Skip to main content
Log in

Rating of the industrial application potential of yeast strains by molecular characterization

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Each brewing yeast has its own unique impact on the formation of aroma compounds, and thus, on the properties of the final beer. The selection of the perfect strain for a specific brewing process results from physiological properties, which can be elucidated in brewing experiments. These properties result from genetic and proteomic features of each yeast strain. In the current study, 23 blind-coded yeasts were analyzed on a genomic level by microsatellite genotyping at 13 loci, on a sub-proteome level by MALDI-TOF MS, and on their phenotypic property by phenolic off flavor (POF) production assessment. These results were compared with the current application profile of each yeast strain. An expanded MALDI-TOF MS database was used to identify the blind-coded samples on species level, which was achieved to 100%. The samples belonged to top-fermenting Saccharomyces (S.) cerevisiae, bottom-fermenting S. pastorianus and S. cerevisiae var. diastaticus. Different groupings below species level were found with microsatellite analyses (classification on strain level) and MALDI sub-proteome (subdivision of yeasts into groups), which provided a prediction of application potential to beer styles for which they are currently used. The test for POF showed a wide variation and appears to be a strain-dependent property. However, this could serve as a starting point for the classification of yeast strains with respect to their usefulness for the production of specific beer styles or non-brewing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Barnett JA (1992) The taxonomy of the genus Saccharomyces meyen ex reess: A short review for non-taxonomists. Yeast 8(1):1–23. https://doi.org/10.1002/yea.320080102

    Article  Google Scholar 

  2. Verstrepen KJ, Derdelinckx G, Verachtert H, Delvaux FR (2003) Yeast flocculation: what brewers should know. Appl Microbiol Biotechnol 61(3):197–205. https://doi.org/10.1007/s00253-002-1200-8

    Article  CAS  PubMed  Google Scholar 

  3. Donalies UEB, Nguyen HTT, Stahl U, Nevoigt E (2008) Improvement of Saccharomyces yeast strains used in brewing, wine making and baking. In: Stahl U, Donalies UEB, Nevoigt E (eds) Food Biotechnology. Springer, Berlin, pp 67–98 https://doi.org/10.1007/10_2008_099

    Chapter  Google Scholar 

  4. Yoshida S, Imoto J, Minato T, Oouchi R, Sugihara M, Imai T, Ishiguro T, Mizutani S, Tomita M, Soga T (2008) Development of bottom-fermenting Saccharomyces strains that produce high SO2 levels, using integrated metabolome and transcriptome analysis. Appl Environ Microbiol 74(9):2787–2796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Nakao Y, Kanamori T, Itoh T, Kodama Y, Rainieri S, Nakamura N, Shimonaga T, Hattori M, Ashikari T (2009) Genome sequence of the lager brewing yeast, an interspecies hybrid. DNA Res 16(2):115–129. https://doi.org/10.1093/dnares/dsp003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hansen J, Bruun SV, Bech LM, Gjermansen C (2002) The level ofMXR1gene expression in brewing yeast during beer fermentation is a major determinant for the concentration of dimethyl sulfide in beer. FEMS yeast research 2(2):137–149. https://doi.org/10.1111/j.1567-1364.2002.tb00078.x

    Article  CAS  PubMed  Google Scholar 

  7. Bokulich NA, Bamforth CW (2013) The microbiology of malting and brewing. Microbiol Mol Biol Rev 77(2):157–172. https://doi.org/10.1128/MMBR.00060-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pires EJ, Teixeira JA, Branyik T, Vicente AA (2014) Yeast: the soul of beer’s aroma–a review of flavour-active esters and higher alcohols produced by the brewing yeast. Appl Microbiol Biotechnol 98(5):1937–1949. https://doi.org/10.1007/s00253-013-5470-0

    Article  CAS  PubMed  Google Scholar 

  9. Coghe S, Benoot K, Delvaux F, Vanderhaegen B, Delvaux FR (2004) Ferulic acid release and 4-vinylguaiacol formation during brewing and fermentation: indications for feruloyl esterase activity in Saccharomyces cerevisiae. J Agric Food Chem 52(3):602–608. https://doi.org/10.1021/jf0346556

    Article  CAS  PubMed  Google Scholar 

  10. Mukai N, Masaki K, Fujii T, Iefuji H (2014) Single nucleotide polymorphisms of PAD1 and FDC1 show a positive relationship with ferulic acid decarboxylation ability among industrial yeasts used in alcoholic beverage production. J Biosci Bioeng 118(1):50–55. https://doi.org/10.1016/j.jbiosc.2013.12.017

    Article  CAS  PubMed  Google Scholar 

  11. Schneiderbanger H, Koob J, Poltinger S, Jacob F, Hutzler M (2016) Gene expression in wheat beer yeast strains and the synthesis of acetate esters. J Inst Brew 122(3):403–411

    Article  CAS  Google Scholar 

  12. Goncalves M, Pontes A, Almeida P, Barbosa R, Serra M, Libkind D, Hutzler M, Goncalves P, Sampaio JP (2016) Distinct domestication trajectories in top-fermenting beer yeasts and wine yeasts. Curr Biol 26(20):2750–2761. https://doi.org/10.1016/j.cub.2016.08.040

    Article  CAS  PubMed  Google Scholar 

  13. Focke K, Jentsch M (2013) Kleine Zelle—große Wirkung—Hefestämme, Hefelagerung und der Einfluss auf den Biercharakter. Brauindustrie 11:16–18

    Google Scholar 

  14. White C, Zainasheff J (2010) Yeast: the practical guide to beer fermentation. Brewers Publications, Boulder

    Google Scholar 

  15. Dornbusch HD (2010) The Ultimate almanac of world beer recipes: a practical guide for the professional brewer to the world’s classic beer styles from A to Z. Cerevisia Communications, Bamberg, Germany.

    Google Scholar 

  16. Meier-Dörnberg T, Michel M, Wager RS, Jacob F, Hutzler M (2017) Genetic and phenotypic characterization of different top-fermenting Saccharomyces cerevisiae Ale Yeast Isolates. Brew Sci 70:9–25

    Google Scholar 

  17. Gonzalez SS, Barrio E, Gafner J, Querol A (2006) Natural hybrids from Saccharomyces cerevisiae, Saccharomyces bayanus and Saccharomyces kudriavzevii in wine fermentations. FEMS Yeast Res 6(8):1221–1234. https://doi.org/10.1111/j.1567-1364.2006.00126.x

    Article  CAS  PubMed  Google Scholar 

  18. Gallone B, Steensels J, Prahl T, Soriaga L, Saels V, Herrera-Malaver B, Merlevede A, Roncoroni M, Voordeckers K, Miraglia L, Teiling C, Steffy B, Taylor M, Schwartz A, Richardson T, White C, Baele G, Maere S, Verstrepen KJ (2016) Domestication and divergence of Saccharomyces cerevisiae beer yeasts. Cell 166(6):1397–1410 e1316. https://doi.org/10.1016/j.cell.2016.08.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gibson BR, Storgards E, Krogerus K, Vidgren V (2013) Comparative physiology and fermentation performance of Saaz and Frohberg lager yeast strains and the parental species Saccharomyces eubayanus. Yeast 30(7):255–266. https://doi.org/10.1002/yea.2960

    Article  CAS  PubMed  Google Scholar 

  20. Legras JL, Merdinoglu D, Cornuet JM, Karst F (2007) Bread, beer and wine: Saccharomyces cerevisiae diversity reflects human history. Mol Ecol 16(10):2091–2102. https://doi.org/10.1111/j.1365-294X.2007.03266.x

    Article  CAS  PubMed  Google Scholar 

  21. Legras JL, Erny C, Charpentier C (2014) Population structure and comparative genome hybridization of European flor yeast reveal a unique group of Saccharomyces cerevisiae strains with few gene duplications in their genome. PloS one 9(10):e108089. https://doi.org/10.1371/journal.pone.0108089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Masneuf-Pomarede I, Salin F, Borlin M, Coton E, Coton M, Jeune CL, Legras JL (2016) Microsatellite analysis of Saccharomyces uvarum diversity. FEMS Yeast Res 16(2):fow002. https://doi.org/10.1093/femsyr/fow002

    Article  CAS  PubMed  Google Scholar 

  23. Couto MB, Eijsma B, Hofstra H, van der Vossen J (1996) Evaluation of molecular typing techniques to assign genetic diversity among Saccharomyces cerevisiae strains. Appl Environ Microbio 62(1):41–46

    Google Scholar 

  24. Laidlaw L, Tompkins T, Savard L, Dowhanick T (1996) Identification and differentiation of brewing yeasts using specific and RAPD polymerase chain reaction. J Am Soc Brew Chem 54(2):97–102

    CAS  Google Scholar 

  25. Krogerus K, Magalhaes F, Vidgren V, Gibson B (2015) New lager yeast strains generated by interspecific hybridization. J Ind Microbiol Biotechnol 42(5):769–778. https://doi.org/10.1007/s10295-015-1597-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sheehan CA, Weiss AS, Newsom IA, Flint V, O’Donnell DC (1991) Brewing yeast identification and chromosome analysis using high resolution CHEF gel electrophoresis. J Inst Brew 97(3):163–167

    Article  Google Scholar 

  27. Timmins EM, Quain DE, Goodacre R (1998) Differentiation of brewing yeast strains by pyrolysis mass spectrometry and Fourier transform infrared spectroscopy. Yeast 14 (10):885–893. (10.1002/(SICI)1097-0061(199807)14:10<885::AID-YEA286>3.0.CO;2-G)

    Article  CAS  PubMed  Google Scholar 

  28. Azumi M, Goto-Yamamoto N (2001) AFLP analysis of type strains and laboratory and industrial strains of Saccharomyces sensu stricto and its application to phenetic clustering. Yeast 18(12):1145–1154. https://doi.org/10.1002/yea.767

    Article  CAS  PubMed  Google Scholar 

  29. de Barros Lopes M, Rainieri S, Henschke PA, Langridge P (1999) AFLP fingerprinting for analysis of yeast genetic variation. Int J Syst Bacteriol 2(2):915–924. https://doi.org/10.1099/00207713-49-2-915

    Article  Google Scholar 

  30. Cappello MS, Bleve G, Grieco F, Dellaglio F, Zacheo G (2004) Characterization of Saccharomyces cerevisiae strains isolated from must of grape grown in experimental vineyard. J Appl Microbiol 97(6):1274–1280. https://doi.org/10.1111/j.1365-2672.2004.02412.x

    Article  CAS  PubMed  Google Scholar 

  31. Gonzalez Flores M, Rodriguez ME, Oteiza JM, Barbagelata RJ, Lopes CA (2017) Physiological characterization of Saccharomyces uvarum and Saccharomyces eubayanus from Patagonia and their potential for cidermaking. Int J Food Microbiol 249:9–17. https://doi.org/10.1016/j.ijfoodmicro.2017.02.018

    Article  CAS  PubMed  Google Scholar 

  32. McMurrough I, Madigan D, Donnelly D, Hurley J, Doyle AM, Hennigan G, McNulty N, Smyth MR (1996) Control of ferulic acid and 4-vinyl guaiacol in brewing. J Inst Brew 102(5):327–332

    Article  CAS  Google Scholar 

  33. Vanbeneden N, Gils F, Delvaux F, Delvaux FR (2008) Formation of 4-vinyl and 4-ethyl derivatives from hydroxycinnamic acids: Occurrence of volatile phenolic flavour compounds in beer and distribution of Pad1-activity among brewing yeasts. Food Chem 107(1):221–230. https://doi.org/10.1016/j.foodchem.2007.08.008

    Article  CAS  Google Scholar 

  34. Mertens S, Steensels J, Gallone B, Souffriau B, Malcorps P, Verstrepen K (2017) Rapid screening method for phenolic off-flavor (POF) production in yeast. https://doi.org/10.1094/ASBCJ-2017-4142-01

  35. Joubert R, Brignon P, Lehmann C, Monribot C, Gendre F, Boucherie H (2000) Two-dimensional gel analysis of the proteome of lager brewing yeasts. Yeast 16 (6):511–522. (10.1002/(SICI)1097-0061(200004)16:6<511::AID-YEA544>3.0.CO;2-I)

    Article  CAS  PubMed  Google Scholar 

  36. Trabalzini L, Paffetti A, Scaloni A, Talamo F, Ferro E, Coratza G, Bovalini L, Lusini P, Martelli P, Santucci A (2003) Proteomic response to physiological fermentation stresses in a wild-type wine strain of Saccharomyces cerevisiae. Biochem J 370(Pt 1):35–46. https://doi.org/10.1042/BJ20020140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kobi D, Zugmeyer S, Potier S, Jaquet-Gutfreund L (2004) Two-dimensional protein map of an “ale"-brewing yeast strain: proteome dynamics during fermentation. FEMS Yeast Res 5(3):213–230. https://doi.org/10.1016/j.femsyr.2004.07.004

    Article  CAS  PubMed  Google Scholar 

  38. Zuzuarregui A, Monteoliva L, Gil C, del Olmo M (2006) Transcriptomic and proteomic approach for understanding the molecular basis of adaptation of Saccharomyces cerevisiae to wine fermentation. Appl Environ Microbiol 72(1):836–847. https://doi.org/10.1128/AEM.72.1.836-847.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hansen R, Pearson SY, Brosnan JM, Meaden PG, Jamieson DJ (2006) Proteomic analysis of a distilling strain of Saccharomyces cerevisiae during industrial grain fermentation. Appl Microbiol Biotechnol 72(1):116–125. https://doi.org/10.1007/s00253-006-0508-1

    Article  CAS  PubMed  Google Scholar 

  40. Kern CC, Vogel RF, Behr J (2014) Differentiation of lactobacillus brevis strains using matrix-assisted-laser-desorption-ionization-time-of-flight mass spectrometry with respect to their beer spoilage potential. Food Microbiol 40:18–24

    Article  CAS  PubMed  Google Scholar 

  41. Wieme AD, Spitaels F, Aerts M, De Bruyne K, Van Landschoot A, Vandamme P (2014) Identification of beer-spoilage bacteria using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Int J Food Microbiol 185:41–50. https://doi.org/10.1016/j.ijfoodmicro.2014.05.003

    Article  CAS  PubMed  Google Scholar 

  42. Guo L, Ye L, Zhao Q, Ma Y, Yang J, Luo Y (2014) Comparative study of MALDI-TOF MS and VITEK 2 in bacteria identification. J Thorac Dis 6(5):534–538. https://doi.org/10.3978/j.issn.2072-1439.2014.02.18

    Article  PubMed  PubMed Central  Google Scholar 

  43. Demirev P, Sandrin TR (2016) Applications of Mass Spectrometry in Microbiology. Springer, Heidelberg

    Book  Google Scholar 

  44. Croxatto A, Prod’hom G, Greub G (2012) Applications of MALDI-TOF mass spectrometry in clinical diagnostic microbiology. FEMS Microbiol Rev 36(2):380–407. https://doi.org/10.1111/j.1574-6976.2011.00298.x

    Article  CAS  PubMed  Google Scholar 

  45. Kern CC, Vogel RF, Behr J (2014) Identification and differentiation of brewery isolates of Pectinatus sp. by matrix-assisted-laser desorption–ionization time-of-flight mass spectrometry (MALDI-TOF MS). Eur Food Res Technol 238(5):875–880. https://doi.org/10.1007/s00217-014-2173-4

    Article  CAS  Google Scholar 

  46. Nacef M, Chevalier M, Chollet S, Drider D, Flahaut C (2017) MALDI-TOF mass spectrometry for the identification of lactic acid bacteria isolated from a French cheese: The Maroilles. Int J Food Microbiol 247:2–8. https://doi.org/10.1016/j.ijfoodmicro.2016.07.005

    Article  CAS  PubMed  Google Scholar 

  47. Pavlovic M, Mewes A, Maggipinto M, Schmidt W, Messelhausser U, Balsliemke J, Hormansdorfer S, Busch U, Huber I (2014) MALDI-TOF MS based identification of food-borne yeast isolates. J Microbiol Methods 106:123–128. https://doi.org/10.1016/j.mimet.2014.08.021

    Article  CAS  PubMed  Google Scholar 

  48. Moothoo-Padayachie A, Kandappa HR, Krishna SBN, Maier T, Govender P (2013) Biotyping Saccharomyces cerevisiae strains using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Eur Food Res Technol 236(2):351–364. https://doi.org/10.1007/s00217-012-1898-1

    Article  CAS  Google Scholar 

  49. Blattel V, Petri A, Rabenstein A, Kuever J, Konig H (2013) Differentiation of species of the genus Saccharomyces using biomolecular fingerprinting methods. Appl Microbiol Biotechnol 97(10):4597–4606. https://doi.org/10.1007/s00253-013-4823-z

    Article  CAS  PubMed  Google Scholar 

  50. Gutierrez C, Gomez-Flechoso MA, Belda I, Ruiz J, Kayali N, Polo L, Santos A (2017) Wine yeasts identification by MALDI-TOF MS: Optimization of the preanalytical steps and development of an extensible open-source platform for processing and analysis of an in-house MS database. Int J Food Microbiol 254:1–10. https://doi.org/10.1016/j.ijfoodmicro.2017.05.003

    Article  CAS  PubMed  Google Scholar 

  51. Usbeck JC, Wilde C, Bertrand D, Behr J, Vogel RF (2014) Wine yeast typing by MALDI-TOF MS. Appl Microbiol Biotechnol 98(8):3737–3752. https://doi.org/10.1007/s00253-014-5586-x

    Article  CAS  PubMed  Google Scholar 

  52. Lauterbach A, Usbeck JC, Behr J, Vogel RF (2017) MALDI-TOF MS typing enables the classification of brewing yeasts of the genus Saccharomyces to major beer styles. PloS one 12(8):e0181694. https://doi.org/10.1371/journal.pone.0181694

    Article  PubMed  PubMed Central  Google Scholar 

  53. Legras JL, Ruh O, Merdinoglu D, Karst F (2005) Selection of hypervariable microsatellite loci for the characterization of Saccharomyces cerevisiae strains. Int J Food Microbiol 102(1):73–83. https://doi.org/10.1016/j.ijfoodmicro.2004.12.007

    Article  CAS  PubMed  Google Scholar 

  54. Perez M, Gallego F, Martinez I, Hidalgo P (2001) Detection, distribution and selection of microsatellites (SSRs) in the genome of the yeast Saccharomyces cerevisiae as molecular markers. Lett Appl Microbiol 33(6):461–466

    Article  CAS  PubMed  Google Scholar 

  55. Cavalli-Sforza LL, Edwards AW (1967) Phylogenetic analysis: models and estimation procedures. Evolution 21(3):550–570

    Article  CAS  PubMed  Google Scholar 

  56. Yamauchi H, Yamamoto H, Shibano Y, Amaya N, Saeki T (1998) Rapid methods for detecting Saccharomyces diastaticus, a beer spoilage yeast, using the polymerase chain reaction. J Am Soc Brew Chem 56(2):58–63

    CAS  Google Scholar 

  57. Bayly JC, Douglas LM, Pretorius IS, Bauer FF, Dranginis AM (2005) Characteristics of Flo11-dependent flocculation in Saccharomyces cerevisiae. FEMS Yeast Res 5(12):1151–1156. https://doi.org/10.1016/j.femsyr.2005.05.004

    Article  CAS  PubMed  Google Scholar 

  58. Michel M, Kopecká J, Meier-Dörnberg T, Zarnkow M, Jacob F, Hutzler M (2016) Screening for new brewing yeasts in the non-Saccharomyces sector with Torulaspora delbrueckii as model. Yeast 33:129–144

    Article  CAS  PubMed  Google Scholar 

  59. Usbeck JC, Kern CC, Vogel RF, Behr J (2013) Optimization of experimental and modelling parameters for the differentiation of beverage spoiling yeasts by matrix-assisted-laser-desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS) in response to varying growth conditions. Food Microbiol 36(2):379–387. https://doi.org/10.1016/j.fm.2013.07.004

    Article  CAS  PubMed  Google Scholar 

  60. Jombart T, Collins C (2015) A tutorial for discriminant analysis of principal components (DAPC) using adegenet 2.0.0. Imperial College London, MRC Centre for Outbreak Analysis and Modelling, London

    Google Scholar 

  61. Jespersen L, Jakobsen M (1996) Specific spoilage organisms in breweries and laboratory media for their detection. Int J Food Microbiol 33(1):139–155. https://doi.org/10.1016/0168-1605(96)01154-3

    Article  CAS  PubMed  Google Scholar 

  62. Heresztyn T (1986) Metabolism of volatile phenolic compounds from hydroxycinnamic acids by Brettanomyces yeast. Arch Microbiol 146(1):96–98

    Article  CAS  Google Scholar 

  63. Mukai N, Masaki K, Fujii T, Kawamukai M, Iefuji H (2010) PAD1 and FDC1 are essential for the decarboxylation of phenylacrylic acids in Saccharomyces cerevisiae. J Biosci Bioeng 109(6):564–569. https://doi.org/10.1016/j.jbiosc.2009.11.011

    Article  CAS  PubMed  Google Scholar 

  64. Chen P, Dong J, Yin H, Bao X, Chen L, He Y, Wan X, Chen R, Zhao Y, Hou X (2015) Single nucleotide polymorphisms and transcription analysis of genes involved in ferulic acid decarboxylation among different beer yeasts. J Inst Brew 121(4):481–489

    Article  CAS  Google Scholar 

  65. Li YC, Korol AB, Fahima T, Beiles A, Nevo E (2002) Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review. Mol Ecol 11(12):2453–2465. https://doi.org/10.1046/j.1365-294X.2002.01643.x

    Article  CAS  PubMed  Google Scholar 

  66. Marklein G, Josten M, Klanke U, Muller E, Horre R, Maier T, Wenzel T, Kostrzewa M, Bierbaum G, Hoerauf A, Sahl HG (2009) Matrix-assisted laser desorption ionization-time of flight mass spectrometry for fast and reliable identification of clinical yeast isolates. J Clin Microbiol 47(9):2912–2917. https://doi.org/10.1128/JCM.00389-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Usbeck JC, Behr J (2012) Vogel RF Differentiation of top-and bottom-fermenting brewing yeasts and insight into their metabolic status by MALDI-TOF MS, In: Poster World Brewing Congress, Portland

  68. Schurr BC, Behr J, Vogel RF (2015) Detection of acid and hop shock induced responses in beer spoiling Lactobacillus brevis by MALDI-TOF MS. Food Microbiol 46:501–506. https://doi.org/10.1016/j.fm.2014.09.018

    Article  CAS  PubMed  Google Scholar 

  69. Christner M, Trusch M, Rohde H, Kwiatkowski M, Schluter H, Wolters M, Aepfelbacher M, Hentschke M (2014) Rapid MALDI-TOF mass spectrometry strain typing during a large outbreak of Shiga-Toxigenic Escherichia coli. PloS one 9(7):e101924. https://doi.org/10.1371/journal.pone.0101924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Pham T, Wimalasena T, Box W, Koivuranta K, Storgårds E, Smart K, Gibson B (2011) Evaluation of ITS PCR and RFLP for differentiation and identification of brewing yeast and brewery ‘wild’ yeast contaminants. J Inst Brew 117(4):556–568

    Article  CAS  Google Scholar 

  71. Walther A, Hesselbart A, Wendland J (2014) Genome sequence of Saccharomyces carlsbergensis, the world’s first pure culture lager yeast. Genes Genomes Genet 4(5):783–793 https://doi.org/10.1534/g3.113.010090

  72. Spencer JF, Spencer DM (1983) Genetic improvement of industrial yeasts. Annu Rev Microbiol 37(1):121–142. https://doi.org/10.1146/annurev.mi.37.100183.001005

    Article  CAS  PubMed  Google Scholar 

  73. Meier-Dörnberg T, Jacob F, Michel M, Hutzler M (2017) Incidence of Saccharomyces cerevisiae var. diastaticus in the beverage industry: cases of contamination, 2008–2017. Master Brew Assoc Am 54(4):140–148. https://doi.org/10.1094/TQ-54-4-1130-01

    Article  Google Scholar 

Download references

Acknowledgements

Part of this work was supported by the German Ministry of Economics and Technology and the Wifö (Wissenschaftsförderung der Deutschen Brauwirtschaft e.V., Berlin, Germany) in project AiF 17698 N. We would like to thank our technical assistant Sabine Forster, and Dr Tobias Fischborn (Lallemand Inc.) for their support with the experiment, as well as Dr Damien Biot-Pelletier (Lallemand Inc.) and Viktor Eckel (Technische Mikrobiologie Weihenstephan) for critical reading of the manuscript. We are also grateful for the information about the origin of the new yeast strains for the MALDI-TOF MS library expansion from Dr. Mathias Hutzler and Tim Meier-Dörnberg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rudi F. Vogel.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Compliance with Ethics requirements

This communication does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 16 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lauterbach, A., Wilde, C., Bertrand, D. et al. Rating of the industrial application potential of yeast strains by molecular characterization. Eur Food Res Technol 244, 1759–1772 (2018). https://doi.org/10.1007/s00217-018-3088-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-018-3088-2

Keywords

Navigation