Skip to main content

Biomarkers of Parkinson’s Disease

  • Reference work entry
  • First Online:
General Methods in Biomarker Research and their Applications

Abstract

Parkinson’s disease (PD) is one of the most common neurodegenerative diseases, and its prevalence is expected to increase as the population ages. The earliest symptoms of PD are subtle and nonspecific, complicating diagnosis at early stages, when novel treatments would be most likely to alter the disease course. Therefore, biomarkers for PD, capable of improving clinical diagnostic practices, as well as monitoring disease progression and the effects of therapeutic treatments, are urgently needed. Different techniques have been applied for identifying PD biomarkers, with neuroimaging and biochemical biomarkers showing the most promise for the most common, idiopathic forms of the disease, while genetic markers that confer risk of PD are also under intense investigation. Due to the complexity and overlapping syndromes of neurodegenerative diseases, it is very challenging to validate PD biomarkers with high sensitivity and specificity for clinical practice. This chapter reviews the advantages and pitfalls of each type of biomarker, and further discovery of novel PD markers and integration of current biomarkers are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 399.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

18F-AV-133:

18F-(+) fluoropropyldihydrotetrabenazine

2DGE:

Two-Dimensional Gel Electrophoresis

AADC:

Aromatic l-amino Acid Decarboxylase

AD:

Alzheimer’s Disease

CBD:

Cortical Basal Degeneration

CNS:

Central Nervous System

CβE:

Conduritol-β-Epoxide

DAergic:

Dopaminergic

DLB:

Dementia with Lewy Bodies

DTBZ:

11C-(±)-α-Dihydrotetrabenazine

DTI:

Diffusion Tensor Image

DWI:

Diffusion-Weighted Image

EC-SOD:

Extracellular Superoxide Dismutase

EGF:

Epidermal Growth Factor

F-dopa:

6-[18F]-Fluoro-l-3,4-Dihydroxyphenylalanine

F-FDG:

Fluorine-18-Labelled Fluorodeoxyglucose

GWAS:

Genome-Wide Association Studies

iPD:

Idiopathic PD

iTRAQ:

Isobaric Tags for Relative and Absolute Quantification

LRRK2:

Leucine-Rich Repeat Kinase 2

MAPT:

Microtubule-Associated Protein

MRI:

Magnetic Resonance Imaging

MS:

Mass Spectrometry

MSA:

Multiple System Atrophy

PBMCs:

Peripheral Blood Mononuclear Cells

PD:

Parkinson’s Disease

PET:

Positron Emission Tomography

PIGD:

Postural Instability Gait Difficulty

PINK1:

PTEN-Induced Putative Kinase 1

PSP:

Progressive Supranuclear Palsy

PTMs:

Posttranslational Modifications

RBCs:

Fragile Red Blood Cells

SNCA:

α-Synuclein

SNpc:

Substantia Nigra Pars Compacta

SPECT:

Single Emission Computed Tomography

TD:

Tremor Dominant

UCHL1:

Ubiquitin Carboxyl-Terminal Hydrolase L1

UCP:

Uncoupling Protein

UPDRS:

Unified Parkinson’s Disease Rating Scale

VMAT2:

Vesicular Monoamine Transporter Type 2

References

  • Ahmed SS, Santosh W, Kumar S, Christlet HTT. Metabolic profiling of Parkinson’s disease: evidence of biomarker from gene expression analysis and rapid neural network detection. J Biomed Sci. 2009;16:63.

    Article  PubMed  PubMed Central  Google Scholar 

  • Alberio T, Pippione AC, Zibetti M, et al. Discovery and verification of panels of T-lymphocyte proteins as biomarkers of Parkinson’s disease. Sci Rep. 2012;2:953.

    Article  PubMed  PubMed Central  Google Scholar 

  • Beach TG, Adler CH, Sue LI, et al. Multi-organ distribution of phosphorylated alpha-synuclein histopathology in subjects with Lewy body disorders. Acta Neuropathol. 2010;119:689–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bidinosti M, Shimshek DR, Mollenhauer B, et al. Novel one-step immunoassays to quantify α-synuclein: applications for biomarker development and high-throughput screening. J Biol Chem. 2012;287:33691–705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blum-Degen D, Müller T, Kuhn W, et al. Interleukin-1 beta and interleukin-6 are elevated in the cerebrospinal fluid of Alzheimer’s and de novo Parkinson’s disease patients. Neurosci Lett. 1995;202:17–20.

    Article  CAS  PubMed  Google Scholar 

  • Bogdanov M, Matson WR, Wang L, et al. Metabolomic profiling to develop blood biomarkers for Parkinson’s disease. Brain. 2008;131:389–96.

    Article  PubMed  Google Scholar 

  • Bonifati V, Rizzu P, van Baren MJ, et al. Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science. 2003;299:256–9.

    Article  CAS  PubMed  Google Scholar 

  • Braak H, Del Tredici K. Neuroanatomy and pathology of sporadic Parkinson’s disease. Adv Anat Embryol Cell Biol. 2009;201:1–119.

    PubMed  Google Scholar 

  • Braak H, Del Tredici K, Rüb U, et al. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging. 2003;24:197–211.

    Article  PubMed  Google Scholar 

  • Brockmann K, Hilker R, Pilatus U, et al. GBA-associated PD. Neurodegeneration, altered membrane metabolism, and lack of energy failure. Neurology. 2012;79:213–20.

    Article  CAS  PubMed  Google Scholar 

  • Brooks DJ. Imaging approaches to Parkinson disease. J Nucl Med. 2010;51:596–609.

    Article  CAS  PubMed  Google Scholar 

  • Chen-Plotkin AS, Hu WT, Siderowf A, et al. Plasma epidermal growth factor levels predict cognitive decline in Parkinson disease. Ann Neurol. 2011;69:655–63.

    Article  CAS  PubMed  Google Scholar 

  • Cookson MR. Parkinsonism due to mutations in PINK1, parkin, and DJ-1 and oxidative stress and mitochondrial pathways. Cold Spring Harb Perspect Med. 2012;2:a009415.

    Article  PubMed  PubMed Central  Google Scholar 

  • Del Tredici K, Hawkes CH, Ghebremedhin E, Braak H. Lewy pathology in the submandibular gland of individuals with incidental Lewy body disease and sporadic Parkinson’s disease. Acta Neuropathol. 2010;119:703–13.

    Article  PubMed  Google Scholar 

  • Devic I, Hwang H, Edgar JS, et al. Salivary α-synuclein and DJ-1: potential biomarkers for Parkinson’s disease. Brain. 2011;134:e178.

    Article  PubMed  PubMed Central  Google Scholar 

  • Devine MJ, Kaganovich A, Ryten M, et al. Pathogenic LRRK2 mutations do not alter gene expression in cell model systems or human brain tissue. PLoS One. 2011;6:e22489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doherty KM, Silveira-Moriyama L, Parkkinen L, et al. Parkin disease: a clinicopathologic entity? JAMA Neurol. 2013;70:571–9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dzamko N, Chua G, Ranola M, et al. Measurement of LRRK2 and Ser910/935 phosphorylated LRRK2 in peripheral blood mononuclear cells from idiopathic Parkinson’s disease patients. J Parkinsons Dis. 2013;3:145–52.

    CAS  PubMed  Google Scholar 

  • Edwards TL, Scott WK, Almonte C, et al. Genome-wide association study confirms SNPs in SNCA and the MAPT region as common risk factors for Parkinson disease. Ann Hum Genet. 2010;74:97–109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forsyth CB, Shannon KM, Kordower JH, et al. Increased intestinal permeability correlates with sigmoid mucosa alpha-synuclein staining and endotoxin exposure markers in early Parkinson’s disease. PLoS One. 2011;6:e28032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foulds PG, Mitchell JD, Parker A, et al. Phosphorylated α-synuclein can be detected in blood plasma and is potentially a useful biomarker for Parkinson’s disease. FASEB J. 2011;25:4127–37.

    Article  CAS  PubMed  Google Scholar 

  • Foulds PG, Diggle P, Mitchell JD, et al. A longitudinal study on α-synuclein in blood plasma as a biomarker for Parkinson’s disease. Sci Rep. 2013;3:2540.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gardai SJ, Mao W, Schüle B, et al. Elevated alpha-synuclein impairs innate immune cell function and provides a potential peripheral biomarker for Parkinson’s disease. PLoS One. 2013;8:e71634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gegg ME, Burke D, Heales SJR, et al. Glucocerebrosidase deficiency in substantia nigra of parkinson disease brains. Ann Neurol. 2012;72:455–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gitler AD, Shorter J. Prime time for alpha-synuclein. J Neurosci. 2007;27:2433–4.

    Article  CAS  PubMed  Google Scholar 

  • Goldberg MS, Pisani A, Haburcak M, et al. Nigrostriatal dopaminergic deficits and hypokinesia caused by inactivation of the familial Parkinsonism-linked gene DJ-1. Neuron. 2005;45:489–96.

    Article  CAS  PubMed  Google Scholar 

  • Grünblatt E, Zehetmayer S, Jacob CP, et al. Pilot study: peripheral biomarkers for diagnosing sporadic Parkinson’s disease. J Neural Transm. 2010;117:1387–93.

    Article  PubMed  Google Scholar 

  • Haas BR, Stewart TH, Zhang J. Premotor biomarkers for Parkinson’s disease – a promising direction of research. Transl Neurodegener. 2012;1:11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hilker R, Pilatus U, Eggers C, et al. The bioenergetic status relates to dopamine neuron loss in familial PD with PINK1 mutations. PLoS One. 2012;7:e51308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holmans P, Moskvina V, Jones L, et al. A pathway-based analysis provides additional support for an immune-related genetic susceptibility to Parkinson’s disease. Hum Mol Genet. 2013;22:1039–49.

    Article  CAS  PubMed  Google Scholar 

  • Hong Z, Shi M, Chung KA, et al. DJ-1 and alpha-synuclein in human cerebrospinal fluid as biomarkers of Parkinson’s disease. Brain. 2010;133:713–26.

    Article  PubMed  PubMed Central  Google Scholar 

  • Humpel C. Identifying and validating biomarkers for Alzheimer’s disease. Trends Biotechnol. 2011;29:26–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johansen KK, Wang L, Aasly JO, et al. Metabolomic profiling in LRRK2-related Parkinson’s disease. PLoS One. 2009;4:e7551.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaerst L, Kuhlmann A, Wedekind D, et al. Using cerebrospinal fluid marker profiles in clinical diagnosis of dementia with Lewy bodies, Parkinson’s disease, and Alzheimer’s disease. J Alzheimers Dis. 2013. doi:10.3233/JAD-130995.

    Google Scholar 

  • Kang J-H, Irwin DJ, Chen-Plotkin AS, et al. Association of cerebrospinal fluid β-amyloid 1-42, T-tau, P-tau181, and α-synuclein levels with clinical features of drug-naive patients with early Parkinson disease. JAMA Neurol. 2013. doi:10.1001/jamaneurol.2013.3861.

    PubMed  PubMed Central  Google Scholar 

  • Karimi M, Tian L, Brown CA, et al. Validation of nigrostriatal positron emission tomography measures: critical limits. Ann Neurol. 2013;73:390–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khoo SK, Petillo D, Kang UJ, et al. Plasma-based circulating microRNA biomarkers for Parkinson’s disease. J Parkinsons Dis. 2012;2:321–31.

    CAS  PubMed  Google Scholar 

  • Kitada T, Asakawa S, Hattori N, et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature. 1998;392:605–8.

    Article  CAS  PubMed  Google Scholar 

  • Koller WC, Montgomery EB. Issues in the early diagnosis of Parkinson’s disease. Neurology. 1997;49:S10–25.

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Liu H-P, Lin W-Y, et al. LRRK2 kinase regulates synaptic morphology through distinct substrates at the presynaptic and postsynaptic compartments of the Drosophila neuromuscular junction. J Neurosci. 2010;30:16959–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewis SJG, Foltynie T, Blackwell AD, et al. Heterogeneity of Parkinson’s disease in the early clinical stages using a data driven approach. J Neurol Neurosurg Psychiatry. 2005;76:343–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewitt PA, Li J, Lu M, et al. 3-hydroxykynurenine and other Parkinson’s disease biomarkers discovered by metabolomic analysis. Mov Disord. 2013;00:1–8.

    Google Scholar 

  • Lin X, Cook TJ, Zabetian CP, et al. DJ-1 isoforms in whole blood as potential biomarkers of Parkinson disease. Sci Rep. 2012;2:954.

    PubMed  PubMed Central  Google Scholar 

  • Liu Z, Wang X, Yu Y, et al. A Drosophila model for LRRK2-linked parkinsonism. Proc Natl Acad Sci U S A. 2008;105:2693–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu P, Feng T, Wang Y, et al. Clinical heterogeneity in patients with early-stage Parkinson’s disease: a cluster analysis. J Zhejiang Univ Sci B. 2011;12:694–703.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu S, Sawada T, Lee S, et al. Parkinson’s disease-associated kinase PINK1 regulates Miro protein level and axonal transport of mitochondria. PLoS Genet. 2012;8:e1002537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahlknecht P, Stemberger S, Sprenger F, et al. An antibody microarray analysis of serum cytokines in neurodegenerative Parkinsonian syndromes. Proteome Sci. 2012;10:71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maraganore DM, de Andrade M, Lesnick TG, et al. High-resolution whole-genome association study of Parkinson disease. Am J Hum Genet. 2005;77:685–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marshall VL, Patterson J, Hadley DM, et al. Two-year follow-up in 150 consecutive cases with normal dopamine transporter imaging. Nucl Med Commun. 2006;27:933–7.

    Article  PubMed  Google Scholar 

  • Michell AW, Lewis SJG, Foltynie T, Barker RA. Biomarkers and Parkinson’s disease. Brain. 2004;127:1693–705.

    Article  CAS  PubMed  Google Scholar 

  • Miyake Y, Tanaka K, Fukushima W, et al. UCHL1 S18Y variant is a risk factor for Parkinson’s disease in Japan. BMC Neurol. 2012;12:62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morrish PK, Sawle GV, Brooks DJ. An [18F] dopa-PET and clinical study of the rate of progression in Parkinson’s disease. Brain : a journal of neurology. 1996;119(Pt 2):585–91.

    Google Scholar 

  • Motabar O, Goldin E, Leister W, et al. A high throughput glucocerebrosidase assay using the natural substrate glucosylceramide. Anal Bioanal Chem. 2012;402:731–9.

    Article  CAS  PubMed  Google Scholar 

  • Mutez E, Larvor L, Leprêtre F, et al. Transcriptional profile of Parkinson blood mononuclear cells with LRRK2 mutation. Neurobiol Aging. 2011;32:1839–48.

    Article  CAS  PubMed  Google Scholar 

  • Nandhagopal R, Mak E, Schulzer M, et al. Progression of dopaminergic dysfunction in a LRRK2 kindred: a multitracer PET study. Neurology. 2008;71:1790–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nau R, Sörgel F, Eiffert H. Penetration of drugs through the blood-cerebrospinal fluid/blood–brain barrier for treatment of central nervous system infections. Clin Microbiol Rev. 2010;23:858–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niethammer M, Feigin A, Eidelberg D. Functional neuroimaging in Parkinson’s disease. Cold Spring Harb Perspect Med. 2012;2:a009274.

    Article  PubMed  PubMed Central  Google Scholar 

  • Noble W, Hanger DP, Miller CCJ, Lovestone S. The importance of tau phosphorylation for neurodegenerative diseases. Front Neurol. 2013;4:83.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nucifora PG, Verma R, Lee SK, Melhem ER. Diffusion-tensor MR imaging and tractography: exploring brain microstructure and connectivity. Radiology. 2007;245:367–84.

    Article  PubMed  Google Scholar 

  • Okamura N, Villemagne VL, Drago J, et al. In vivo measurement of vesicular monoamine transporter type 2 density in Parkinson disease with (18)F-AV-133. J Nucl Med. 2010;51:223–8.

    Article  PubMed  Google Scholar 

  • Ostrerova N, Petrucelli L, Farrer M, et al. Alpha-Synuclein shares physical and functional homology with 14-3-3 proteins. J Neurosci. 1999;19:5782–91.

    CAS  PubMed  Google Scholar 

  • Paisán-Ruíz C, Jain S, Evans EW, et al. Cloning of the gene containing mutations that cause PARK8-linked Parkinson’s disease. Neuron. 2004;44:595–600.

    Article  PubMed  Google Scholar 

  • Papkovskaia TD, Chau K-Y, Inesta-Vaquera F, et al. G2019S leucine-rich repeat kinase 2 causes uncoupling protein-mediated mitochondrial depolarization. Hum Mol Genet. 2012;21:4201–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poston KL, Eidelberg D. FDG PET in the evaluation of Parkinson’s disease. PET Clin. 2010;5:55–64.

    Article  PubMed  PubMed Central  Google Scholar 

  • Prodoehl J, Li H, Planetta PJ, et al. Diffusion tensor imaging of Parkinson’s disease, atypical parkinsonism, and essential tremor. Mov Disord. 2013;00:1–7.

    Google Scholar 

  • Qiang JK, Wong YC, Siderowf A, et al. Plasma apolipoprotein A1 as a biomarker for Parkinson disease. Ann Neurol. 2013;74:119–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qureshi HY, Paudel HK. Parkinsonian neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and alpha-synuclein mutations promote Tau protein phosphorylation at Ser262 and destabilize microtubule cytoskeleton in vitro. J Biol Chem. 2011;286:5055–68.

    Article  CAS  PubMed  Google Scholar 

  • Reale M, Iarlori C, Thomas A, et al. Peripheral cytokines profile in Parkinson’s disease. Brain Behav Immun. 2009;23:55–63.

    Article  CAS  PubMed  Google Scholar 

  • Riederer P, Wuketich S. Time course of nigrostriatal degeneration in parkinson’s disease. A detailed study of influential factors in human brain amine analysis. J Neural Transm. 1976;38:277–301.

    Article  CAS  PubMed  Google Scholar 

  • Rossi C, Volterrani D, Nicoletti V, et al. “Parkinson-dementia” diseases: a comparison by double tracer SPECT studies. Parkinsonism Relat Disord. 2009;15:762–6.

    Article  PubMed  Google Scholar 

  • Saito Y, Hamakubo T, Yoshida Y, et al. Preparation and application of monoclonal antibodies against oxidized DJ-1. Significant elevation of oxidized DJ-1 in erythrocytes of early-stage Parkinson disease patients. Neurosci Lett. 2009;465:1–5.

    Article  CAS  PubMed  Google Scholar 

  • Satake W, Nakabayashi Y, Mizuta I, et al. Genome-wide association study identifies common variants at four loci as genetic risk factors for Parkinson’s disease. Nat Genet. 2009;41:1303–7.

    Article  CAS  PubMed  Google Scholar 

  • Schapira AHV, Gegg ME. Glucocerebrosidase in the pathogenesis and treatment of Parkinson disease. Proc Natl Acad Sci U S A. 2013;110:3214–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scherzer CR, Eklund AC, Morse LJ, et al. Molecular markers of early Parkinson’s disease based on gene expression in blood. Proc Natl Acad Sci U S A. 2007;104:955–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmid AW, Fauvet B, Moniatte M, Lashuel HA. Alpha-synuclein post-translational modifications as potential biomarkers for Parkinson’s disease and other synucleinopathies. Mol Cell Proteomics. 2013. doi:10.1074/mcp.R113.032730.

    PubMed Central  Google Scholar 

  • Schneider P, Hampel H, Buerger K. Biological marker candidates of Alzheimer’s disease in blood, plasma, and serum. CNS Neurosci Ther. 2009;15:358–74.

    Article  CAS  PubMed  Google Scholar 

  • Schrag A. How valid is the clinical diagnosis of Parkinson’s disease in the community? J Neurol Neurosurg Psychiatry. 2002;73:529–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schuff N. Potential role of high-field MRI for studies in Parkinson’s disease. Mov Disord. 2009;24 Suppl 2:S684–90.

    Article  PubMed  Google Scholar 

  • Seibyl JP, Marek K, Sheff K, et al. Test/retest reproducibility of iodine-123-betaCIT SPECT brain measurement of dopamine transporters in Parkinson’s patients. J Nucl Med. 1997;38:1453–9.

    CAS  PubMed  Google Scholar 

  • Shi M, Zabetian CP, Hancock AM, et al. Significance and confounders of peripheral DJ-1 and alpha-synuclein in Parkinson’s disease. Neurosci Lett. 2010;480:78–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi M, Sui Y-T, Peskind ER, et al. Salivary tau species are potential biomarkers of Alzheimer’s disease. J Alzheimers Dis. 2011;27:299–305.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shi M, Furay AR, Sossi V, et al. DJ-1 and αSYN in LRRK2 CSF do not correlate with striatal dopaminergic function. Neurobiol Aging. 2012;33:836.e5–7.

    Article  CAS  Google Scholar 

  • Spillantini MG, Van Swieten JC, Goedert M. Tau gene mutations in frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17). Neurogenetics. 2000;2:193–205.

    CAS  PubMed  Google Scholar 

  • Stewart T, Sui YT, Gonzalez-Cuyar LF, Wong DT, Akin DM, Tumas V, Aasly J, Ashmore E, Aro P, Ginghina C, Korff A, Zabetian CP, Leverenz JB, Shi M, Zhang J. Cheek cell-derived α-synuclein and DJ-1 do not differentiate Parkinson’s disease from control. Neurobiol Aging. 2014;35:418–20.

    Article  CAS  PubMed  Google Scholar 

  • Sunderland T, Linker G, Mirza N, et al. Decreased beta-amyloid1-42 and increased tau levels in cerebrospinal fluid of patients with Alzheimer disease. JAMA. 2003;289:2094–103.

    Article  PubMed  Google Scholar 

  • Tang CC, Poston KL, Eckert T, et al. Differential diagnosis of parkinsonism: a metabolic imaging study using pattern analysis. Lancet Neurol. 2010;9:149–58.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tanner CM, Goldman SM. Epidemiology of Parkinson’s disease. Neurol Clin. 1996;14:317–35.

    Article  CAS  PubMed  Google Scholar 

  • Tokuda T, Qureshi MM, Ardah MT, et al. Detection of elevated levels of α-synuclein oligomers in CSF from patients with Parkinson disease. Neurology. 2010;75:1766–72.

    Article  CAS  PubMed  Google Scholar 

  • Van Dijk KD, Persichetti E, Chiasserini D, et al. Changes in endolysosomal enzyme activities in cerebrospinal fluid of patients with Parkinson’s disease. Mov Disord. 2013;28:747–54.

    Article  PubMed  Google Scholar 

  • Vlaar AMM, de Nijs T, Kessels AGH, et al. Diagnostic value of 123I-ioflupane and 123I-iodobenzamide SPECT scans in 248 patients with parkinsonian syndromes. Eur Neurol. 2008;59:258–66.

    Article  PubMed  Google Scholar 

  • Wang X, Petrie TG, Liu Y, et al. Parkinson’s disease-associated DJ-1 mutations impair mitochondrial dynamics and cause mitochondrial dysfunction. J Neurochem. 2012a;121:830–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Shi M, Chung KA, et al. Phosphorylated α-synuclein in Parkinson’s disease. Sci Transl Med. 2012b;4:121ra20.

    PubMed  PubMed Central  Google Scholar 

  • Wang E-S, Yao H-B, Chen Y-H, et al. Proteomic analysis of the cerebrospinal fluid of Parkinson’s disease patients pre- and post-deep brain stimulation. Cell Physiol Biochem. 2013a;31:625–37.

    Article  PubMed  Google Scholar 

  • Wang J, Hoekstra JG, Zuo C, et al. Biomarkers of Parkinson’s disease: current status and future perspectives. Drug Discov Today. 2013b;18:155–62.

    Article  PubMed  Google Scholar 

  • Wang N, Gibbons CH, Lafo J, Freeman R. α-Synuclein in cutaneous autonomic nerves. Neurology. 2013c. doi:10.1212/WNL.0b013e3182a9f449.

    Google Scholar 

  • Waragai M, Nakai M, Wei J, et al. Plasma levels of DJ-1 as a possible marker for progression of sporadic Parkinson’s disease. Neurosci Lett. 2007;425:18–22.

    Article  CAS  PubMed  Google Scholar 

  • Winder-Rhodes SE, Evans JR, Ban M, et al. Glucocerebrosidase mutations influence the natural history of Parkinson’s disease in a community-based incident cohort. Brain. 2013;136:392–9.

    Article  PubMed  Google Scholar 

  • Winogrodzka A, Bergmans P, Booij J, et al. [123 I]FP-CIT SPECT is a useful method to monitor the rate of dopaminergic degeneration in early-stage Parkinson’s disease. J Neural Transm. 2001;108:1011–9.

    Article  CAS  PubMed  Google Scholar 

  • Yan SD, Stern DM. Mitochondrial dysfunction and Alzheimer’s disease: role of amyloid-beta peptide alcohol dehydrogenase (ABAD). Int J Exp Pathol. 2005;86:161–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Yin X, Yu H, et al. Quantitative proteomic analysis of serum proteins in patients with Parkinson’s disease using an isobaric tag for relative and absolute quantification labeling, two-dimensional liquid chromatography, and tandem mass spectrometry. Analyst. 2012;137:490–5.

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Mattison HA, Liu C, et al. Longitudinal assessment of tau and amyloid beta in cerebrospinal fluid of Parkinson disease. Acta Neuropathol. 2013;126:671–82.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Michael J. Fox Foundation, the Parkinson Study Group, and the National Institutes of Health [NIEHS T32ES015459 to T.S., AG033398, ES004696-5897, ES007033-6364, ES016873, ES019277, NS057567, NS060252, NS062684-6221, and NS082137 to J.Z.].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Fang, F., Stewart, T., Zhang, J. (2015). Biomarkers of Parkinson’s Disease. In: Preedy, V., Patel, V. (eds) General Methods in Biomarker Research and their Applications. Biomarkers in Disease: Methods, Discoveries and Applications. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7696-8_17

Download citation

Publish with us

Policies and ethics