Introduction to Scorpion Biology and Ecology

Living reference work entry

Abstract

Scorpions are venomous predatory arthropods with highly effective sensory mechanisms. They are equipped with a telson armed with two venom glands and a sting. Their ecophysiological characteristics have allowed them to adapt at many different environments and in particular deserts. Their ecological features reflect several key traits of their strategies and their relationships with their environment.

Keywords

Venom Gland Prey Animal Contact Pheromone Digestive Diverticulum Scorpion Species 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Althaus S, Jacob A, Graber W, Hofer D, Nentwig W, Kropf C. A double role of sperm in scorpions: the mating plug of Euscorpius italicus (Scorpiones: Euscorpiidae) consists of sperm. J Morphol. 2010;271(4):383–93.PubMedGoogle Scholar
  2. Brownell PH. Compressional and surface waves in sand: used by desert scorpions to locate prey. Science. 1977;197(4302):479–82.PubMedCrossRefGoogle Scholar
  3. Brownell PH, Van Hammel JL. Vibration sensitivity and a computational theory for prey-localizing behavior in sand scorpions. Am Zool. 2001;41(5):1229–40.CrossRefGoogle Scholar
  4. Bub K, Bowerman RF. Prey capture by the scorpion Hadrurus arizonensis Ewing (Scorpiones, Vaejovidae). J Arachnol. 1979;7:243–53.Google Scholar
  5. Carthy JD. The pectines of scorpions. Proc Zool Soc Lond. 1968;23:251–61.Google Scholar
  6. Dunlop JA, Braddy SJ. Scorpions and their sister-group relationships in: Scorpions 2001 in memoriam, Polis A, Fet PV, Selden A, editors. British Arachnological Society 2001. 1-24Google Scholar
  7. Ehret-Sabatier L, Loew D, Goyffon M, Fehlbaum P, Hoffmann JA, van Dorsselaer A, Bulet P. Characterization of novel cysteine-rich antimicrobial peptides from scorpion blood. J Biol Chem. 1996;271(47):29537–44.PubMedCrossRefGoogle Scholar
  8. Fabre JH. Le scorpion languedocien. In: Souvenirs entomologiques. 9 série. Paris: Delagrave ed.; 1907. 374 pp.Google Scholar
  9. Farley R. Structure, reproduction and development. In: Brownell PH, Polis GA, editors. Scorpion biology and research. Oxford/New York: Oxford University Press; 2001. 431 pp.Google Scholar
  10. Fet V, Brewer MS, Soleglad ME, Neff DPA. Constellation array: a new sensory structure in scorpions (Arachnida: Scorpiones). Bol Soc Entomol Aragonesa. 2006a;38:269–78.Google Scholar
  11. Fet V, Soleglad ME, Brewer MS, Neff DPA, Norton ML. Constellation array in scorpion genera Paruroctonus, Smeringurus, Vejovoidus, and Paravaejovis (Scorpiones: Vaejovidae). Euscorpius. 2006b;41:1–15.Google Scholar
  12. Fleissner G. Circadian adaptation und Schirmpigmentverlagerung in den Sehzellern der Medianaugen von Androctonus australis L. (Buthidae, Scorpiones). J Comp Physiol. 1974;91A(4):399–416.CrossRefGoogle Scholar
  13. Fleissner G, Fleissner G. Neurobiology of a circadian clock in the visual system of scorpions. In: Barth FG, editor. Neurobiology of arachnids. Berlin: Springer; 1985. p. 349–75. 385 pp.Google Scholar
  14. Fleissner G, Fleissner G. Neuronal organization of circadian systems. In: Brownell PH, Polis GA, editors. Scorpion biology and research. New York: Oxford University Press; 2001. p. 107–37. 431 pp.Google Scholar
  15. Foelix RF. Mechano-and chemoreceptive sensilla. In: Barth FG, editor. Neurobiology of arachnids. Berlin: Springer; 1985. p. 118–37. 385 pp.CrossRefGoogle Scholar
  16. Frost LM, Butler DR, O’Dell B, Fet V. A coumarin as a fluorescent compound in scorpion cuticle. In: Fet V, Selden PA, editors. Scorpions 2001: in memoriam Gary A. Polis. Bunham Beeches Bucks: British Arachnological Society; 2001. p. 363–8.Google Scholar
  17. Gaffin DD, Bumm LA, Taylor MS, Popokina NV, Mann S. Scorpion fluorescence and reaction to light. Anim Behav. 2012;83:429–36.CrossRefGoogle Scholar
  18. Gefen E. The relative importance of respiratory water loss in scorpions is correlated with species habitat type and activity pattern. Physiol Biochem Zool. 2011;84(1):68–76.PubMedCrossRefGoogle Scholar
  19. Gefen E, Ar A. Comparative water relations of four species of scorpions in Israel: evidence for phylogenetic differences. J Exp Biol. 2004;207(6):1017–25.PubMedCrossRefGoogle Scholar
  20. Gopalakrishnakone P, Gwee MCE, Wong PTH. The black scorpion Heterometrus longimanus. Structure of venom secreting apparatus. J Nat Toxins. 1995;4(1):1–18.Google Scholar
  21. Goyffon M. Resistance to ionizing radiation. In: Scorpions of the world Stockmann R., Ythier E., NAP editor. Verrières –le-Buisson; 2010. pp. 157–163.Google Scholar
  22. Hadley NF. Adaptational biology of desert scorpions. J Arachnol. 1974;2(1):11–23.Google Scholar
  23. Hadley NF. Environmental physiology. In: Polis GA, editor. Biology of scorpions. Stanford: Stanford University Press; 1990. p. 321–40.Google Scholar
  24. Hadley NF. Water relations of terrestrial arthropods. San Diego, Academic Press; 1994. p. 356.Google Scholar
  25. Kästner A. Skorpionen. In: Kükenthal W, Krumbach TN, editors. Handbuch der Zoologie, Chelicerata, Arachnida. Berlin: de Gruyter Verlag; 1935. 3(1) 117–340.Google Scholar
  26. Keegan HL, Lockwood WR. Secretory epithelium in venom glands of two species of scorpions of the genus Centruroides Marx. Am J Trop Med Hyg. 1971;20(5):770–85.PubMedGoogle Scholar
  27. Kovoor J. Etude histochimique des glandes à venin des Buthidae (Arachnida, Scorpiones). Ann Sci Nat Zool. 1973;15:201–20, 785.Google Scholar
  28. Lourenço WR. Fluorescence in scorpions under UV light; can chaerilids be a possible exception? C R Biol. 2012;395:731–4.CrossRefGoogle Scholar
  29. Lourenço WR, Kovoor J, Muñoz-Cuevas A. Modèle de la viviparitè, chez les Scorpions. In: Barrientos JA, editor. Actas X Congreso Internacionalde Aracnologia Jaca/Espaþa; 1986, vol. 1, p. 62.Google Scholar
  30. Lourenço WR, Cloudsley-Thompson JL, Cuellar O. A review of parthenogenesis in scorpions with a description of postembryonic development in Tityus metuendus (Scorpiones, Buthidae) from Western Amazonia. Zool Anz. 1999;239(3/4):267–76.Google Scholar
  31. Mattoni CI, Peretti AV. The giant and complex genital plug of the asper group of Bothriurus (Scorpiones Bothriuridae): morphology and comparison with other genital plugs in scorpions. Zool Anz. 2004;243(1/2):75–84.CrossRefGoogle Scholar
  32. Mazurkewiecz JE, Bertke EM. Ultrastructure of the venom gland of the scorpion Centruroides sculpturatus (Ewing). J Morphol. 1972;137:365–84.CrossRefGoogle Scholar
  33. Newlands G. The venom squirting ability of Parabuthus scorpions (Arachnida: Buthidae). S Afr J Med Sci. 1974;39(4):175–8.PubMedGoogle Scholar
  34. Newlands G. Arachnida (except Acari). In: Scorpiones biogeography and ecology of southern Africa Monographiae Biologicae, vol. 31. Dordrecht: Springer; 1978. p. 685–702.CrossRefGoogle Scholar
  35. Nisani Z, Hayes WK. Defensive stinging by Parabuthus transvaalicus scorpions: risk assessment and venom metering. Anim Behav. 2011;80:627–33.CrossRefGoogle Scholar
  36. Pawlowsky E. Scorpiotomische Mitteilungen I Ein beitrag zur Morphologie der Giftdrüsen der Skorpionen. Z Wiss Zool. 1913;105:157–77.Google Scholar
  37. Peretti AV. Relacion de las glandulas caudales de machos des escorpiones Bothriuridae con el comportamiento sexual (Scorpiones). Rev Arachnol. 1997;12:31–41.Google Scholar
  38. Polis GA. The biology of scorpions. Stanford University Press; 1990. p. 587.Google Scholar
  39. Polis GA, Yamashita T. The ecology and importance of predaceous arthropods in desert communities. In: Polis GA, editor. The ecology of desert communities. Tucson: University of Arizona Press; 1991. p. 180–222.Google Scholar
  40. Popadic A, Nagy L. Conservation and variation in Ubx expression among Chelicerates. Evolut Dev. 2001;3(5):391–6.CrossRefGoogle Scholar
  41. Rodríguez de la Vega RC, García BI, D’Ambrosio C, Diego-García E, Scaloni A, Possani LD. Antimicrobial peptide induction in the haemolymph of the Mexican scorpion Centruroides limpidus limpidus in response to septic injury. Cell Mol Life Sci. 2004;61(12):1507–19.PubMedCrossRefGoogle Scholar
  42. Samano-Bishop A, Gomez de la Ferriz A. Estudio morfologico histologoico e histoquimico de la glandula venosa de algunas especies des alacranes de los generos Vejovis C.L.Koch, Diplocentrus Peters y Centruroides. Marx Ann Inst Biol Mex. 1964;35:139–55.Google Scholar
  43. Schoefield RMS. Metals in cuticular structures. In: Brownell P, Polis GA, editors. Scorpion biology and research. New York: Oxford University Press; 2001. p. 234–56. 431 p.Google Scholar
  44. Shulov A, Levy G. Venoms of Buthinae. Systematic and biology of Buthinae. In: Bettini S, editor. Arthropod venom, Handbook of experimental pharmacology, vol. 48. Berlin: Springer; 1978. p. 309–12.CrossRefGoogle Scholar
  45. Shulz JW. A phylogenetic analysis of the arachnid orders based on exception? C R Biol. 2007;335:731–4.Google Scholar
  46. Simmonet F, Célérier ML. Orthodenticle and empty spiracles genes are expressed in segmental pattern in Chelicerates. Dev Genes Evol. 2006;216:467–80.CrossRefGoogle Scholar
  47. Simmonet F, Deutsch J, Queinnec E. Hedgehog is a segment polarity gene in a crustacean and a chelicerate. Dev Genes Evol. 2004;214:537–45.CrossRefGoogle Scholar
  48. Sreenivasa-Reddy RP. A contribution towards the understanding of the morphological characters. Zool J Linn Soc. 1959;150:221–65.Google Scholar
  49. Stachel SJ, Stockwell SA, Van Vranken DL. The fluorescence of scorpions and cataractogenesis. Chem Biol. 1999;6:531–9.PubMedCrossRefGoogle Scholar
  50. Stockmann R. Un organe provisoire des pédipalpes chez les embryons de scorpions: une tétine à deux niveaux de pression chez les scorpions vivipares. C.R. 12° Coll. Europ. Arachnol., Paris 2–4 juillet 1990. Bul Soc Eur Arachnol H.S. No. 1: 334–39.Google Scholar
  51. Stockmann R, Ythier E. Scorpions of the world. Verrières-le-Buisson: NAP ed; 2010. 567 pp.Google Scholar
  52. Taylor MS, Cosper CR, Gaffin DD. Behavioral evidence of pheromonal signaling in desert grassland scorpions Paruroctonus utahensis. J Arachnol. 2012;40:240–4.CrossRefGoogle Scholar
  53. Vachon M. Remarques préliminaires sur l’alimentation, les organes chélicériens, le biberon et la tétine des embryons du Scorpion Ischnurus ochropus. Arch Zool Exp Gén. 1950;86(3):137–56.Google Scholar
  54. Vachon M. Notes biologiques sur quelques scorpions en captivité (jeüne, sommeil, reproduction) Bull. Mus Nat Hist. 1957;29:83–7.Google Scholar
  55. Warburg MR. Reproductive system of female scorpion: a partial review. Anatomical Record (Hoboken). 2010;293(10):1738–54.CrossRefGoogle Scholar
  56. Warburg MR. Ovulation, fertilization and embryonic development in scorpions a partial review. Afr Entomol. 2012;20(1):60–8.CrossRefGoogle Scholar
  57. Warburg MR, Goldenberg S, Ben-Horin A. Thermal effect on evaporative water loss and haemolymph osmolarity in scorpions at low and high humidities. Comp Biochem Physiol. 1980;67A:47–57.CrossRefGoogle Scholar
  58. Yigit N, Benli M. The venom gland of the scorpion Euscorpius mingrelicus (Scorpiones Euscorpiidae): morphological and ultrastructural characterization. J Venom Anim Toxin Incl Dis. 2008;14(3):466–80.Google Scholar
  59. Yigit N, Benli M. Fine structure of venom glands of the scorpion Mesobuthus gibbosus (Brullé, 1832) Scorpiones: Buthidae. Acta Zool Bulg. 2009;61(3):297–306.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Honorary Lecturer in ZoologyUniversité Pierre et Marie Curie. ParisCachanFrance

Personalised recommendations