Skip to main content

Hydrochar: Sustainable and Low-Cost Biosorbent for Contaminant Removal

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Encyclopedia of Green Materials

Synonyms

Artificial coal; Biocoal; Functional carbon material; HTC – biochar; HTC – char; Hydrocarbon

Definition

Hydrochar is a carbon-rich solid material produced at mild temperature conditions in a closed atmosphere from any kind of wet waste including municipal waste, digested sludge, and agricultural residues. The higher carbon content, higher heating value, and lower ash content of hydrochar make it a suitable material for use as a fuel. The abundance of surface functional groups and acidic surfaces makes it a low-cost adsorbent for pollutant removal from wastewater (Sun et al. 2014).

Hydrochar Production

Hydrochar is produced in a sealed vessel known as a hydrothermal reactor under subcritical region of water at 180–250 °C and self-generated pressure for a specific period. The structure of the reactor used for hydrochar production is given in Fig. 1. Since hydrochar synthesis involves wet feedstock conversion, feedstocks with higher moisture content can be directly utilized in...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abdelbassit MS, Popoola SA, Saleh TA et al (2020) DFT and kinetic evaluation of chloromethane removal using cost-effective activated carbon. Arab J Sci Eng 45:4705–4716

    Article  CAS  Google Scholar 

  • Azzaz AA, Khiari B, Jellali S et al (2020) Hydrochars production, characterization and application for wastewater treatment: a review. Renew Sust Energy Rev 127:109882

    Article  CAS  Google Scholar 

  • Bento LR, Castro AJR, Moreira AB et al (2019) Release of nutrients and organic carbon in different soil types from hydrochar obtained using sugarcane bagasse and vinasse. Geoderma 334:24–32

    Article  CAS  Google Scholar 

  • Bishnoi NR (2005) Fungus – an alternative for bioremediation of heavy metal containing wastewater: a review. J Sci Ind Res 64(2):102

    Google Scholar 

  • Chun Y, Sheng G, Chiou CT, Xing B (2004) Compositions and sorptive properties of crop residue-derived chars. Environ Sci Technol 38:4649–4655

    Article  CAS  Google Scholar 

  • Cotoruelo LM, Marqués MD, Díaz FJ et al (2012) Adsorbent ability of lignin-based activated carbons for the removal of p-nitrophenol from aqueous solutions. Chem Eng J 184:176–183

    Article  CAS  Google Scholar 

  • Dai L, Wu B, Tan F et al (2014) Engineered hydrochar composites for phosphorus removal/recovery: lanthanum doped hydrochar prepared by hydrothermal carbonization of lanthanum pretreated rice straw. Bioresour Technol 161:327–332

    Article  CAS  Google Scholar 

  • Deng R, Huang D, Wan J et al (2020) Recent advances of biochar materials for typical potentially toxic elements management in aquatic environments: a review. J Clean Prod 255:119523

    Article  CAS  Google Scholar 

  • Du F-L, Du Q-S, Dai J et al (2018) A comparative study for the organic byproducts from hydrothermal carbonizations of sugarcane bagasse and its bio-refined components cellulose and lignin. PLoS One 13:e0197188

    Article  Google Scholar 

  • Fang J, Gao B, Chen J, Zimmerman AR (2015) Hydrochars derived from plant biomass under various conditions: characterization and potential applications and impacts. Chem Eng J 267:253–259

    Article  CAS  Google Scholar 

  • Fang J, Zhan L, Ok YS, Gao B (2018) Minireview of potential applications of hydrochar derived from hydrothermal carbonization of biomass. J Ind Eng Chem 57:15–21

    Article  CAS  Google Scholar 

  • Feng Y, Dionysiou DD, Wu Y et al (2013) Adsorption of dyestuff from aqueous solutions through oxalic acid-modified swede rape straw: adsorption process and disposal methodology of depleted bioadsorbents. Bioresour Technol 138:191–197

    Article  CAS  Google Scholar 

  • Feng Y, Sun H, Han L et al (2019) Fabrication of hydrochar based on food waste (FWHTC) and its application in aqueous solution rare earth ions adsorptive removal: process, mechanisms and disposal methodology. J Clean Prod 212:1423–1433

    Article  CAS  Google Scholar 

  • Fernández-Sanromán Á, Lama G, Pazos M et al (2021) Bridging the gap to hydrochar production and its application into frameworks of bioenergy, environmental and biocatalysis areas. Bioresour Technol 320:124399

    Article  Google Scholar 

  • Hu X, Ding Z, Zimmerman AR et al (2015) Batch and column sorption of arsenic onto iron-impregnated biochar synthesized through hydrolysis. Water Res 68:206–216

    Article  CAS  Google Scholar 

  • Hua Y, Zheng X, Xue L et al (2020) Microbial aging of hydrochar as a way to increase cadmium ion adsorption capacity: process and mechanism. Bioresour Technol 300:122708

    Article  CAS  Google Scholar 

  • Jiang Y, Liu B, Xu J et al (2018) Cross-linked chitosan/β-cyclodextrin composite for selective removal of methyl orange: adsorption performance and mechanism. Carbohydr Polym 182:106–114

    Article  CAS  Google Scholar 

  • Kambo HS, Dutta A (2015) A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications. Renew Sust Energy Rev 45:359–378

    Article  CAS  Google Scholar 

  • Kang S, Jung J, Choe JK et al (2018) Effect of biochar particle size on hydrophobic organic compound sorption kinetics: applicability of using representative size. Sci Total Environ 619:410–418

    Article  Google Scholar 

  • Karayıldırım T, Sınağ A, Kruse A (2008) Char and coke formation as unwanted side reaction of the hydrothermal biomass gasification. Chem Eng Technol 31:1561–1568

    Article  Google Scholar 

  • Kim J-Y, Davis AP, Kim K-W (2003) Stabilization of available arsenic in highly contaminated mine tailings using iron. Environ Sci Technol 37:189–195

    Article  CAS  Google Scholar 

  • Knez Ž, Markočič E, Hrnčič MK et al (2015) High pressure water reforming of biomass for energy and chemicals: a short review. J Supercrit Fluids 96:46–52

    Article  CAS  Google Scholar 

  • Kruse A, Funke A, Titirici M-M (2013) Hydrothermal conversion of biomass to fuels and energetic materials. Curr Opin Chem Biol 17:515–521

    Article  CAS  Google Scholar 

  • Kuśmierek K, Sprynskyy M, Świątkowski A (2020) Raw lignite as an effective low-cost adsorbent to remove phenol and chlorophenols from aqueous solutions. Sep Sci Technol 55:1741–1751

    Article  Google Scholar 

  • Liu W-J, Zeng F-X, Jiang H, Zhang X-S (2011) Preparation of high adsorption capacity bio-chars from waste biomass. Bioresour Technol 102:8247–8252

    Article  CAS  Google Scholar 

  • Liu Y, Wang L, Wang X et al (2020) Oxidative ageing of biochar and hydrochar alleviating competitive sorption of Cd (II) and Cu (II). Sci Total Environ 725:138419

    Article  CAS  Google Scholar 

  • Liu Z, Wang Z, Chen H et al (2021) Hydrochar and pyrochar for sorption of pollutants in wastewater and exhaust gas: a critical review. Environ Pollut 268:115910

    Article  CAS  Google Scholar 

  • Park D, Yun Y-S, Park JM (2010) The past, present, and future trends of biosorption. Biotechnol Bioprocess Eng 15:86–102

    Article  CAS  Google Scholar 

  • Reddy DHK, Vijayaraghavan K, Kim JA, Yun Y-S (2017) Valorisation of post-sorption materials: opportunities, strategies, and challenges. Adv Colloid Interf Sci 242:35–58

    Article  Google Scholar 

  • Saiz-Rubio R, Balseiro-Romero M, Antelo J et al (2019) Biochar as low-cost sorbent of volatile fuel organic compounds: potential application to water remediation. Environ Sci Pollut Res 26:11605–11617

    Article  CAS  Google Scholar 

  • Sharma R, Jasrotia K, Singh N et al (2020) A comprehensive review on hydrothermal carbonization of biomass and its applications. Chem Afr 3:1–19

    Article  CAS  Google Scholar 

  • Sun K, Ro K, Guo M et al (2011) Sorption of bisphenol A, 17α-ethinyl estradiol and phenanthrene on thermally and hydrothermally produced biochars. Bioresour Technol 102:5757–5763

    Article  CAS  Google Scholar 

  • Sun Y, Gao B, Yao Y et al (2014) Effects of feedstock type, production method, and pyrolysis temperature on biochar and hydrochar properties. Chem Eng J 240:574–578

    Article  CAS  Google Scholar 

  • Takaya CA, Fletcher LA, Singh S et al (2016) Phosphate and ammonium sorption capacity of biochar and hydrochar from different wastes. Chemosphere 145:518–527

    Article  CAS  Google Scholar 

  • Wang Z, Liu G, Zheng H et al (2015) Investigating the mechanisms of biochar’s removal of lead from solution. Bioresour Technol 177:308–317

    Article  CAS  Google Scholar 

  • Wu Y, Luo H, Wang H et al (2014) Fast adsorption of nickel ions by porous graphene oxide/sawdust composite and reuse for phenol degradation from aqueous solutions. J Colloid Interface Sci 436:90–98

    Article  CAS  Google Scholar 

  • Younas F, Mustafa A, Farooqi ZUR et al (2021) Current and emerging adsorbent technologies for wastewater treatment: trends, limitations, and environmental implications. Water 13:215

    Article  CAS  Google Scholar 

  • Zhang W, Wang H, Hu X et al (2019a) Multicavity triethylenetetramine-chitosan/alginate composite beads for enhanced Cr (VI) removal. J Clean Prod 231:733–745

    Article  CAS  Google Scholar 

  • Zhang Z, Zhu Z, Shen B, Liu L (2019b) Insights into biochar and hydrochar production and applications: a review. Energy 171:581–598

    Article  CAS  Google Scholar 

  • Zhang X, Wang Y, Cai J et al (2020) Bio/hydrochar sorbents for environmental remediation. Energy Environ Mater 3:453–468

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Subramanian .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Komalabharathi, P., Karuppasamy Vikraman, V., Praveen Kumar, D., Boopathi, G., Subramanian, P. (2023). Hydrochar: Sustainable and Low-Cost Biosorbent for Contaminant Removal. In: Baskar, C., Ramakrishna, S., Daniela La Rosa, A. (eds) Encyclopedia of Green Materials. Springer, Singapore. https://doi.org/10.1007/978-981-16-4921-9_51-2

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-4921-9_51-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-4921-9

  • Online ISBN: 978-981-16-4921-9

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Hydrochar: Sustainable and Low-Cost Biosorbent for Contaminant Removal
    Published:
    10 December 2022

    DOI: https://doi.org/10.1007/978-981-16-4921-9_51-2

  2. Original

    Hydrochar: Sustainable and Low-Cost Biosorbent for Contaminant Removal
    Published:
    09 August 2022

    DOI: https://doi.org/10.1007/978-981-16-4921-9_51-1