Skip to main content

Advertisement

Log in

Pilot study: peripheral biomarkers for diagnosing sporadic Parkinson’s disease

  • Movement Disorders - Original Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

The need for an early and differential diagnosis of Parkinson’s disease (PD) is undoubtedly one of the main quests of the century. An early biomarker would enable therapy to begin sooner and would, hopefully, slow or better prevent progression of the disease. We performed transcript profiling via quantitative RT-PCR in RNA originating from peripheral blood samples. The groups were de novo (n = 11) and medicated PD (n = 94) subjects and healthy controls (n = 34), while for negative control Alzheimer’s disease (AD; n = 14) subjects were recruited as an additional neurodegenerative disease. The results were retested on a second recruitment consisting 22 medicated PD subjects versus 33 controls and 12 AD. Twelve transcripts were chosen as candidate genes, according to previous postmortem brain profiling. Multiple analyses resulted in four significant genes: proteasome (prosome, macropain) subunit-alpha type-2 (PSMA2; p = 0.0002, OR = 1.15 95% CI 1.07–1.24), laminin, beta-2 (laminin S) (LAMB2; p = 0.0078, OR = 2.26 95% CI 1.24–4.14), aldehyde dehydrogenase 1 family-member A1 (ALDH1A1; p = 0.016, OR = 1.05 95% CI 1.01–1.1), and histone cluster-1 H3e (HIST1H3E; p = 0.03, OR = 0.975 95% CI 0.953–0.998) differentiating between medicated PD subjects versus controls. Using these four biomarkers for PD diagnosis, we achieved sensitivity and specificity of more than 80%. These biomarkers might be specific for PD diagnosis, since in AD subjects no significant results were observed. In the second validation, three genes (PSMA2, LAMB2 and ALDH1A1) demonstrated high reproducibility. This result supports previous studies of gene expression profiling and may facilitate the development of biomarkers for early diagnosis of PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Berg L (1988) Clinical Dementia Rating (CDR). Psychopharmacol Bull 24:637–639

    CAS  PubMed  Google Scholar 

  • Bernheimer H, Birkmayer W, Hornykiewicz O, Jellinger K, Seitelberger F (1973) Brain dopamine and the syndromes of Parkinson and Huntington. Clinical, morphological and neurochemical correlations. J Neurol Sci 20:415–455

    Article  CAS  PubMed  Google Scholar 

  • Bhidayasiri R (2006) How useful is (123I) beta-CIT SPECT in the diagnosis of Parkinson’s disease? Rev Neurol Dis 3:19–22

    PubMed  Google Scholar 

  • Bogdanov M, Matson WR, Wang L, Matson T, Saunders-Pullman R, Bressman SS, Beal MF (2008) Metabolomic profiling to develop blood biomarkers for Parkinson’s disease. Brain 131:389–396

    Article  PubMed  Google Scholar 

  • Brooks DJ (1998) The early diagnosis of Parkinson’s disease. Ann Neurol 44:S10–S18

    Article  CAS  PubMed  Google Scholar 

  • Coste J, Ouchchane L, Sarry L, Derost P, Durif F, Gabrillargues J, Hemm S, Lemaire JJ (2009) New electrophysiological mapping combined with MRI in parkinsonian’s subthalamic region. Eur J Neurosci 29:1627–1633

    Article  CAS  PubMed  Google Scholar 

  • Eerola J, Tienari PJ, Kaakkola S, Nikkinen P, Launes J (2005) How useful is [123I]beta-CIT SPECT in clinical practice? J Neurol Neurosurg Psychiatry 76:1211–1216

    Article  CAS  PubMed  Google Scholar 

  • Fahn S, Elton R, Committee, Mot UD (1987) Unified Parkinson’s disease rating scale. In: Fahn S, Marsden C, Goldstein M (eds) Recent developments in Parkinson’s disease. Macmillan, New York, pp 153–167

  • Fasano M, Alberio T, Lopiano L (2008) Peripheral biomarkers of Parkinson’s disease as early reporters of central neurodegeneration. Biomarkers Med 2:465–478

    Article  CAS  Google Scholar 

  • Grünblatt E (2008) Commonalities in the genetics of Alzheimer’s disease and Parkinson’s disease. Expert Rev Neurother 8:1865–1877

    Article  PubMed  Google Scholar 

  • Grünblatt E, Mandel S, Jacob-Hirsch J et al (2004) Gene expression profiling of parkinsonian substantia nigra pars compacta; alterations in ubiquitin-proteasome, heat shock protein, iron and oxidative stress regulated proteins, cell adhesion/cellular matrix and vesicle trafficking genes. J Neural Transm 111:1543–1573

    Article  PubMed  CAS  Google Scholar 

  • Grünblatt E, Zander N, Bartl J et al (2007) Comparison analysis of gene expression patterns between sporadic Alzheimer’s and Parkinson’s disease. J Alzheimers Dis 12:291–311

    PubMed  Google Scholar 

  • Grünblatt E, Bartl J, Zehetmayer S, Ringel TM, Bauer P, Riederer P, Jacob CP (2009) Gene expression as peripheral biomarkers for sporadic Alzheimer’s disease. J Alzheimers Dis 16:627–634

    PubMed  Google Scholar 

  • Hamilton M (1960) A rating scale for depression. J Neurol Neurosurg Psychiatry 23:56–62

    Article  CAS  PubMed  Google Scholar 

  • Hatano T, Kubo S, Sato S, Hattori N (2009) Pathogenesis of familial Parkinson’s disease: new insights based on monogenic forms of Parkinson’s disease. J Neurochem 111:1075–1093

    Article  CAS  PubMed  Google Scholar 

  • Hauser MA, Li YJ, Xu H et al (2005) Expression profiling of substantia nigra in Parkinson disease, progressive supranuclear palsy, and frontotemporal dementia with parkinsonism. Arch Neurol 62:917–921

    Article  PubMed  Google Scholar 

  • Hennecke G, Scherzer CR (2008) RNA biomarkers of Parkinson’s disease: developing tools for novel therapies. Biomarkers Med 2:41–53

    Article  CAS  Google Scholar 

  • Hoehn MM, Yahr MD (1967) Parkinsonism: onset, progression and mortality. Neurology 17:427–442

    CAS  PubMed  Google Scholar 

  • Hughes AJ, Daniel SE, Ben-Shlomo Y, Lees AJ (2002) The accuracy of diagnosis of parkinsonian syndromes in a specialist movement disorder service. Brain 125:861–870

    Article  PubMed  Google Scholar 

  • Hurley MJ, Mash DC, Jenner P (2003) Markers for dopaminergic neurotransmission in the cerebellum in normal individuals and patients with Parkinson’s disease examined by RT-PCR. Eur J Neurosci 18:2668–2672

    Article  PubMed  Google Scholar 

  • Jankovic J, Rajput AH, McDermott MP, Perl DP (2000) The evolution of diagnosis in early Parkinson disease. Parkinson Study Group. Arch Neurol 57:369–372

    Article  CAS  PubMed  Google Scholar 

  • Kassiou M, Banati R, Holsinger RM, Meikle S (2009) Challenges in molecular imaging of Parkinson’s disease: a brief overview. Brain Res Bull 78:105–108

    Article  CAS  PubMed  Google Scholar 

  • Klein C, Schneider SA, Lang AE (2009) Hereditary parkinsonism: Parkinson disease look-alikes—an algorithm for clinicians to “PARK” genes and beyond. Mov Disord 24:2042–2058

    Article  PubMed  Google Scholar 

  • Koerts J, Leenders KL, Koning M, Portman AT, van Beilen M (2007) Striatal dopaminergic activity (FDOPA-PET) associated with cognitive items of a depression scale (MADRS) in Parkinson’s disease. Eur J Neurosci 25:3132–3136

    Article  PubMed  Google Scholar 

  • Lovrecic L, Kastrin A, Kobal J, Pirtosek Z, Krainc D, Peterlin B (2009) Gene expression changes in blood as a putative biomarker for Huntington’s disease. Mov Disord 24:2277–2281

    Article  PubMed  Google Scholar 

  • Lu L, Neff F, Alvarez-Fischer D, Henze C, Xie Y, Oertel WH, Schlegel J, Hartmann A (2005) Gene expression profiling of Lewy body-bearing neurons in Parkinson’s disease. Exp Neurol 195:27–39

    Article  CAS  PubMed  Google Scholar 

  • Manolio T (2003) Novel risk markers and clinical practice. N Engl J Med 349:1587–1589

    Article  CAS  PubMed  Google Scholar 

  • McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM (1984) Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s disease. Neurology 34:939–944

    CAS  PubMed  Google Scholar 

  • Michell AW, Lewis SJG, Foltynie T, Barker RA (2004) Biomarkers and Parkinson’s disease. Brain 127:1693–1705

    Article  CAS  PubMed  Google Scholar 

  • Mollenhauer B, Trenkwalder C (2009) Neurochemical biomarkers in the differential diagnosis of movement disorders. Mov Disord 24:1411–1426

    Article  PubMed  Google Scholar 

  • O’Connor DW, Pollitt PA, Hyde JB, Fellows JL, Miller ND, Brook CP, Reiss BB (1989) The reliability and validity of the mini-mental state in a British community survey. J Psychiatr Res 23:87–96

    Article  PubMed  Google Scholar 

  • Paulsen JS (2009) Biomarkers to predict and track diseases. Lancet Neurol 8:776–777

    Article  PubMed  Google Scholar 

  • Postuma RB, Montplaisir J (2006) Potential early markers of Parkinson’s disease in idiopathic rapid-eye-movement sleep behaviour disorder. Lancet Neurol 5:552–553

    Article  PubMed  Google Scholar 

  • Ravina B, Tanner C, Dieuliis D et al (2009) A longitudinal program for biomarker development in Parkinson’s disease: a feasibility study. Mov Disord 24:2081–2090

    Article  PubMed  Google Scholar 

  • Scherzer CR (2009) Chipping away at diagnostics for neurodegenerative diseases. Neurobiol Dis 35:148–156

    Article  CAS  PubMed  Google Scholar 

  • Scherzer CR, Eklund AC, Morse LJ et al (2007) Molecular markers of early Parkinson’s disease based on gene expression in blood. Proc Natl Acad Sci USA 104:955–960

    Article  CAS  PubMed  Google Scholar 

  • Simunovic F, Yi M, Wang YL et al (2009) Gene expression profiling of substantia nigra dopamine neurons: further insights into Parkinson’s disease pathology. Brain 132:1795–1809

    Article  PubMed  Google Scholar 

  • Sullivan PF, Fan C, Perou CM (2006) Evaluating the comparability of gene expression in blood and brain. Am J Med Genet B Neuropsychiatr Genet 141:261–268

    Google Scholar 

  • Tolosa E, Wenning G, Poewe W (2006) The diagnosis of Parkinson’s disease. Lancet Neurol 5:75–86

    Article  PubMed  Google Scholar 

  • Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3(7):research0034.1–research0034.11

    Google Scholar 

  • Wouters H, van Gool WA, Schmand B, Lindeboom R (2008) Revising the ADAS-cog for a more accurate assessment of cognitive impairment. Alzheimer Dis Assoc Disord 22(3):236–244

    Google Scholar 

  • Zhang Y, James M, Middleton FA, Davis RL (2005) Transcriptional analysis of multiple brain regions in Parkinson’s disease supports the involvement of specific protein processing, energy metabolism, and signaling pathways, and suggests novel disease mechanisms. Am J Med Genet B Neuropsychiatr Genet 137:5–16

    Google Scholar 

Download references

Acknowledgments

This work was supported by the “Verein zur Durchführung neurowissenschaftliche Tagungen e.V” (2006) and the Hirnliga e.V. (2004). We wish to thank all the patients and the healthy volunteers who took part in this study and contributed to our findings. Special thanks to the study coordinator Monika Humann and the technicians, Miryame Hofmann and Carola Gagel, for their excellent work. All authors report no biomedical, financial, or potential conflicts of interest.

Conflict of interest

All authors have no actual or potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edna Grünblatt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 521 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grünblatt, E., Zehetmayer, S., Jacob, C.P. et al. Pilot study: peripheral biomarkers for diagnosing sporadic Parkinson’s disease. J Neural Transm 117, 1387–1393 (2010). https://doi.org/10.1007/s00702-010-0509-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-010-0509-1

Keywords

Navigation