Skip to main content
Log in

Evolution of trnF(GAA) pseudogenes in cruciferous plants

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

In several studies we used the 5′-trnL(UAA)–trnF(GAA) region of the chloroplast DNA for phylogeographic reconstructions, gene diversity calculations and phylogenetic analyses among the genera Arabidopsis and Boechera. Despite the fact that extensive gene duplications are rare within the chloroplast genome of higher plants, within several genera of the Brassicaceae the anticodon domain of the trnF(GAA) gene exhibit extensive gene duplications with 1–12 tandemly repeated copies in close 5′-proximity of the functional gene. A recent re-examination and additional analysis of trnL(UAA)–trnF(GAA) regions from numerous cruciferous taxa not only reveal extensive trnF gene duplications, but also favour the hypothesis that in cruciferous taxa at least four independent phylogenetic lineages are characterized by these pseudogenes. Among these lineages there is one major clade of taxa carrying pseudogenes indicating an ancient split in crucifer evolution. In two case studies, Boechera and Arabidopsis, intra- and inter-molecular recombinations have been shown to be the reason for the reciprocal exchange of several similar motifs. However, functional constraints might favour two to three or five to six copies as shown for Arabidopsis and Boechera. Herein, we compare the occurrence and distribution of pseudogene copy number in the framework of a comprehensive survey of cpDNA haplotype variation in Boechera, the former genus Cardaminopsis and Arabidopsis thaliana and comment on the value of such kind of mutations in phylogenetic and evolutionary reconstructions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ansell SW, Schneider H, Pedersen N, Grundmann M, Russell SJ, Vogel JC (2007) Recombination diversifies chloroplast trnF pseudogenes in Arabidopsis lyrata. J Evol Biol (onlineearly articles). doi:10.1111/j.1420-9101.2007.01397

  • Bailey CD, Price RA, Doyle JJ (2002) Systematics of the halimolobine Brassicaceae: evidence from three loci and morphology. Syst Bot 27:318–332

    Google Scholar 

  • Bailey CD, Koch MA, Mayer M, Mummenhoff K, O'Kane SL, Warwick SI, Windham MD, Al-Shebaz IA (2006) A Global nrDNA ITS Phylogeny of the Brassicaceae Mol Biol Evol 23(11):2142–2160

    Article  CAS  PubMed  Google Scholar 

  • Bakker FT, Culham A, Gomez-Martinez R, Carvalho J, Compton J, Dawtrey R, Gibby M (2000) Pattern of nucleotide substitution in angiosperm cpDNA trnL(UAA)-trnF(GAA) regions. Molec Biol Evol 17:1146–1155

    CAS  PubMed  Google Scholar 

  • Baldwin BG, Markos S (1998) Phylogenetic utility of the external transcribed spacer (ETS) of 18S-26S rDNA: congruence of ETS and ITS trees of Calycadenia. Molec Phylogenet Evol 10:449–463

    Article  CAS  PubMed  Google Scholar 

  • Beck JB, Al-Shehbaz IA, Schaal BA (2006) Leavenworthia (Brassicaceae) revisited: Testing classic systematic and mating system hypothesis. Syst Bot 31:151–159

    Article  Google Scholar 

  • Beck JB, Schmuths H, Schaal BA (2007) Global population genetics of Arabidopsis thaliana. Molec Ecol (in press)

  • Besendahl A, Qiu Y-L, Lee J, Palmer JD, Bhattacharya D (2000) The cyanobacterial origin and vertical transmission of the plastid tRNALeu group-I-intron. Curr Genet 37:12–23

    Article  CAS  PubMed  Google Scholar 

  • Bingham SE, Webber AN (1994) Maintenance and expression of heterologous genes in chloroplast of Chlamydomonas reinhardtii. J Appl Phycol 6:239–245

    Article  CAS  Google Scholar 

  • Bleeker W, Hurka H (2001) Introgressive hybridization in Rorippa (Brassicaceae): gene flow and its consequences in natural and anthropogenic habitats. Molec Ecol 10:2013–2022

    Article  CAS  Google Scholar 

  • Bleeker W, Weber-Sparenberg C, Hurka H (2002a) Chloroplast DNA variation and biogeography in the genus Rorippa Scop. (Brassicaceae) Pl Biol 4:104–111

    Article  CAS  Google Scholar 

  • Bleeker W, Franzke A, Pollmann K, Brown AHD, Hurka H (2002b) Phylogeny and biogeography of Southern Hemisphere high-mountain Cardamine species (Brassicaceae). Austral Syst Bot 15:575–581

    Article  Google Scholar 

  • Borsch T, Hilu KW, Quandt D, Wilde V, Neinhuis C, Barthlott W (2003) Noncoding plastid trnT-trnF sequences reveal a well resolved phylogeny of basal angiosperms. J Evol Biol 16:558–576

    Article  CAS  PubMed  Google Scholar 

  • Bowman CM, Barker RF, Dyer TA (1988) The location and possible evolutionary significance of small dispersed repeats in wheat ctDNA. Curr Genet 10:931–941

    Article  Google Scholar 

  • Cech TR, Herschlag D, Piccirilli JA, Pyle AM (1992) RNA catalysis by a group I ribozyme: developing a model for transition state stabilization. J Biol Chem 267:17479–17482

    CAS  PubMed  Google Scholar 

  • Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Molec Ecol 9:1657–1659

    Article  CAS  Google Scholar 

  • Costa JL, Paulstrud P, Lindblatt P (2002) The cyanobacterial tRNALeu(UAA) intron: evolutionary patterns in a genetic marker. Molec Biol Evol 19:850–857

    CAS  PubMed  Google Scholar 

  • Dally AM, Second G (1990) Chloroplast DNA diversity in wild and cultivated species of rice (Genus Oryza, section Oryza). Cladistic-mutation and genetic-distance analysis. Theor Appl Genet 80:209–222

    Article  CAS  Google Scholar 

  • Dauvillee D, Hilbig L, Preiss S, Johanningmeier U (2004) Minimal extent of sequence homology required for homologous recombination at the psbA locus in Chlamydomonas reinhardtii chloroplasts using PCR-generated DNA fragments. Photosynth Res 79:219–224

    Article  CAS  PubMed  Google Scholar 

  • Dix PJ, Kavanagh TA (1995) Transforming the plastome: Genetic markers and DNA delivery systems. Euphytica 85:29–34

    Article  CAS  Google Scholar 

  • Dobeš C, Mitchell-Olds T, Koch M (2004) Extensive chloroplast haplotype variation indicates Pleistocene hybridization and radiation of North American Arabis drummondii, A. ×divaricarpa, and A. holboellii (Brassicaceae). Molec Ecol 13:349–370

    Article  Google Scholar 

  • Dobeš C, Kiefer C, Kiefer M, Koch MA (2007) Plastidic trnFUUC pseudogenes in North American genus Boechera (Brassicaceae): mechanistic aspects of evolution. Pl Biol 9:1–14

    Google Scholar 

  • Downie SR, Olmstead RG, Zurawski G, Soltis DE, Soltis PS, Watson JC, Palmer JD (1991) Six independent losses of the chloroplast DNA rpl2 intron in dicotyledons: molecular and phylogenetic implications. Evolution 45:1245–1259

    Article  CAS  Google Scholar 

  • Doyle JJ, Davis JI, Soreng RJ, Garvin D, Anderson MJ (1992a) Chloroplast DNA inversions and the origin of the grass family (Poaceae). Proc Natl Acad Sci USA 89:7722–7726

    Article  CAS  PubMed  Google Scholar 

  • Doyle JJ, Lavin M, Bruneau A (1992b) Contributions of molecular data to papillionoid legume systematics. In: Soltis PS, Soltis DE, Doyle JJ (eds) Molecular systematics of plants. Chapman and Hall, New York, pp 223–251

    Google Scholar 

  • Doyle JJ, Doyle JL, Palmer JD (1995) Multiple independent losses of two genes and one intron from legume chloroplast genomes. Syst Bot 20:272–294

    Article  Google Scholar 

  • Drábkova L, Kirschner J, Vlček Č, Paček V (2004) TrnL-trnF intrgenic spacer and trnL intron define major clades within Luzula and Juncus (Juncaceae): importance of structural mutations. J Molec Evol 59:1–10

    Article  PubMed  Google Scholar 

  • Goremykin VV, Hirsch-Ernst KI, Wölfl S, Hellwig FH (2003) Analysis of the Amborella trichopoda chloroplast genome sequence suggests that Amborella is not a basal angiosperm. Molec Biol Evol 20:1499–1505

    Article  CAS  PubMed  Google Scholar 

  • Govindaraju DR, Dancik BR, Wagner DB (1989) Novel chloroplast DNA polymorphism in a sympatric region of two pines. J Evol Biol 2:49–59

    Article  Google Scholar 

  • Graham SW, Reeves PA, Burns CE, Olmstead RG (2000) Microstructural changes in non-coding DNA: interpretation, evolution and utility of indels and inversions in basal angiosperm phylogenetic inference. Int J Pl Sci 161:S83–S96

    Article  CAS  Google Scholar 

  • Hall JC, Sytsma KJ, Iltis HH (2002) Phylogeny of Capparaceae and Brassicaceae based on chloroplast sequence data. Amer J Bot 89:1826–1842

    Article  CAS  Google Scholar 

  • Hamilton MB, Braverman JM, Soria-Hernanz DF (2003) Patterns and relative rates of nucleotide and insertion/deletion evolution at six chloroplast intergenic regions in new world species of the Lecythidaceae. Molec Biol Evol 20:710–1721

    Article  Google Scholar 

  • Hayek A (1911) Entwurf eines Cruciferensystems auf phylogenetischer Grundlage. Beih Bot Centralbl 27:127–335

    Google Scholar 

  • Hewitt GM (2001) Speciation, hybrid zones and phylogeography—or seeing genes in space and time. Molec Ecol 10:537–549

    Article  CAS  Google Scholar 

  • Hilu KW, Alice LA (2005) Evolutionary implications of matK indels in Poaceae. Amer J Bot 86:1735–1741

    Article  Google Scholar 

  • Hipkens VD, Marshall KA, Neale DB, Rottmann WH, Strauss SH (1995) A mutation hotspot in the chloroplast genome of a conifer (Douglas fir: Pseudotsuga) is caused by variability in the number of direct repeats from a partially duplicated tRNA gene. Curr Genet 27:527–579

    Google Scholar 

  • Hiratsuka J, Shimada H, Whitter R et al (12 co-authors) (1989) The complete sequence of the rice (Orzya sativa) chloroplast genome: intermolecular recombination between distinct tRNA genes accounts for a major plastid DNA inversion during the evolution of the cereals. Molec Gen Genet 217:185–194

    Google Scholar 

  • Ingvarsson PK, Ribstein S, Taylor DR (2003) Molecular evolution of insertions and deletions in the chloroplast genome of Silene. Molec Biol Evol 20:1737–1740

    Article  CAS  PubMed  Google Scholar 

  • Janchen E (1942) Das System der Cruciferen. Österr Bot Z 91:1–28

    Article  Google Scholar 

  • Jansen RK, Palmer JD (1987) A chloroplast DNA inversion marks an acient evolutionary split in the sunflower family (Asteraceae). Proc Natl Acad Sci USA 84:5818–5822

    Article  CAS  PubMed  Google Scholar 

  • Kanno A, Hirai A (1993) A transcription map of the chloroplast genome from rice (Oryza sativa). Curr Genet 23:166–174

    Article  CAS  PubMed  Google Scholar 

  • Kelch DG, Driskell A, Mishler B (2004) Inferring phylogeny using genomic characters: a case study using land plant plastomes. Mon Syst Bot Missouri Bot Gard 98:3–12

    Google Scholar 

  • Kirti PB, Mohapatra T, Baldev A, Prakash S, Chopra VL (1995) A stable cytoplasmic male-sterile line of Brassica juncea carrying restructured organelle genomes from the somatic hybrid Trachystoma ballii + B. juncea. Pl Breed 114:434–438

    Article  Google Scholar 

  • Kirti PB, Narasimhulu SB, Mohapatra T, Prakash S, Chopra VL (1993) Correction of chlorophyll deficiency in alloplasmic male sterile Brassica juncea through recombination between chloroplast genomes. Genet Res 62:11–14

    Article  CAS  Google Scholar 

  • Koch M (2003) Molecular Phylogenetics, Evolution and Population Biology in the Brassicaceae. In: Sharma AK, Sharma A (eds) Plant genome: biodiversity and evolution, vol 1. Phanerogams. Science Publishers, Inc. Enfield, pp 1–35

    Google Scholar 

  • Koch M, Al-Shehbaz IA (2002) Molecular data indicate complex intra- and intercontinental differentiation of American Draba (Brassicaceae). Ann Missouri Bot Gard 89:88–109

    Article  Google Scholar 

  • Koch MA, Matschinger M (2007) Evolution and genetic differentiation among relatives of Arabidopsis thaliana. Proc Natl Acad Sci USA 104(15):6272–6277

    Article  CAS  PubMed  Google Scholar 

  • Koch M, Haubold B, Mitchell-Olds T (2000) Comparative evolutionary analysis of chalcone synthase and alcoholdehydrogenase loci in Arabidopsis, Arabis, and related genera (Brassicaceae). Molec Biol Evol 17:1483–1498

    CAS  PubMed  Google Scholar 

  • Koch M, Haubold B, Mitchell-Olds T (2001) Molecular systematics of the cruciferae: evidence from coding plastome matK and nuclear CHS sequences. Amer J Bot 88:534–544

    Article  CAS  Google Scholar 

  • Koch M, Dobeš C, Matschinger M, Bleeker W, Vogel J, Kiefer M, Mitchell-Olds T (2005) Evolution of the plastidic trnF(GAA) gene in Arabidopsis relatives and the Brassicaceae family: Monophyletic origin and subsequent diversification of a plastidic pseudogene. Molec Biol Evol 22:1032–1043

    Article  CAS  PubMed  Google Scholar 

  • Koch M, Dobeš C, Kiefer M, Schmickl R, Klimes L, Lysak MA (2007) Supernetworks identifies muiltiple events of plastidic trnF(GAA) pseudogene evolution in the Brassicaceae. Molec Biol Evol 24:63–73

    Article  CAS  PubMed  Google Scholar 

  • Koch M, Al-Shehbaz IA, Mummenhoff K (2003) Molecular systematics, evolution and population biology in the mustard family (Brassicaceae). Ann Missouri Bot Gard 90:151–171

    Article  Google Scholar 

  • Koch M, Wernisch M, Schmickl R (2008) Arabidopsis thaliana’s wild relatives: an updated overview on systematics, taxonomy and evolution. Taxon (submitted)

  • Kuhsel MG, Strickland R, Palmer JD (1990) An ancient group I intron shared by eubacteria and chloroplasts. Science 250:1570–1573

    Article  CAS  PubMed  Google Scholar 

  • Lee DJ, Blake TK, Smith SE (1988) Biparental inheritance of chloroplast DNA and the existence of heteroplasmic cells in alfalfa. Theor Appl Genet 76:545–549

    Article  CAS  Google Scholar 

  • Lee J-Y, Mummenhoff K, Bowman JL (2002) Allopolyploidization and evolution of species with reduced floral structures in Lepidium L. (Brassicaceae). Proc Natl Acad Sci USA 99:16835–16840

    Article  CAS  PubMed  Google Scholar 

  • Lidholm J, Gustafsson P (1991) A three-step model for the rearrangement of the chloroplast trnK-psbA region of the gymnosperm Pinus contorta. Nucleic Acids Res 19:2881–2887

    Article  CAS  PubMed  Google Scholar 

  • Lidholm J, Szmidt A, Gustafsson P (1991) Duplication of the psbA gene in the chloroplast genome of two Pinus species. Molec Gen Genet 226:345–352

    Article  CAS  PubMed  Google Scholar 

  • Lihova J, Fuertes-Aguilar J, Marhold K, Nieto-Feliner G (2004) Origin of the disjunct tetraploid Cardamine amporitana (Brassicaceae) assessed with nuclear and chloroplast DNA sequence data. Amer J Bot 91:1231–1242

    Article  CAS  Google Scholar 

  • Löhne C, Borsch T (2005) Molecular evolution and phylogenetic utility of the petD group II intron: a case study in basal angiosperms. Molec Biol Evol 22:1–16

    Google Scholar 

  • McCabe PF, Timmons AM, Dix PJ (1989) A simple procedure for the isolation of streptomycin resistant plants in Solanaceae. Mol Gen Genet 216:132–137

    Article  CAS  Google Scholar 

  • Medgyesy P, Fejes E, Maliga P (1985) Interspecific chloroplast recombination in a Nicotiana somatic hybrid. Proc Natl Acad Sci USA 82:6960–6964

    Article  CAS  PubMed  Google Scholar 

  • Medgyesy P, Páy A, Márton L (1986) Transmission of paternal chloroplast in Nicotiana. Mol Gen Genet 204:195–198

    Article  CAS  Google Scholar 

  • Millen RS, Olmstead RG, Adams KL et al (12 co-authors) (2001) Many parallel losses of infA from chloroplast DNA during angiosperm evolution with multiple independent transfers to the nucleus. Pl Cell 13:645–658

    Google Scholar 

  • Mummenhoff K, Linder P, Friesen N, Bowman JL, Lee TY, Franzke A (2004) Molecular evidence for bicontinentaI hybridogenous genome constitution in Lepidium sensu stricto (Brassicaceae) species from Australia and New Zealand. Amer J Bot 91:254–261

    Article  CAS  Google Scholar 

  • Newton AC, Allnutt TR, Gillies ACM, Lowe AJ, Ennos RA (1999) Molecular phylogeography, intraspecific variation and the conservation of tree species. Trends Ecol Evol 14:140–145

    Article  PubMed  Google Scholar 

  • Olmstead RG, Palmer JD (1994) Chloroplast DNA systematics: a review of methods and data analysis. Amer J Bot 81:1205–1224

    Article  CAS  Google Scholar 

  • Palmer JD (1985) Comparative organization of chloroplast genomes. Annual Rev Genet 19:325–354

    Article  CAS  Google Scholar 

  • Palmer JD (1991) Plastid chromosomes: structure and evolution. In: Bogorad L, Vasil IK (eds) Cell culture and somatic cell genetics in plants, vol 7A, molecular biology of plastids. Academic Press, San Diego, pp 5–53

    Google Scholar 

  • Palmer JD (1992) Mitochondrial DNA in plant systematics: applications and limitations. In: Soltis PS, Soltis DE, Doyle JJ (eds) Molecular systematics of plants. Chapman & Hall, New York, pp 36–49

    Google Scholar 

  • Palmer JD, Thompson WF (1981) Rearrangements in the chloroplast genomes of mung bean and pea. Proc Natl Acad Sci USA 78:5533–5537

    Article  CAS  PubMed  Google Scholar 

  • Palmer JD, Thompson WF (1982) Chloroplast DNA rearrangements are more frequent when a large inverted repeat sequence is lost. Cell 29:537–550

    Article  CAS  PubMed  Google Scholar 

  • Paquin B, Kathe SD, Nierzwicki-Bauer SA, Shub DA (1997) Origin and evolution of group I introns in cyanobacterial tRNA genes. J Bact 179:6798–6806

    CAS  PubMed  Google Scholar 

  • Perry AS, Brennan S, Murphy DJ, Kavanagh TA, Wolfe KH (2002) Evolutionary re-organization of a large operon in Adzuki bean chloroplast DNA caused by inverted repeat movement. DNA Res 9:157–162

    Article  CAS  PubMed  Google Scholar 

  • Perry AS, Wolfe KH (2002) Nucleotide substitution rates in legume chloroplast DNA depend on the presence of the inverted repeat. J Molec Evol 55:501–508

    Article  CAS  PubMed  Google Scholar 

  • Pirie MD, Vargas MPB, Botermans M, Bakker FT, Chatrou LW (2007) Ancient paralogy in the cpDNA trnL-F region in Annonaceae: implications for plant molecular systematics. Amer J Bot 94:1003–1016

    Article  Google Scholar 

  • Quandt D, Stech M (2004) Molecular evolution and phylogenetic utility of the chloroplast trnT-trnF region in bryophytes. Pl Biol 6:545–554

    Article  CAS  Google Scholar 

  • Quandt D, Stech M (2005) Molecular evolution of the trnLUAA intron in bryophytes. Molec Phylogenet Evol 36:429–443

    Article  CAS  PubMed  Google Scholar 

  • Quandt D, Müller K, Huttunen S (2003) Characterisation of the chloroplast DNA psbT-H region and the influence of dyad symmetrical elements on phylogenetic reconstructions. Pl Biol 5:400–410

    Article  CAS  Google Scholar 

  • Quandt D, Müller K, Stech M, Frahm J-P, Frey W, Hilu KW, Borsch T (2004) Molecular evolution of the chloroplast trnL-F region in land plants. Monogr Syst Bot Missouri Bot Gard 98:13–37

    Google Scholar 

  • Raubson LA, Jansen RK (2005) Chloroplast genomes of plants. In: Henry RJ (ed) Plant diversity and evolution: genotypic and phenotypic variation in higher plants. CABI Publishing, Cambridge, pp 45–68

    Chapter  Google Scholar 

  • Reboud X, Zeyl C (1994) Organelle inheritance in plants. Heredity 72:132–140

    Article  Google Scholar 

  • Sang T, Crawford DJ, Stuessy TF (1997) Chloroplast DNA phylogeny, reticulate evolution, and biogeography of Paeonia (Paeoniaceae). Amer J Bot 84:1120–1136

    Article  CAS  Google Scholar 

  • Schmitz UK, Kowallik KV (1986) Plastid inheritance in Epilobium. Curr Genet 11:1–5

    Article  CAS  Google Scholar 

  • Schulz OE (1936) Cruciferae. In: Engler A, Prantl K (eds) Die natürlichen Pflanzenfamilien, vol 17B. Verlag von Wilhelm Engelmann, Leipzig, pp 227–658

    Google Scholar 

  • Soltis DE, Soltis PS (1998) Choosing an approach and appropriate gene for phylogenetic analysis. In: Soltis DE, Soltis PS, Doyle JJ (eds) Molecular systematics of plants II. DNA sequencing. Kluwer, London, pp 1–42

    Google Scholar 

  • Taberlet P, Gielly L, Pautou G (1991) Universal primers for amplification of three non-coding chloroplast regions. Pl Molec Biol 17:1105–1109

    Article  CAS  Google Scholar 

  • Templeton AR, Crandall KA, Sing CF (1992) A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation. Genetics 132:619–663

    CAS  PubMed  Google Scholar 

  • Thanh ND, Medgyesy P (1989) Limited chloroplast gene transfer via recombination overcomes plastome-genome incompatibility between Nicotiana tabacum and Solanum tuberosum. Pl Molec Biol 12:87–93

    Article  Google Scholar 

  • Vijverberg K, Bachmann K (1999) Molecular evolution of a tandemly repeated trnF(GAA) gene in the chloroplast genome of Microseris (Asteraceae) and the use of structural mutations in phylogenetic analysis. Molec Biol Evol 16:1329–1340

    CAS  PubMed  Google Scholar 

  • Wakasugi T, Tsudzuki J, Ito S, Nakashima K, Tsudzuki T, Sigiura M (1994) Loss of all ndh genes as determined by sequencing the entire chloroplast genome of the black pine Pinus thunbergii. Proc Natl Acad Sci USA 91:9794–9798

    Article  CAS  PubMed  Google Scholar 

  • Wittzell H (1999) Chloroplast DNA variation and reticulate evolution in sexual and apomictic sections of dandelions. Molec Ecol 8:2023–2035

    Article  CAS  Google Scholar 

  • Wolfe KH, Morden CW, Palmer JD (1992) Function and evolution of a minimal plastid genome from a nonphotosynthetic parasitic plant. Proc Natl Acad Sci USA 89:10648–10652

    Article  CAS  PubMed  Google Scholar 

  • Xu M-Q, Kathe SD, Goodrich-Blair H, Nierzwicki-Bauer SA, Shub DA (1990) Bacterial origin of a chloroplast intron: conserved self-splicing group-I introns in cyanobacteria. Science 250:1566–1570

    Article  CAS  PubMed  Google Scholar 

  • Yang Y-W, Tai P-Y, Chen Y, Li W-H (2002) A study of the phylogeny of Brassica rapa, B. nigra, Raphanus sativus, and their related genera using noncoding regions of the chloroplast DNA. Molec Phylogenet Evol 23:268–275

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Austrian Science Foundation—FWF (GEN-15609 and GEN-14463) and the German Science Foundation—DFG (Ko-2302/4-1 and Ko-2302/5-1) to M. Koch. We also thank James Beck and Steve Ansell providing us with their original DNA sequence alignments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus A. Koch.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM1 (XLS 35 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmickl, R., Kiefer, C., Dobeš, C. et al. Evolution of trnF(GAA) pseudogenes in cruciferous plants. Plant Syst Evol 282, 229–240 (2009). https://doi.org/10.1007/s00606-008-0030-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-008-0030-2

Keywords

Navigation