog. Rep. 196, C1 (2014)

    Google Scholar 

  • Francis, M.P.: A general relativity effect in radius for minor planet (1566) Icarus. Astron. J 70, 675 (1965)

    Article  ADS  Google Scholar 

  • Füzfa, A., Alimi, J.M.: Toward a unified description of dark energy and dark matter from the abnormally weighting energy hypothesis. Phys. Rev. D 75(12), 123007 (2007)

    Article  ADS  Google Scholar 

  • Goździewski, K., Nasiroglu, I., Słowikowska, A., Beuermann, K., Kanbach, G., Gauza, B., et al.: On the HU Aquarii planetary system hypothesis. Mon. Not. R. Astron. Soc. 425, 930–949 (2012)

    Article  ADS  Google Scholar 

  • Guenther, D.B., Krauss, L.M., Demarque, P.: Testing the constancy of the gravitational constant using helioseismology. Astrophys. J. 498, 871–876 (1998)

    Article  ADS  Google Scholar 

  • Hees, A., Lamine, B., Reynaud, S., Jaekel, M.T., Le Poncin-Lafitte, C., Lainey, V., et al.: Radioscience simulations in general relativity and in alternative theories of gravity. Class. Quantum Gravity 29(23), 235027 (2012)

    Article  ADS  Google Scholar 

  • Hees, A., Folkner, W.M., Jacobson, R.A., Park, R.S.: Constraints on modified Newtonian dynamics theories from radio tracking data of the Cassini spacecraft. Phys. Rev. D 89(10), 102002 (2014)

    Article  ADS  Google Scholar 

  • Henke, S., Gail, H.P., Trieloff, M., Schwarz, W.H.: Thermal evolution model for the H chondrite asteroid-instantaneous formation versus protracted accretion. Icarus 226, 212–228 (2013)

    Article  ADS  Google Scholar 

  • Hofmann, F., Müller, J., Biskupek, L.: Lunar laser ranging test of the Nordtvedt parameter and a possible variation in the gravitational constant. Astron. Astrophys. 522, L5 (2010)

    Article  ADS  Google Scholar 

  • Horner, J., Wittenmyer, R.A., Hinse, T.C., Tinney, C.G.: A detailed investigation of the proposed NN Serpentis planetary system. Mon. Not. R. Astron. Soc. 425, 749–756 (2012)

    Article  ADS  Google Scholar 

  • Iorio, L., Lichtenegger, H.I.M., Ruggiero, M.L., Corda, C.: Phenomenology of the Lense–Thirring effect in the solar system. Ap&SS 331, 351–395 (2011)

    Article  MATH  ADS  Google Scholar 

  • Jaekel, M.T., Reynaud, S.: Mass, inertia, and gravitation, 491–530. doi:10.1007/978-90-481-3015-3_18 (2011)

  • Karnath, N., Prato, L., Wasserman, L.H., Torres, G., Skiff, B.A., Mathieu, R.D.: Orbital parameters for the two young binaries VSB 111 and VSB 126. Astron. J. 146, 149 (2013)

    Article  ADS  Google Scholar 

  • Kaspi, V.M., Taylor, J.H., Ryba, M.F.: High-precision timing of millisecond pulsars. iii. long-term monitoring of psrs b1855+09 and b1937+21. Astrophys. J. 428, 713 (1994)

    Article  ADS  Google Scholar 

  • Konopliv, A.S., Asmar, S.W., Folkner, W.M., Karatekin, Ö., Nunes, D.C., Smrekar, S.E., et al.: Mars high resolution gravity fields from MRO, Mars seasonal gravity, and other dynamical parameters. Icarus 211, 401–428 (2011)

    Article  ADS  Google Scholar 

  • Kuchynka, P., Folkner, W., Konopliv, A.: Station-specific errors in mars ranging measurements. Technical report IPN Progress Report (2012)

  • Lambert, S.B., Le Poncin-Lafitte, C.: Determining the relativistic parameter \(\gamma \) using very long baseline interferometry. Astron. Astrophys. 499, 331–335 (2009)

    Article  MATH  ADS  Google Scholar 

  • Le Verrier, U.J.: Theorie du mouvement de Mercure. Ann. Obs. Paris 5, 1 (1859)

    Google Scholar 

  • Li, Y.C., Wu, F.Q., Chen, X.: Constraints on the Brans–Dicke gravity theory with the Planck data. Phys. Rev. D 88(8), 084053 (2013)

    Article  ADS  Google Scholar 

  • Luzum, B., Capitaine, N., Fienga, A., Folkner, W., Fukushima, T., Hilton, J., et al.: The IAU 2009 system of astronomical constants: the report of the IAU working group on numerical standards for Fundamental Astronomy. Celest. Mech. Dyn. Astron. 110, 293–304 (2011)

    Article  MATH  ADS  Google Scholar 

  • Magnin, V.: Contribution to the study and optimisation of optoelectronics components. PhD in electronics, University Lille, vol. 1, (1998)

  • Marty, J.C.: Mars odyssey data release. Priv. Commun. (2013)

  • Mecheri, R., Abdelatif, T., Irbah, A., Provost, J., Berthomieu, G.: New values of gravitational moments J2 and J4 deduced from helioseismology. Sol. Phys. 222, 191–197 (2004)

    Article  ADS  Google Scholar 

  • Migaszewski, C., Słonina, M., Goździewski, K.: A dynamical analysis of the Kepler-11 planetary system. Mon. Not. R. Astron. Soc. 427, 770–789 (2012)

    Article  ADS  Google Scholar 

  • Morley, T.: Mex and vex data release. Priv. Commun. (2012)

  • Morley, T.: Mex and vex data release. Priv. Commun. (2013)

  • Moyer, T.: DPODP manual. IOM 3215-37, JPL (1971)

  • Moyer, T.: Formulation for observed and computed values of deep space network data types for navigation. In: Monography of Deep Space Communications and Navigation Series 2, JPL (2000)

  • Müller, J., Soffel, M., Klioner, S.A.: Geodesy and relativity. J. Geod. 82, 133–145 (2008)

    Article  MATH  ADS  Google Scholar 

  • Nowak, G., Niedzielski, A., Wolszczan, A., Adamów, M., Maciejewski, G.: BD+15 2940 and HD 233604: two giants with planets close to the engulfment zone. Astrophys. J. 770, 53 (2013)

    Article  ADS  Google Scholar 

  • Paterno, L., Sofia, S., di Mauro, M.P.: The rotation of the Sun’s core. Astron. Astrophys. 314, 940–946 (1996)

    ADS  Google Scholar 

  • Pijpers, F.P.: Helioseismic determination of the solar gravitational quadrupole moment. Mon. Not. R. Astron. Soc. 297, L76–L80 (1998)

    Article  ADS  Google Scholar 

  • Pinto, R.F., Brun, A.S., Jouve, L., Grappin, R.: Coupling the solar dynamo and the corona: wind properties, mass, and momentum losses during an activity cycle. Astrophys. J. 737, 72 (2011)

    Article  ADS  Google Scholar 

  • Pitjeva, E.V.: EPM ephemerides and relativity. In: Klioner, S.A., Seidelmann, P.K., Soffel, M.H. (eds.) IAU Symposium #261. Cambridge University Press, pp. 170–178 (2010)

  • Pitjeva, E.V.: Updated IAA RAS planetary ephemerides—EPM2011 and their use in scientific research. Sol. Syst. Res. 47, 386–402 (2013)

    Article  ADS  Google Scholar 

  • Pitjeva, E.V., Pitjev, N.P.: Changes in the Sun’s mass and gravitational constant estimated using modern observations of planets and spacecraft. Sol. Syst. Res. 46, 78–87 (2012)

    Article  ADS  Google Scholar 

  • Pitjeva, E.V., Pitjev, N.P.: Relativistic effects and dark matter in the solar system from observations of planets and spacecraft. Mon. Not. R. Astron. Soc. 432, 3431–3437 (2013)

    Article  ADS  Google Scholar 

  • Roxburgh, I.W.: Gravitational multipole moments of the Sun determined from helioseismic estimates of the internal structure and rotation. Astron. Astrophys. 377, 688–690 (2001)

    Article  ADS  Google Scholar 

  • Siqueira Mello, C., Hill, V., Barbuy, B., Spite, M., Spite, F., Beers, T.C., et al.: High-resolution abundance analysis of very metal-poor r-I stars. Astron. Astrophys. 565, A93 (2014)

    Article  ADS  Google Scholar 

  • Steinhardt, P.J., Wesley, D.: Dark energy, inflation, and extra dimensions. Phys. Rev. D 79(10), 104026 (2009)

    Article  ADS  Google Scholar 

  • Uzan, J.P.: Tests of gravity on astrophysical scales and variation of the constants. Ann. Henri Poincaré 4, 347–369 (2003)

    Article  ADS  Google Scholar 

  • Verma, A.K.: Improvement of the planetary ephemerides using spacecraft navigation data and its application to fundamental physics. Université de Besancon, France, PhD in astronomy (2013)

  • Verma, A.K., Fienga, A., Laskar, J., Manche, H., Gastineau, M.: Use of MESSENGER radioscience data to improve planetary ephemeris and to test general relativity. Astron. Astrophys. 561, A115 (2014)

    Article  ADS  Google Scholar 

  • Williams, J.G., Folkner, W.M.: Lunar laser ranging: relativistic model and tests of gravitational physics. In: Klioner, S.A., Seidelmann, P.K., Soffel, M.H. (eds.) IAU Symposium #261. Cambridge University Press, p. 801 (2010)

  • Williams, J.G., Turyshev, S.G., Boggs, D.H.: Progress in lunar laser ranging tests of relativistic gravity. Phys. Rev. Lett. 93(26), 261101 (2004)

    Article  ADS  Google Scholar 

  • Williams, J.G., Turyshev, S.G., Boggs, D.H.: Lunar laser ranging tests of the equivalence principle with the Earth and Moon. Int. J. Mod. Phys. D 18, 1129–1175 (2009)

    Article  MATH  ADS  Google Scholar 

Download references

Acknowledgments

This work benefited from HPC resources of MesoPSL financed by the Region Ile de France and the project Equip@Meso (reference ANR-10-EQPX-29-01) of the programme Investissements d’Avenir supervised by the Agence Nationale pour la Recherche. The authors thank also Professor Damour for his fruitfull discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Fienga.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fienga, A., Laskar, J., Exertier, P. et al. Numerical estimation of the sensitivity of INPOP planetary ephemerides to general relativity parameters. Celest Mech Dyn Astr 123, 325–349 (2015). https://doi.org/10.1007/s10569-015-9639-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-015-9639-y

Keywords

Navigation