Skip to main content

Sportmedizinische Anwendung: Laktat- und Leistungsdiagnostik

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Bewegung, Training, Leistung und Gesundheit
  • 1788 Accesses

Zusammenfassung

Die metabolische Leistungsdiagnostik dient der objektiven Bestimmung der Ausdauerleistungsfähigkeit von Sporttreibenden oder der kardiopulmonalen Funktion von Patienten. Die Messung der Blutlaktatkonzentration bei körperlicher Belastung ist dabei eines der wichtigsten Verfahren der sportmedizinisch-internistischen Diagnostik. Die korrekte Anwendung setzt eine detaillierte Kenntnis der Belastungsphysiologie und Erfahrung im methodischen Einsatz voraus. Das Kapitel beschreibt Indikationen, Nebenbedingungen und Hintergründe zur Interpretation und Methodik.

Dieser Beitrag ist Teil der Sektion Sportmedizin, herausgegeben vom Teilherausgeber Holger HW Gabriel, innerhalb des Handbuchs Sport und Sportwissenschaft, herausgegeben von Arne Güllich und Michael Krüger.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Literatur

  • Alvarez-Ramirez, J. J. (2002). An improved Peronnet-Thibault mathematical model of human running performance. European Journal of Applied Physiology, 86, 517–525. https://doi.org/10.1007/s00421-001-0555-3.

    Article  PubMed  Google Scholar 

  • Amann, M., Subudhi, A. W., Walker, J., Eisenman, P., Shultz, B., & Foster, C. (2004). An evaluation of the predictive validity and reliability of ventilatory threshold. Medicine and Science in Sports and Exercise, 36, 1716–1722. https://doi.org/10.1249/01.MSS.0000142305.18543.34.

    Article  PubMed  Google Scholar 

  • Astles, R., Williams, C. P., & Sedor, F. (1994). Stability of plasma lactate in vitro in the presence of antiglycolytic agents. Clinical Chemistry, 40, 1327–1330.

    Article  CAS  PubMed  Google Scholar 

  • Baker, S. K., McCullagh, K. J. A., & Bonen, A. (1998). Training intensity-dependent and tissue-specific increases in lactate uptake and MCT-1 in heart and muscle. Journal of Applied Physiology, 84, 987–994. https://doi.org/10.1152/japplphysiol.00534.2017.

    Article  CAS  PubMed  Google Scholar 

  • Barr, D. P., & Himwich, H. E. (1923). Studies in the physiology of muscular exercise: development and duration of changes in acid-base equilibrium. The Journal of Biological Chemistry, 55(3), 539–555.

    Google Scholar 

  • Bassett, D. R. (2002). Scientific contributions of A. V. Hill: Exercise physiology pioneer. Journal of Applied Physiology, 93, 1567–1582. https://doi.org/10.1152/japplphysiol.01246.2001.

    Article  PubMed  Google Scholar 

  • Beneke, R. (2003). Maximal lactate steady state concentration (MLSS): Experimental and modelling approaches. European Journal of Applied Physiology, 88, 361–369. https://doi.org/10.1007/s00421-002-0713-2.

    Article  CAS  PubMed  Google Scholar 

  • Beneke, R., & Leithäuser, R. M. (2017). Maximal lactate steady state’s dependence on cycling cadence. International Journal of Sports Physiology and Performance, 12, 304–309. https://doi.org/10.1123/ijspp.2015-0573.

    Article  PubMed  Google Scholar 

  • Beneke, R., Hütler, M., & Leithäuser, R. M. (2000). Maximal lactate-steady-state independent of performance. Medicine and Science in Sports and Exercise, 32, 1135–1139. https://doi.org/10.1097/00005768-200006000-00016.

    Article  CAS  PubMed  Google Scholar 

  • Beneke, R., Leithäuser, R. M., & Ochentel, O. (2011). Blood lactate diagnostics in exercise testing and training. International Journal of Sports Physiology and Performance, 6, 8–24.

    Article  PubMed  Google Scholar 

  • Bernstein, R. E. (1959). Alterations in metabolic energetics and cation transport during aging of red cells. The Journal of Clinical Investigation, 38, 1572–1586. https://doi.org/10.1172/JCI103936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biedler, A., Risch, A., & Mertzlufft, F. (1998). Bestimmung der Laktatkonzentration in Blut und Plasma mit Biosensoren Ein Methodenvergleich. Der Anaesthesist, 47, 968–974.

    Article  CAS  PubMed  Google Scholar 

  • Bishop, P. A., Smith, J. F., Kime, J. C., Mayo, J. M., & Tin, Y. H. (1992). Comparison of a manual and an automated enzymatic technique for determining blood lactate concentrations. International Journal of Sports Medicine, 13, 36–39. https://doi.org/10.1055/s-2007-1021231.

    Article  CAS  PubMed  Google Scholar 

  • Bishop, D., Jenkins, D. G., & Mackinnon, L. T. (1998). The relationship between plasma lactate parameters, Wpeak and 1-h cycling performance in women. Medicine and Science in Sports and Exercise, 30, 1270–1275.

    Article  CAS  PubMed  Google Scholar 

  • Blair, S. N. (2003). Revisiting fitness and fatness as predictors of mortality. Clinical Journal of Sport Medicine, 13, 319–320.

    Article  PubMed  Google Scholar 

  • Blomstrand, E., & Saltin, B. (1999). Effect of muscle glycogen on glucose, lactate and amino acid metabolism during exercise and recovery in human subjects. Journal of Physiology (London), 514(Pt 1), 293–302. https://doi.org/10.1016/0009-8981(80)90074-1.

    Article  CAS  Google Scholar 

  • Böning, D., Strobel, G., Beneke, R., & Maassen, N. (2005). Lactic acid still remains the real cause of exercise-induced metabolic acidosis. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 289, R902–R903; author reply R904–R910. https://doi.org/10.1152/ajpregu.00069.2005.

    Article  PubMed  CAS  Google Scholar 

  • Böning, D., Klarholz, C., Himmelsbach, B., Hütler, M., & Maassen, N. (2006). Causes of differences in exercise-induced changes of base excess and blood lactate. European Journal of Applied Physiology, 99, 163–171. https://doi.org/10.1007/s00421-006-0328-0.

    Article  PubMed  Google Scholar 

  • Böning, D., Maassen, N., & Steinach, M. (2017). Der Wirkungsgrad von Muskelarbeit [The efficiency of muscular exercise]. Deutsche Zeitschrift fur Sportmedizin, 68, 203–214. https://doi.org/10.5960/dzsm.2017.295.

    Article  Google Scholar 

  • Borg, G., Hassmén, P., & Lagerström, M. (1987). Perceived exertion related to heart rate and blood lactate during arm and leg exercise. European Journal of Applied Physiology and Occupational Physiology, 56, 679–685.

    Article  CAS  PubMed  Google Scholar 

  • Brooks, G. A. (2007). Lactate: Link between glycolytic and oxidative metabolism. Sports Medicine, 37, 341–343. https://doi.org/10.2165/00007256-200737040-00017.

    Article  PubMed  Google Scholar 

  • Brooks, G. A. (2009). Cell-cell and intracellular lactate shuttles. Journal of Physiology (London), 587, 5591–5600. https://doi.org/10.1113/jphysiol.2009.178350.

    Article  CAS  Google Scholar 

  • Brooks, G. A. (2018). The science and translation of lactate shuttle theory. Cell Metabolism, 27, 757–785. https://doi.org/10.1016/j.cmet.2018.03.008.

    Article  CAS  PubMed  Google Scholar 

  • Buono, M. J., & Yeager, J. E. (1986). Intraerythrocyte and plasma lactate concentrations during exercise in humans. European Journal of Applied Physiology and Occupational Physiology, 55, 326–329.

    Article  CAS  PubMed  Google Scholar 

  • Carter, J. J., & Jeukendrup, A. E. A. (2002). Validity and reliability of three commercially available breath-by-breath respiratory systems. European Journal of Applied Physiology, 86, 435–441. https://doi.org/10.1007/s00421-001-0572-2.

    Article  PubMed  Google Scholar 

  • Cheng, B., Kuipers, H., Snyder, A. C., Keizer, H. A., Jeukendrup, A., & Hesselink, M. (1992). A new approach for the determination of ventilatory and lactate thresholds. International Journal of Sports Medicine, 13, 518–522. https://doi.org/10.1055/s-2007-1021309.

    Article  CAS  PubMed  Google Scholar 

  • Cori, C. F. (1981). The glucose-lactic acid cycle and gluconeogenesis. Current Topics in Cellular Regulation, 18, 377–387.

    Article  CAS  PubMed  Google Scholar 

  • Coyle, E. F., Martin, W. H., Ehsani, A. A., Hagberg, J. M., Bloomfield, S. A., Sinacore, D. R., & Holloszy, J. O. (1983). Blood lactate threshold in some well-trained ischemic heart disease patients. Journal of Applied Physiology, 54, 18–23.

    Article  CAS  PubMed  Google Scholar 

  • Dehnert, C., & Bärtsch, P. (2005). Standards der Sportmedizin: Myopathien. Deutsche Zeitschrift fur Sportmedizin, 6, 179–180.

    Google Scholar 

  • Deng, M. C., Smits, J. M. A., & Packer, M. (2002). Selecting patients for heart transplantation: Which patients are too well for transplant? Current Opinion in Cardiology, 17, 137–144.

    Article  CAS  PubMed  Google Scholar 

  • Derbyshire, P. J., Barr, H., Davis, F., & Higson, S. P. J. (2012). Lactate in human sweat: A critical review of research to the present day. The Journal of Physiological Sciences, 62, 429–440. https://doi.org/10.1007/s12576-012-0213-z.

    Article  CAS  PubMed  Google Scholar 

  • Donovan, C. M., & Brooks, G. A. (1983). Endurance training affects lactate clearance, not lactate production. The American Journal of Physiology, 244, E83–E92.

    CAS  PubMed  Google Scholar 

  • Douglas, C. G. (1927). Oliver-Sharpey lectures on the coördination of the respiration and circulation with variations in bodily activity. The Lancet, 210, 213–218. https://doi.org/10.1016/S0140-6736(01)30762-6.

    Article  Google Scholar 

  • Dubouchaud, H., Butterfield, G. E., Wolfel, E. E., Bergman, B. C., & Brooks, G. A. (2000). Endurance training, expression, and physiology of LDH, MCT1, and MCT4 in human skeletal muscle. American Journal of Physiology. Endocrinology and Metabolism, 278, E571–E579. https://doi.org/10.1056/NEJMoa1407778.

    Article  CAS  PubMed  Google Scholar 

  • Faude, O., & Meyer, T. (2008). Methodische Aspekte der Laktatbestimmung. Deutsche Zeitschrift fur Sportmedizin, 59, 305–308.

    CAS  Google Scholar 

  • Faude, O., Kindermann, W., & Meyer, T. (2009). Lactate threshold concepts: How valid are they? Sports Medicine, 39, 469–490. https://doi.org/10.2165/00007256-200939060-00003.

    Article  PubMed  Google Scholar 

  • Faude, O., Hecksteden, A., Hammes, D., Schumacher, F., Besenius, E., Sperlich, B., & Meyer, T. (2017). Reliability of time-to-exhaustion and selected psycho-physiological variables during constant-load cycling at the maximal lactate steady-state. Applied Physiology, Nutrition, and Metabolism, 42, 142–147. https://doi.org/10.1139/apnm-2016-0375.

    Article  CAS  PubMed  Google Scholar 

  • Feliu, J., Ventura, J. L., Segura, R., Rodas, G., Riera, J., Estruch, A., Zamora, A., & Capdevila, L. (1999). Differences between lactate concentration of samples from ear lobe and the finger tip. Journal of Physiology and Biochemistry, 55, 333–339.

    CAS  PubMed  Google Scholar 

  • Ferretti, G. (2014). Maximal oxygen consumption in healthy humans: Theories and facts. European Journal of Applied Physiology, 114, 2007–2036. https://doi.org/10.1007/s00421-014-2911-0.

    Article  CAS  PubMed  Google Scholar 

  • Foster, C., Rodriguez-Marroyo, J. A., & de Koning, J. J. (2017). Monitoring training loads: The past, the present, and the future. International Journal of Sports Physiology and Performance, 12, S2–2–S2–8. https://doi.org/10.1123/IJSPP.2016-0388.

    Article  Google Scholar 

  • Foxdal, P., Sjödin, B., Rudstam, H., Ostman, C., Ostman, B., & Hedenstierna, G. C. (1990). Lactate concentration differences in plasma, whole blood, capillary finger blood and erythrocytes during submaximal graded exercise in humans. European Journal of Applied Physiology and Occupational Physiology, 61, 218–222.

    Article  CAS  PubMed  Google Scholar 

  • Freund, H., & Gendry, P. (1978). Lactate kinetics after short strenuous exercise in man. European Journal of Applied Physiology and Occupational Physiology, 39, 123–135.

    Article  CAS  PubMed  Google Scholar 

  • Gladden, B. L. (2004). Lactate metabolism: A new paradigm for the third millennium. Journal of Physiology (London), 558, 5–30. https://doi.org/10.1113/jphysiol.2003.058701.

    Article  CAS  Google Scholar 

  • Gladden, L. B., Yates, J. W., Stremel, R. W., & Stamford, B. A. (1985). Gas exchange and lactate anaerobic thresholds: Inter- and intraevaluator agreement. Journal of Applied Physiology, 58, 2082–2089. https://doi.org/10.1152/japplphysiol.00534.2017.

    Article  CAS  PubMed  Google Scholar 

  • Hammarén, E., Rafsten, L., Kreuter, M., & Lindberg, C. (2004). Modified exercise test in screening for mitochondrial myopathies – Adjustment of workload in relation to muscle strength. European Neurology, 51, 38–41. https://doi.org/10.1159/000074981.

    Article  PubMed  Google Scholar 

  • Hansen, D., Stevens, A., Eijnde, B. O., & Dendale, P. (2012). Endurance exercise intensity determination in the rehabilitation of coronary artery disease patients: A critical re-appraisal of current evidence. Sports Medicine, 42, 11–30. https://doi.org/10.2165/11595460-000000000-00000.

    Article  PubMed  Google Scholar 

  • Hasselt, P. M. van, Ferdinandusse, S., Monroe, G. R., Ruiter, J. P. N., Turkenburg, M., Geerlings, M. J., Duran, K., Harakalova, M., van der Zwaag, B., Monavari, A. A., Okur, I., Sharrard, M. J., Cleary, M., O’Connell, N., Walker, V., Rubio-Gozalbo, M. E., de Vries, M. C., Visser, G., Houwen, R. H. J., van der Smagt, J. J., Verhoeven-Duif, N. M., Wanders, R. J. A., & van Haaften, G. (2014). Monocarboxylate transporter 1 deficiency and ketone utilization. The New England Journal of Medicine, 371, 1900–1907. https://doi.org/10.1056/NEJMoa1407778.

    Article  CAS  PubMed  Google Scholar 

  • Hauser, T., Bartsch, D., & Schulz, H. (2011). Reliabilität der Leistung und Laktatkonzentration im maximalen Laktat-steady-state bei Radergometrie. Deutsche Zeitschrift fur Sportmedizin, 62, 320–323.

    Google Scholar 

  • Heck, H., Mader, A., Hess, G., Mücke, S., Müller, R., & Hollmann, W. (1985). Justification of the 4-mmol/l lactate threshold. International Journal of Sports Medicine, 6, 117–130. https://doi.org/10.1055/s-2008-1025824.

    Article  CAS  PubMed  Google Scholar 

  • Heitkamp, H.-C., & Hipp, A. (2001). Lactat in der kardialen Rehabilitation. Herz, 26, 447–453.

    Article  CAS  PubMed  Google Scholar 

  • Heyde, C., Mahler, H., Gollhofer, A., & Roecker, K. (2016). Using Thorax Expansion to Detect a Ventilatory Inflection Point in the Field. International journal of sports medicine, 37(1), 6–11. https://doi.org/10.1055/s-0035-1555934

    Article  PubMed  Google Scholar 

  • Hill, A. V., & Lupton, H. (1923). Muscular exercise, lactic acid, and the supply and utilization of oxygen. QJM, 16, 135–171. https://doi.org/10.1093/qjmed/os-16.62.135.

    Article  CAS  Google Scholar 

  • Hofmann, P., Wonisch, M., & Pokan, R. (2017). Laktat-Leistungsdiagnostik: Durchführung und Interpretation. In Kompendium der Sportmedizin (4. Aufl., S. 189–242). Vienna: Springer Vienna.

    Chapter  Google Scholar 

  • Hollmann, W. (1985). Historical remarks on the development of the aerobic-anaerobic threshold up to 1966. International Journal of Sports Medicine, 6, 109–116. https://doi.org/10.1055/s-2008-1025823.

    Article  CAS  PubMed  Google Scholar 

  • Hollmann, W. (2001). Leistungen der Sportmedizin für die Kardiologie. Deutsche Zeitschrift fur Sportmedizin, 52, 190–196.

    Google Scholar 

  • Hollmann, W., & Strüder, H. K. (2009). Sportmedizin. Stuttgart, New York:Schattauer Verlag.

    Google Scholar 

  • Hoogeveen, A. R., & Schep, G. (1997). The plasma lactate response to exercise and endurance performance: Relationships in elite triathletes. International Journal of Sports Medicine, 18, 526–530. https://doi.org/10.1055/s-2007-972676.

    Article  CAS  PubMed  Google Scholar 

  • Hooker, S. P., Sui, X., Colabianchi, N., Vena, J., Laditka, J., LaMonte, M. J., & Blair, S. N. (2008). Cardiorespiratory fitness as a predictor of fatal and nonfatal stroke in asymptomatic women and men. Stroke, 39, 2950–2957. https://doi.org/10.1161/STROKEAHA.107.495275.

    Article  PubMed  Google Scholar 

  • Hopkins, W. G. (2000). Measures of reliability in sports medicine and science. Sports Medicine, 30, 1–15.

    Article  CAS  PubMed  Google Scholar 

  • Hopkins, W. G., Schabort, E. J., & Hawley, J. A. (2001). Reliability of power in physical performance tests. Sports Medicine, 31, 211–234.

    Article  CAS  PubMed  Google Scholar 

  • Hughes, E. F., Turner, S. C., & Brooks, G. A. (1982). Effects of glycogen depletion and pedaling speed on „anaerobic threshold“. Journal of Applied Physiology: Respiratory, Environmental and Exercise Physiology, 52, 1598–1607.

    Article  CAS  Google Scholar 

  • Keijzer, M. H. de, Brandts, R. W., & Brans, P. G. (1999). Evaluation of a biosensor for the measurement of lactate in whole blood. Clinical Biochemistry, 32, 109–112.

    Article  PubMed  Google Scholar 

  • Kindermann, W., Simon, G., & Keul, J. (1979). The significance of the aerobic-anaerobic transition for the determination of work load intensities during endurance training. European Journal of Applied Physiology and Occupational Physiology, 42, 25–34.

    Article  CAS  PubMed  Google Scholar 

  • Kromer, P., Hirschmüller, A., Dichhuth, H.-H., Gollhofer, A., & Roecker, K. (2011). Der Einfluss der Kurbelfrequenz im Handcycling auf unterschiedliche Referenzpunkte der Laktatleistungskurve. Deutsche Zeitschrift fur Sportmedizin, 62, 22–28.

    Google Scholar 

  • Lawshe, C. H. (1975). A quantitative approach to content validity. Personnel Psychology, 28, 563–575. https://doi.org/10.1111/j.1744-6570.1975.tb01393.x.

    Article  Google Scholar 

  • Leirdal, S., & Ettema, G. (2011). The relationship between cadence, pedalling technique and gross efficiency in cycling. European Journal of Applied Physiology, 111, 2885–2893. https://doi.org/10.1007/s00421-011-1914-3.

    Article  PubMed  PubMed Central  Google Scholar 

  • Löllgen, H., & Trappe, H. J. (2000). Leitlinien zur Ergometrie. Z Kardiol, 89, 821–837.

    Google Scholar 

  • Lormes, W., Lehmann, M., & Steinacker, J. M. (1998). The problems to study plasma lactate. International Journal of Sports Medicine, 19, 223–225. https://doi.org/10.1055/s-2007-971909.

    Article  CAS  PubMed  Google Scholar 

  • Maassen, N., & Busse, M. W. (1989). The relationship between lactic acid and work load: A measure for endurance capacity or an indicator of carbohydrate deficiency? European Journal of Applied Physiology and Occupational Physiology, 58, 728–737.

    Article  CAS  PubMed  Google Scholar 

  • Mc Naughton, L. R., Thompson, D., Philips, G., Backx, K., & Crickmore, L. (2002). A comparison of the lactate Pro, Accusport, Analox GM7 and Kodak Ektachem lactate analysers in normal, hot and humid conditions. International Journal of Sports Medicine, 23, 130–135. https://doi.org/10.1055/s-2002-20133.

    Article  CAS  PubMed  Google Scholar 

  • McArdle, W. D., Katch, F. I., & Katch, V. L. (2015). Exercise physiology (8. Aufl.). Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins.

    Google Scholar 

  • Meyer, T., Görge, G., Schwaab, B., Hildebrandt, K., Walldorf, J., Schäfer, C., Kindermann, I., Scharhag, J., & Kindermann, W. (2005). An alternative approach for exercise prescription and efficacy testing in patients with chronic heart failure: A randomized controlled training study. American Heart Journal, 149, e1–e7. https://doi.org/10.1016/j.ahj.2004.12.006.

    Article  PubMed  Google Scholar 

  • Millet, G. P., Vleck, V. E., & Bentley, D. J. (2009). Physiological differences between cycling and running: Lessons from triathletes. Sports Medicine, 39, 179–206. https://doi.org/10.2165/00007256-200939030-00002.

    Article  PubMed  Google Scholar 

  • Minetti, A. E., Ardigò, L. P., & Saibene, F. (1994). The transition between walking and running in humans: Metabolic and mechanical aspects at different gradients. Acta Physiologica Scandinavica, 150, 315–323. https://doi.org/10.1111/j.1748-1716.1994.tb09692.x.

    Article  CAS  PubMed  Google Scholar 

  • Owles, W. H. (1930). Alterations in the lactic acid content of the blood as a result of light exercise, and associated changes in the CO(2)-combining power of the blood and in the alveolar CO(2) pressure. The Journal of Physiology, 69, 214–237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oyono-Enguelle, S., Gartner, M., Marbach, J., Heitz, A., Ott, C., & Freund, H. (2008). Comparison of arterial and venous blood lactate kinetics after short exercise. International Journal of Sports Medicine, 10, 16–24. https://doi.org/10.1055/s-2007-1024867.

    Article  Google Scholar 

  • Péronnet, F., & Morton, R. H. (1994). Plasma lactate concentration increases as a parabola with delay during ramp exercise. European Journal of Applied Physiology and Occupational Physiology, 68, 228–233.

    Article  PubMed  Google Scholar 

  • Péronnet, F., Thibault, G., Rhodes, E. C., & McKenzie, D. C. (1987). Correlation between ventilatory threshold and endurance capability in marathon runners. Medicine and Science in Sports and Exercise, 19, 610–615.

    PubMed  Google Scholar 

  • Prettin, S., Roecker, K., Ruehl, S., Deibert, P., Schumacher, Y. O., Hirschmüller, A., & Dickhuth, H.-H. (2011). Changes in blood lactate concentrations during different treadmill exercise test protocols. The Journal of Sports Medicine and Physical Fitness, 51, 179–184.

    CAS  PubMed  Google Scholar 

  • Prettin, S., Schnabel, A., Pottgiesser, T., Roecker, K., & Ahlgrim, C. (2013). Reliability of anaerobic lactate threshold concepts in running. https://doi.org/10.13140/RG.2.1.4726.5120.

  • Prommer, N., Thoma, S., Quecke, L., Gutekunst, T., Völzke, C., Wachsmuth, N., Niess, A. M., & Schmidt, W. (2010). Total hemoglobin mass and blood volume of elite Kenyan runners. Medicine and Science in Sports and Exercise, 42, 791–797. https://doi.org/10.1249/MSS.0b013e3181badd67.

    Article  CAS  PubMed  Google Scholar 

  • Racine, P., Klenk, H. O., & Kochsiek, K. (1975). Rapid lactate determination with an electrochemical enzymatic sensor: Clinical usability and comparative measurements. Zeitschrift für Klinische Chemie und Klinische Biochemie, 13, 533–539.

    CAS  PubMed  Google Scholar 

  • Roecker, K. (2008). Streit um des Kaisers Bart: Welche Laktatschwelle ist die beste? Deutsche Zeitschrift fur Sportmedizin, 59, 303–304.

    Google Scholar 

  • Roecker, K. (2013a). Die sportmedizinische Laktatdiagnostik: Technische Rahmenbedingungen und Einsatzbereiche. Deutsche Zeitschrift fur Sportmedizin, 2013, 1–5. https://doi.org/10.5960/dzsm.2013.110.

    Article  Google Scholar 

  • Roecker, K. (2013b). Die sportmedizinische Laktatdiagnostik: Technische Rahmenbedingungen und Einsatzbereiche. Deutsche Zeitschrift fur Sportmedizin, 64, 367–371.

    Google Scholar 

  • Roecker, K., & Dickhuth, H. (2001). Praxis der Laktatmessung. Deutsche Zeitschrift fur Sportmedizin, 52, 33–34.

    Google Scholar 

  • Roecker, K., Schotte, O., Niess, A. M., Horstmann, T., & Dickhuth, H.-H. (1998). Predicting competition performance in long-distance running by means of a treadmill test. Medicine and Science in Sports and Exercise, 30, 1552–1557.

    Article  CAS  PubMed  Google Scholar 

  • Roecker, K., Mayer, F., Striegel, H., & Dickhuth, H.-H. (2000). Increase characteristics of the cumulated excess-CO2 and the lactate concentration during exercise. International journal of sports medicine, 21(6), 419–423. https://doi.org/10.1055/s-2000-3836

    Article  CAS  PubMed  Google Scholar 

  • Roecker, K., Niess, A. M., Horstmann, T., Striegel, H., Mayer, F., & Dickhuth, H.-H. (2002). Heart rate prescriptions from performance and anthropometrical characteristics. Medicine and Science in Sports and Exercise, 34, 881–887.

    Article  PubMed  Google Scholar 

  • Roecker, K., Striegel, H., & Dickhuth, H.-H. (2003). Heart-rate recommendations: Transfer between running and cycling exercise? International Journal of Sports Medicine, 24, 173–178. https://doi.org/10.1055/s-2003-39087.

    Article  CAS  PubMed  Google Scholar 

  • Roecker, K., Prettin, S., Sorichter, S., Schmidt-Trucksäß, A., & Dickhuth, H. (2004). Flache Atmung beim Laufen mit zur Schrittfolge gekoppelter Atemfrequenz bei einem jugendlichen Triathleten. Deutsche Zeitschrift fur Sportmedizin, 55, 6–11.

    Google Scholar 

  • Roecker, K., Prettin, S., Pottgiesser, T., Schumacher, Y. O., & Dickhuth, H.-H. (2010). Metabolische Leistungsdiagnostik und Trainingssteuerung in der Sportmedizin. Sport- und Präventivmedizin, 40, 6–12.

    Article  Google Scholar 

  • Rogatzki, M. J., Ferguson, B. S., Goodwin, M. L., & Gladden, B. L. (2015). Lactate is always the end product of glycolysis. Frontiers in Neuroscience, 9, 22. https://doi.org/10.3389/fnins.2015.00022.

    Article  PubMed  PubMed Central  Google Scholar 

  • Saltin, B., & Astrand, P. O. (1967). Maximal oxygen uptake in athletes. Journal of Applied Physiology, 23, 353–358.

    Article  CAS  PubMed  Google Scholar 

  • Schnohr, P., Marott, J. L., Jensen, J. S., & Jensen, G. B. (2011). Intensity versus duration of cycling, impact on all-cause and coronary heart disease mortality: The Copenhagen City Heart Study. European Journal of Cardiovascular Prevention and Rehabilitation, 19, 73–80. https://doi.org/10.1177/1741826710393196.

    Article  Google Scholar 

  • Seiler, K. S. (2010). What is best practice for training intensity and duration distribution in endurance athletes? International Journal of Sports Physiology and Performance, 5, 276–291.

    Article  PubMed  Google Scholar 

  • Smekal, G., von Duvillard, S. P., Pokan, R., Tschan, H., Baron, R., Hofmann, P., Wonisch, M., & Bachl, N. (2003). Changes in blood lactate and respiratory gas exchange measures in sports with discontinuous load profiles. European Journal of Applied Physiology, 89, 489–495. https://doi.org/10.1007/s00421-003-0824-4.

    Article  CAS  PubMed  Google Scholar 

  • Stegmann, H., Kindermann, W., & Schnabel, A. (1981). Lactate kinetics and individual anaerobic threshold. International Journal of Sports Medicine, 2, 160–165. https://doi.org/10.1055/s-2008-1034604.

    Article  CAS  PubMed  Google Scholar 

  • Wahl, P., Bloch, W., & Mester, J. (2009). Moderne Betrachtungsweisen des Laktats: Laktat ein uberschatztes und zugleich unterschatztes Molekul. Schweizerische Zeitschrift für Sportmedizin und Sporttraumatologie, 57, 100–107.

    Google Scholar 

  • Wasserman, K. (1997). Diagnosing cardiovascular and lung pathophysiology from exercise gas exchange. Chest, 112, 1091. https://doi.org/10.1378/chest.112.4.1091.

    Article  CAS  PubMed  Google Scholar 

  • Wasserman, K., & McIlroy, M. B. (1964). Detecting the threshold of anaerobic metabolism in cardiac patients during exercise. The American Journal of Cardiology, 14, 844–852.

    Article  CAS  PubMed  Google Scholar 

  • Wasserman, K., Whipp, B. J., Koyl, S. N., & Beaver, W. L. (1973). Anaerobic threshold and respiratory gas exchange during exercise. Journal of Applied Physiology, 35, 236–243.

    Article  CAS  PubMed  Google Scholar 

  • Weichenberger, M., Liu, Y., & Steinacker, J. M. (2012). A test for determining endurance capacity in fencers. International Journal of Sports Medicine, 33, 48–52. https://doi.org/10.1055/s-0031-1284349.

    Article  CAS  PubMed  Google Scholar 

  • Weippert, M., & Kreuzfeld, S. (2008). Vergleich eines mobilen Laktatmessgerätes mit einem Laboranalysegerät – Lactatescout vs. miniphotometer 8. Deutsche Zeitschrift fur Sportmedizin, 59, 46–49.

    Google Scholar 

  • Weston, S. B., & Gabbett, T. J. (2001). Reproducibility of ventilation of thresholds in trained cyclists during ramp cycle exercise. Journal of Science and Medicine in Sport, 4, 357–366.

    Article  CAS  PubMed  Google Scholar 

  • Whipp, B. J., Ward, S. A., Lamarra, N., Davis, J. A., & Wasserman, K. (1982). Parameters of ventilatory and gas exchange dynamics during exercise. Journal of Applied Physiology, 52, 1506–1513.

    Article  CAS  PubMed  Google Scholar 

  • Whipp, B. J., Davis, J. A., & Wasserman, K. (1989). Ventilatory control of the „isocapnic buffering“ region in rapidly-incremental exercise. Respiration Physiology, 76, 357–367.

    Article  CAS  PubMed  Google Scholar 

  • Yardley, M., Havik, O. E., Grov, I., Relbo, A., Gullestad, L., & Nytrøen, K. (2016). Peak oxygen uptake and self-reported physical health are strong predictors of long-term survival after heart transplantation. Clinical Transplantation, 30, 161–169. https://doi.org/10.1111/ctr.12672.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Röcker .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Röcker, K. (2020). Sportmedizinische Anwendung: Laktat- und Leistungsdiagnostik. In: Güllich, A., Krüger, M. (eds) Bewegung, Training, Leistung und Gesundheit. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53386-4_24-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-53386-4_24-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53386-4

  • Online ISBN: 978-3-662-53386-4

  • eBook Packages: Springer Referenz Naturwissenschaften

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Sportmedizinische Anwendung: Laktat- und Leistungsdiagnostik
    Published:
    23 January 2020

    DOI: https://doi.org/10.1007/978-3-662-53386-4_24-2

  2. Original

    Sportmedizinische Anwendung: Laktat- und Leistungsdiagnostik
    Published:
    12 October 2019

    DOI: https://doi.org/10.1007/978-3-662-53386-4_24-1