Skip to main content

The Family Desulfurellaceae

  • Reference work entry
  • First Online:
The Prokaryotes

Abstract

The family Desulfurellaceae is part of the class Deltaproteobacteria in the phylum Proteobacteria and contains the genera Desulfurella and Hippea. There are seven valid species in the family which are all strictly anaerobic and moderately thermophilic bacteria. Members of the family are mostly obligately sulfur respiring, though Desulfurella propionica can use thiosulfate as an electron acceptor besides elemental sulfur. During growth, organic substrates are completely oxidized with CO2 and H2S as products. Lithotrophic growth with hydrogen as an electron donor is possible by all species except Desulfurella acetivorans. The genomes of D. acetivorans, Hippea maritima, Hippea alviniae, and Hippea sp. strain KM1 have been sequenced and are all slightly smaller than 2 mega base pairs in length. Members of the family are found mostly in warm-hot sulfur-containing anoxic environments, such as hydrothermal springs and sediments, and often in association with microbial mats. The DNA base composition (mol% G+C) is typically low for family members and is a distinguishing characteristic between the two genera, Desulfurella (31–33 mol%) and Hippea (35–40 mol%). While officially classified as part of Deltaproteobacteria, the family is more closely related phylogenetically to members of the class Epsilonproteobacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bonch-Osmolovskaya EA (2005) Phylogenetic and metabolic diversity of thermophilic prokaryotes with different types of anaerobic respiration. In: Satyanarayana T, Johri BN (eds) Microbial diversity: current perspectives and potential applications. I.K. International, New Delhi, pp 71–90

    Google Scholar 

  • Bonch-Osmolovskaya EA, Sokolova TG, Kostrikina NA, Zavarzin GA (1990) Desulfurella acetivorans gen. nov. and sp. nov.—a new thermophilic sulfur-reducing eubacterium. Arch Microbiol 153:151–155

    Article  Google Scholar 

  • Bonch-Osmolovskaya EA, Sokolova TG, Kostrikina NA, Zavarzin GA (1993) Validation list no. 46. Int J Syst Bacteriol 43:624–625

    Article  Google Scholar 

  • Burton NP, Norris PR (2000) Microbiology of acidic, geothermal springs of Montserrat: environmental rDNA analysis. Extremophiles 4:315–320

    Article  CAS  PubMed  Google Scholar 

  • Choo YF, Li J, Chang IS, Kim BH (2006) Bacterial communities in microbial fuel cells enriched with high concentrations of glucose and glutamate. J Microbiol Biotechnol 16:1481–1484

    CAS  Google Scholar 

  • Dann AL, Cooper RS, Bowman JP (2009) Investigation and optimization of a passively operated compost-based system for remediation of acidic, highly iron- and sulfate-rich industrial waste water. Water Res 43:2302–2316

    Article  CAS  PubMed  Google Scholar 

  • Flores GE, Hunter RC, Liu Y, Mets A, Schouten S, Reysenbach A-L (2012) Hippea jasoniae sp. nov. and Hippea alviniae sp. nov., thermoacidophilic members of the class Deltaproteobacteria isolated from deep-sea hydrothermal vent deposits. Int J Syst Evol Microbiol 62:1252–1258

    Article  CAS  PubMed  Google Scholar 

  • Greene AC, Patel BKC, Sheehy AJ (1997) Deferribacter thermophilus gen. nov., sp. nov., a novel thermophilic manganese- and iron-reducing bacterium isolated from a petroleum reservoir. Int J Syst Bacteriol 47:505–509

    Article  CAS  PubMed  Google Scholar 

  • Hall JR, Mitchell KR, Jackson-Weaver O, Kooser AS, Cron BR, Crossey LJ, Takacs-Vesbach CD (2008) Molecular characterization of the diversity and distribution of a thermal spring microbial community by using rRNA and metabolic genes. Appl Environ Microbiol 74:4910–4922

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Holler T, Widdel F, Knittel K, Amann R, Kellermann MY, Hinrichs K-U, Teske A, Boetius A, Wegener G (2011) Thermophilic anaerobic oxidation of methane by marine microbial consortia. ISME J 5:1946–1956

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Huntemann M, Lu M, Nolan M, Lapidus A, Lucas S, Hammon N, Deshpande S, Cheng J-F, Tapia R, Han C, Goodwin L, Pitluck S, Liolios K, Pagani I, Ivanova N, Ovchinikova G, Pati A, Chen A, Palaniappan K, Land M, Hauser L, Jeffries CD, Detter JC, Brambilla E-M, Rohde M, Spring S, Göker M, Woyke T, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Kyrpides NC, Klenk H-P, Mavromatis K (2011) Complete genome sequence of the thermophilic sulfur-reducer Hippea maritima type strain (MH2T). Stand Genomic Sci 4:303–311

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Inagaki F, Kuypers MMM, Tsunogai U, Ishibashi J, Nakamura K, Treude T, Ohkubo S, Nakaseama M, Gena K, Chiba H, Hirayama H, Nunoura T, Takai K, Jørgensen BB, Horikoshi K, Boetius A (2006) Microbial community in a sediment-hosted CO2 lake of the southern Okinawa Trough hydrothermal system. Proc Natl Acad Sci U S A 103:14164–14169

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jackson CR, Langner HW, Donahoe-Christiansen J, Inskeep WP, McDermott TR (2001) Molecular analysis of microbial community structure in an arsenite-oxidizing acidic thermal spring. Environ Microbiol 3:532–542

    Article  CAS  PubMed  Google Scholar 

  • Kaksonen AH, Plumb JJ, Franzmann PD, Puhakka JA (2004) Simple organic electron donors support diverse sulfate-reducing communities in fluidized-bed reactors treating acidic metal- and sulfate-containing wastewater. FEMS Microbiol Ecol 47:279–289

    Article  CAS  PubMed  Google Scholar 

  • Kuever J, Rainey FA, Widdel F (2005a) Family I. Desulfurellaceae fam. nov. (Desulfurellaceae corrig. Kuever et al. 2006). In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s manual of systematic bacteriology, vol 2, 2nd edn. Springer, New York, p 923

    Google Scholar 

  • Kuever J, Rainey FA, Widdel F (2005b) Order I. Desulfurellales ord. nov. (Desulfurellales corrig. Kuever et al. 2006). In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s manual of systematic bacteriology, vol 2, 2nd edn. Springer, New York, p 922

    Chapter  Google Scholar 

  • Kuever J, Rainey FA, Widdel F (2006) Validation list no. 107. Int J Syst Evol Microbiol 56:1–6

    Article  Google Scholar 

  • Li C, Zhang L, Ding L, Ren H, Cui H (2011) Effect of conductive polymers coated anode on the performance of microbial fuel cells (MFCs) and its biodiversity analysis. Biosens Bioelectron 26:4169–4176

    Article  CAS  PubMed  Google Scholar 

  • Liang F-Y, Deng H, Zhao F (2013) Sulfur pollutants treatment using microbial fuel cells from perspectives of electrochemistry and microbiology. Chin J Anal Chem 41:1133–1139

    Article  CAS  Google Scholar 

  • Liu YJ, Chen YP, Jin PK, Wang XC (2009) Bacterial communities in a crude oil gathering and transferring system (China). Anaerobe 15:214–218

    Article  CAS  PubMed  Google Scholar 

  • Ljungdahl LG, Wiegel J (1986) Chapter 8: Working with anaerobic bacteria. In: Demain AL, Solomon NA (eds) Manual of industrial microbiology and biotechnology. American Society of Microbiology, Washington, DC

    Google Scholar 

  • Mardanov AV, Gumerov VM, Beletsky AV, Perevalova AA, Karpov GA, Bonch-Osmolovskaya EA, Ravin NV (2011) Uncultured archaea dominate in the thermal groundwater of Uzon Caldera, Kamchatka. Extremophiles 15:365–372

    Article  PubMed  Google Scholar 

  • Miroshnichenko ML, Gongadze GA, Lysenko AM, Bonch-Osmolovskaya EA (1994) Desulfurella multipotens sp. nov., a new sulfur-respiring thermophilic eubacterium from Raoul Island (Kermadec archipelago, New Zealand). Arch Microbiol 161:88–93

    CAS  Google Scholar 

  • Miroshnichenko ML, Rainey FA, Hippe H, Chernyh NA, Kostrikina NA, Bonch-Osmolovskaya EA (1998) Desulfurella kamchatkensis sp. nov. and Desulfurella propionica sp. nov., new sulfur-respiring thermophilic bacteria from Kamchatka thermal environments. Int J Syst Bacteriol 48:475–479

    Article  PubMed  Google Scholar 

  • Miroshnichenko ML, Rainey FA, Rhode M, Bonch-Osmolovskaya EA (1999) Hippea maritima gen. nov., sp. nov., a new genus of thermophilic, sulfur-reducing bacterium from submarine hot vents. Int J Syst Bacteriol 49:1033–1038

    Article  CAS  PubMed  Google Scholar 

  • Munoz R, Yarza P, Ludwig W, Euzéby J, Amann R, Schleifer KH, Glöckner FO, Rosselló-Móra R (2011) Release LTPs104 of the all-species living tree. Syst Appl Microbiol 34:169–170

    Article  PubMed  Google Scholar 

  • Orphan VJ, Taylor LT, Hafenbradl D, Delong EF (2000) Culture-dependent and culture-independent characterization of microbial assemblages associated with high-temperature petroleum reservoirs. Appl Environ Microbiol 66:700–711

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pachiadaki MG, Kallionaki A, Dählmann A, De Lange GJ, Kormas KA (2011) Diversity and spatial distribution of prokaryotic communities along a sediment vertical profile of a deep-sea mud volcano. Microb Ecol 62:655–668

    Article  PubMed  Google Scholar 

  • Pradella S, Hippe H, Stackebrandt E (1998) Macrorestriction analysis of Desulfurella acetivorans and Desulfurella multipotens. FEMS Microbiol Lett 159:137–144

    Article  CAS  PubMed  Google Scholar 

  • Rabus R, Hansen TA, Widdel F (2006) Dissimilatory sulfate- and sulfur-reducing prokaryotes. Prokaryotes 2:659–768

    Article  Google Scholar 

  • Rainey FA, Toalster R, Stackebrandt E (1993) Desulfurella acetivorans gen. nov., a thermophilic, acetate-oxidizing and sulfur-reducing organism, represents a distinct lineage within Proteobacteria. Syst Appl Microbiol 16:373–379

    Article  CAS  Google Scholar 

  • Sánchez-Andrea I, Rodríguez N, Amils R, Sanz JL (2011) Microbial diversity in anaerobic sediments at Rio Tinto, a naturally acidic environment with a high heavy metal content. Appl Environ Microbiol 77:6085–6093

    Article  PubMed Central  PubMed  Google Scholar 

  • Stott MB, Saito JA, Crowe MA, Dunfield PF, Hou S, Nakasone E, Daughney CJ, Smirnova AV, Mountain BW, Takai K, Alam M (2008) Culture-independent characterization of a novel microbial community at a hydrothermal vent at Brothers volcano, Kermadec arc, New Zealand. J Geophys Res 113:B08S06. doi:10.1029/2007JB005477

    Google Scholar 

  • Widdel F, Pfennig N (1981) Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. I. Isolation of new sulfate-reducing bacteria enriched with acetate from saline environments. Description of Desulfobacter postgatei gen. nov., sp. nov. Arch Microbiol 129:395–400

    Article  CAS  PubMed  Google Scholar 

  • Wolin EA, Wolin MJ, Wolfe RS (1963) Formation of methane by bacterial extracts. J Biol Chem 238:2882–2886

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony C. Greene .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Greene, A.C. (2014). The Family Desulfurellaceae. In: Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F. (eds) The Prokaryotes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39044-9_312

Download citation

Publish with us

Policies and ethics