Skip to main content

Advertisement

Log in

Diversity and Spatial Distribution of Prokaryotic Communities Along A Sediment Vertical Profile of A Deep-Sea Mud Volcano

  • Microbiology of Aquatic Systems
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

We investigated the top 30-cm sediment prokaryotic community structure in 5-cm spatial resolution, at an active site of the Amsterdam mud volcano, East Mediterranean Sea, based on the 16S rRNA gene diversity. A total of 339 and 526 sequences were retrieved, corresponding to 25 and 213 unique (≥98% similarity) phylotypes of Archaea and Bacteria, respectively, in all depths. The Shannon–Wiener diversity index H was higher for Bacteria (1.92–4.03) than for Archaea (0.99–1.91) and varied differently between the two groups. Archaea were dominated by anaerobic methanotrophs ANME-1, -2 and -3 groups and were related to phylotypes involved in anaerobic oxidation of methane from similar habitats. The much more complex Bacteria community consisted of 20 phylogenetic groups at the phylum/candidate division level. Proteobacteria, in particular δ-Proteobacteria, was the dominant group. In most sediment layers, the dominant phylotypes of both the Archaea and Bacteria communities were found in neighbouring layers, suggesting some overlap in species richness. The similarity of certain prokaryotic communities was also depicted by using four different similarity indices. The direct comparison of the retrieved phylotypes with those from the Kazan mud volcano of the same field revealed that 40.0% of the Archaea and 16.9% of the Bacteria phylotypes are common between the two systems. The majority of these phylotypes are closely related to phylotypes originating from other mud volcanoes, implying a degree of endemicity in these systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Aller JY, Aller RC, Kemp PF, Chistoserdov AY, Madrid VM (2010) Fluidized muds: a novel setting for the generation of biosphere diversity through geologic time. Geobiology 8:169–178

    Article  PubMed  CAS  Google Scholar 

  2. Aloisi G, Pierre C, Rouchy JM, Foucher JP, Woodside J (2000) Methane-related authigenic carbonates of Eastern Mediterranean Sea mud volcanoes and their possible relation to gas hydrate destabilisation. Earth Planet Sci Lett 184:321–338

    Article  CAS  Google Scholar 

  3. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  4. Ashelford KE, Chuzhanova NA, Fry JC, Jones AJ, Weightman AJ (2005) At least 1 in 20 16S rRNA sequence records currently held in public repositories is estimated to contain substantial anomalies. Appl Environ Microbiol 71:7724–7736

    Article  PubMed  CAS  Google Scholar 

  5. Beal EJ, House CH, Orphan VJ (2009) Manganese- and iron-dependent marine methane oxidation. Science 325:184–187

    Article  PubMed  CAS  Google Scholar 

  6. Blumenberg M, Seifert R, Reitner J, Pape T, Michaelis W (2004) Membrane lipid patterns typify distinct anaerobic methanotrophic consortia. Proc Natl Acad Sci USA 101:11111–11116

    Article  PubMed  CAS  Google Scholar 

  7. Boetius A, Ravenschlag K, Schubert CJ et al (2000) A marine microbial consortium apparently mediating anaerobic oxidation methane. Nature 407:623–626

    Article  PubMed  CAS  Google Scholar 

  8. Bouloubassi I, Aloisi G, Pancost RD et al (2006) Archaeal and bacterial lipids in authigenic carbonate crusts from Eastern Mediterranean mud volcanoes. Org Geochem 37:484–500

    Article  CAS  Google Scholar 

  9. Burton NP, Norris PR (2000) Microbiology of acidic, geothermal springs of Montserrat: environmental rDNA analysis. Extremophiles 4:315–320

    Article  PubMed  CAS  Google Scholar 

  10. Campbell BJ, Engel AS, Porter ML, Takai K (2006) The versatile epsilon-proteobacteria: key players in sulphidic habitats. Nat Rev Microbiol 4:458–468

    Article  PubMed  CAS  Google Scholar 

  11. Chao A, Chazdon RL, Colwell RK, Shen TJ (2005) A new statistical approach for assessing similarity of species composition with incidence and abundance data. Ecol Lett 8:148–159

    Article  Google Scholar 

  12. Charlou JL, Donval JP, Zitter T et al (2003) Evidence of methane venting and geochemistry of brines on mud volcanoes of the eastern Mediterranean Sea. Deep Sea Res I 50:941–958

    Article  CAS  Google Scholar 

  13. Cita MB, Ryan WBF, Paggi L (1981) Prometheus mud-breccia: an example of shale diapirism in the Western Mediterranean Ridge. Ann Geo Pays Hellen 30:543–570

    Google Scholar 

  14. Constan L (2009) A correlation of anaerobic methane oxidizing archaea with geochemical gradients in Coastal Californian Marine sediments. Dissertation, The University of British Columbia

  15. Coolen MJL, Cypionka H, Sass AM, Sass H, Overmann J (2002) Ongoing modification of Mediterranean pleistocene sapropels mediated by prokaryotes. Science 296:2407–2410

    Article  PubMed  CAS  Google Scholar 

  16. DeLong EF, Preston CM, Mincer T et al (2006) Community genomics among stratified microbial assemblages in the ocean \primes interior. Science 311:496–503

    Article  PubMed  CAS  Google Scholar 

  17. DeSantis TZ, Hugenholtz P, Keller K et al (2006) NAST: a multiple sequence alignment server for comparative analysis of 16S rRNA genes. Nucleic Acids Res 34:394–399

    Article  Google Scholar 

  18. Dhillon A, Lever M, Lloyd KG et al (2005) Methanogen diversity evidenced by molecular characterization of methyl coenzyme M reductase A (mcrA) genes in hydrothermal sediments of the Guaymas Basin. Appl Environ Microbiol 71:4592–4601

    Article  PubMed  CAS  Google Scholar 

  19. Dojka MA, Hugenholtz P, Haack SK, Pace NR (1998) Microbial diversity in a hydrocarbon- and chlorinated-solvent- contaminated aquifer undergoing intrinsic bioremediation. Appl Environ Microbiol 64:3869–3877, 20

    PubMed  CAS  Google Scholar 

  20. Fuerst JA (1995) The Planctomycetes: emerging models for microbial ecology, evolution and cell biology. Microbiology-UK 141:1493–1506

    Article  CAS  Google Scholar 

  21. Gillan DC, Danis B (2007) The archaebacterial communities in Antarctic bathypelagic sediments. Deep Sea Res IΙ 54:1682–1690

    Article  Google Scholar 

  22. Glöckner FO, Kube M, Bauer M, Teeling H, Lombardot T, Ludwig W, Gade D, Beck A, Borzym K, Heitmann K, Rabus R, Schlesner H, Amann R, Reinhardt R (2003) Complete genome sequence of the marine planctomycete Pirellula sp. Strain 1. Proc Natl Acad Sci USA 100:8298–8303

    Article  PubMed  Google Scholar 

  23. Good IJ (1953) The population frequencies of species and the estimation of population parameters. Biometrika 40(3–4):237–264

    Google Scholar 

  24. Goodfellow M, Williams ST (1983) Ecology of actinomycetes. Annu Rev Microbiol 37:189–216

    Article  PubMed  CAS  Google Scholar 

  25. Grote J, Jost G, Labrenz M, Herndl GJ, Juergens K (2008) Epsilonproteobacteria represent the major portion of chemoautotrophic bacteria in sulfidic waters of pelagic redoxclines of the Baltic and Black Seas. Appl Environ Microbiol 74:7546–7551

    Article  PubMed  CAS  Google Scholar 

  26. Haese RR, Hensen C, De Lange GJ (2006) Pore water geochemistry of Eastern Mediterranean mud volcanoes: implications for fluid transport and fluid origin. Mar Geol 225:191–208

    Article  CAS  Google Scholar 

  27. Harris JK, Kelley ST, Pace NR (2004) New perspective on uncultured bacterial phylogenetic division OP11. Appl Environ Microbiol 70:845–849

    Article  PubMed  CAS  Google Scholar 

  28. Harrison BK, Zhang H, Berelson W, Orphan VJ (2009) Variations in archaeal and bacterial diversity associated with the sulfate-methane transition zone in continental margin sediments (Santa Barbara Basin, California). Appl Environ Microbiol 75:1487–1499

    Article  PubMed  CAS  Google Scholar 

  29. Heijs SK, Laverman AM, Forney LJ, Hardoim PR, Van Elsas JD (2008) Comparison of deep-sea sediment microbial communities in the Eastern Mediterranean. FEMS Microbiol Ecol 64:362–377, 30

    Article  PubMed  CAS  Google Scholar 

  30. Hill TCJ, Walsh KA, Harris JA, Moffett BF (2003) Using ecological diversity measures with bacterial communities. FEMS Microbiol Ecol 43:1–11

    Article  PubMed  CAS  Google Scholar 

  31. Hinrichs KU, Hayes JM, Sylva SP, Brewert PG, DeLong EF (1999) Methane-consuming archaebacteria in marine sediments. Nature 398:802–805

    Article  PubMed  CAS  Google Scholar 

  32. Horn HS (1966) Measurement of "overlap" in comparative ecological studies. Am Nat 100:419–424

    Article  Google Scholar 

  33. Hugenholtz P, Pitulle C, Hershberger KL, Pace NR (1998) Novel division level bacterial diversity in a Yellowstone hot spring. J Bacteriol 180:366–376

    PubMed  CAS  Google Scholar 

  34. Inagaki F, Nunoura T, Nakagawa S et al (2006) Biogeographical Distribution and diversity of microbes in methane hydrate-bearing deep marine sediments on the Pacific Ocean margin. Proc Natl Acad Sci USA 103:2815–2820

    Article  PubMed  CAS  Google Scholar 

  35. Inagaki F, Takai K, Nealson KH, Horikoshi K (2004) Sulfurovum lithotrophicum gen. nov., sp. nov., a novel sulfur-oxidizing chemolithoautotroph within the e-Proteobacteria isolated from Okinawa trough hydrothermal sediments. Int J Syst Evol Microbiol 54:1477–1482

    Article  PubMed  CAS  Google Scholar 

  36. Karner MB, DeLong EF, Karl DM (2001) Archaeal dominance in the Mesopelagic Zone of the Pacific Ocean. Nature 409:507–510

    Article  PubMed  CAS  Google Scholar 

  37. Kemp PF, Aller JY (2004) Estimating prokaryotic diversity: when are 16S rDNA libraries large enough? Limnol Oceanogr Methods 2:114–125

    Article  Google Scholar 

  38. Knittel K, Boetius A (2009) Anaerobic oxidation of methane: progress with an unknown process. Annu Rev Microbiol 63:311–334

    Article  PubMed  CAS  Google Scholar 

  39. Knittel K, Boetius A, Lemke A et al (2003) Activity, distribution, and diversity of sulfate reducers and other bacteria in sediments above gas hydrate (Cascadia margin, Oregon). Geomicrobiol J 20:269–294

    Article  CAS  Google Scholar 

  40. Knittel K, Lösekann T, Boetius A, Kort R, Amann R (2005) Diversity and distribution of methanotrophic archaea at cold seeps. Appl Environ Microbiol 71:467–479

    Article  PubMed  CAS  Google Scholar 

  41. Kormas KA, Meziti A, Dählmann A, De Lange GJ, Lykousis V (2008) Characterization of methanogenic and prokaryotic assemblages based on mcrA and 16S rRNA gene diversity in sediments of the Kazan mud volcano (Mediterranean Sea). Geobiology 6:450–460

    Article  PubMed  CAS  Google Scholar 

  42. Kuypers MMM, Sliekers AO, Lavik G, Schmid M, Jorgensen BB, Kuenen JG, Damste JSS, Strous M, Jetten MSM (2003) Anaerobic ammonium oxidation by anammox bacteria in the Black Sea. Nature 422:608–611

    Article  PubMed  CAS  Google Scholar 

  43. Levin LA (2005) Ecology of cold seep sediments: interactions of fauna with flow, chemistry and microbes. CRC Press, Boca Raton

    Google Scholar 

  44. Lloyd KG, Lapham L, Teske A (2006) An anaerobic methane-oxidizing community of ANME-1b Archaea in hypersaline Gulf of Mexico sediments. Appl Environ Microbiol 72:7218–7230

    Article  PubMed  CAS  Google Scholar 

  45. Lösekann T, Knittel K, Nadalig T et al (2007) Diversity and abundance of aerobic and anaerobic methane oxidizers at the Haakon Mosby mud volcano, Barents Sea. Appl Environ Microbiol 73:3348–3362

    Article  PubMed  Google Scholar 

  46. Lykousis V, Alexandri S, Woodside J, de Lange G, Dählmann A, Perissoratis C, Heeschen K, Ioakim C, Sakellariou D, Nomikou P, Rousakis G, Casas D, Ballas D, Ercilla G (2009) Mud volcanoes and gas hydrates in the Anaximander Mountains (Eastern Mediterranean Sea). Mar Petrol Geol 26:854–872

    Article  CAS  Google Scholar 

  47. Lykousis V, Alexandri S, Woodside J, Nomikou P, Perissoratis C, Sakellariou D, De Lange G, Dahlmann A, Casas D, Rousakis G, Ballas D, Ioakim C (2004) New evidence of extensive active mud volcanism in the Anaximander Mountains (Eastern Mediterranean): The "ATHINA" Mud Volcano. Environ Geol 46:1030–1037

    Article  Google Scholar 

  48. Martinez RJ, Mills HJ, Story S, Sobecky PA (2006) Prokaryotic diversity and metabolically active microbial populations in sediments from an active mud volcano in the Gulf of Mexico. Environ Microbiol 8:1783–1796

    Article  PubMed  CAS  Google Scholar 

  49. Michaelis W, Seifert R, Nauhaus K et al (2002) Microbial reefs in the Black Sea fueled by anaerobic oxidation of methane. Science 297:1013–1015

    Article  PubMed  CAS  Google Scholar 

  50. Milkov AV (2000) Worldwide distribution of submarine mud volcanoes and associated gas hydrates. Mar Geol 167:29–42

    Article  CAS  Google Scholar 

  51. Mills HJ, Martinez RJ, Story S, Sobecky PA (2005) Characterization of microbial community structure in Gulf of Mexico gas hydrates: comparative analysis of DNA- and RNA-derived clone libraries. Appl Environ Microbiol 71:3235–3247

    Article  PubMed  CAS  Google Scholar 

  52. Morisita M (1959) Measuring of interspecific association and similarity between communities. Mem Fac Sci Kyushu Univ Ser E (Biol) 3:65–80

    Google Scholar 

  53. Olu-Le Roy K, Sibuet M, Fiala-Médioni A et al (2004) Cold seep communities in the deep Eastern Mediterranean Sea: composition, symbiosis and spatial distribution on mud volcanoes. Deep Sea Res I 51:1915–1936

    Article  CAS  Google Scholar 

  54. Orcutt BN, Joye SB, Kleindienst S, Knittel K, Ramette A, Reitz A, Samarkin V, Treude T, Boetius A (2010) Impact of natural oil and higher hydrocarbons on microbial diversity, distribution, and activity in Gulf of Mexico cold-seep sediments. DeepSea Res IΙ 57:2008–2021

    CAS  Google Scholar 

  55. Orphan VJ, Hinrichs KU, Ussler Iii W, Paull CK, Taylor LT, Sylva SP, Hayes JM, Delong EF (2001) Comparative analysis of methane-oxidizing Archaea and sulfate-reducing bacteria in anoxic marine sediments. Appl Environ Microbiol 67:1922–1934

    Article  PubMed  CAS  Google Scholar 

  56. Orphan VJ, House CH, Hinrichs KU, McKeegan KD, DeLong EF (2001) Methane-consuming Archaea revealed by directly coupled isotopic and phylogenetic analysis. Science 293:484–487

    Article  PubMed  CAS  Google Scholar 

  57. Orphan VJ, House CH, Hinrichs KU, McKeegan KD, DeLong EF (2002) Multiple archaeal groups mediate methane oxidation in anoxic cold seep sediments. P Natl Acad Sci USA 99:7663–7668

    Article  CAS  Google Scholar 

  58. Pachiadaki MG, Lykousis V, Stefanou EG, Kormas KA (2010) Prokaryotic community structure and diversity in the sediments of an active submarine mud volcano (Kazan mud volcano, East Mediterranean Sea). FEMS Microbiol Ecol 72:429–444

    Article  PubMed  CAS  Google Scholar 

  59. Pancost RD, Bouloubassi I, Aloisi G, Sinninghe Damsté JS (2001) Three series of non-isoprenoidal dialkyl glycerol diethers in cold-seep carbonate crusts. Org Geochem 32:695–707

    Article  CAS  Google Scholar 

  60. Pancost RD, Sinninghe Damsté JS, De Lint S, Van Der Maarel MJEC, Gottschal JC (2000) Biomarker evidence for widespread anaerobic methane oxidation in mediterranean sediments by a consortium of methanogenic archaea and bacteria. Appl Environ Microbiol 66:1126–1132

    Article  PubMed  CAS  Google Scholar 

  61. Pape T, Kasten S, Zabel M, Bahr A, Abegg F, Hohnberg H-J, Bohrmann G (2010) Gas hydrates in shallow deposits of the Amsterdam mud volcano, Anaximander Mountains, Northeastern Mediterranean Sea. Geo Mar Lett 30:187–206

    Article  CAS  Google Scholar 

  62. Perner M, Seifert R, Weber S, Koschinsky A, Schmidt K, Strauss H, Peters M, Haase K, Imhoff JF (2007) Microbial CO2 fixation and sulfur cycling associated with low-temperature emissions at the Lilliput hydrothermal field, southern Mid-Atlantic Ridge. Environ Microbiol 9:1186–1201

    Article  PubMed  CAS  Google Scholar 

  63. Pernthaler A, Dekas AE, Brown CT, Goffredi SK, Embaye T, Orphan VJ (2008) Diverse syntrophic partnerships from deep-sea methane vents revealed by direct cell capture and metagenomics. P Natl Acad Sci USA 105:7052–7057

    Article  CAS  Google Scholar 

  64. Pielou EC (1969) Association tests versus homogeneity tests: their use in subdividing quadrats into groups. Vegetatio 18:4–18

    Article  Google Scholar 

  65. Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, Glöckner FO (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35:7188–7196

    Article  PubMed  CAS  Google Scholar 

  66. Reed AJ, Lutz RA, Vetriani C (2006) Vertical distribution and diversity of bacteria and archaea in sulfide and methane-rich cold seep sediments located at the base of the Florida Escarpment. Extremophiles 10:199–211

    Article  PubMed  CAS  Google Scholar 

  67. Schreiber L, Holler T, Knittel K, Meyerdierks A, Amann R (2010) Identification of the dominant sulfate-reducing bacterial partner of anaerobic methanotrophs of the ANME-2 clade. Environ Microbiol 12:2327–2340

    CAS  Google Scholar 

  68. Sekiguchi Y, Kamagata Y, Nakamura K, Ohashi A, Harada H (1999) Fluorescence in situ hybridization using 16S rRNA-targeted oligonucleotides reveals localization of methanogens and selected uncultured bacteria in mesophilic and thermophilic sludge granules. Appl Environ Microbiol 65:1280–1288

    PubMed  CAS  Google Scholar 

  69. Shannon CE, Weaver W (1949) The mathematical theory of communication. University of Illinois Press, Urbana

    Google Scholar 

  70. Spiegelman D, Whissell G, Greer CW (2005) A survey of the methods for the characterization of microbial consortia and communities. Can J Microbiol 51:355–386

    Article  PubMed  CAS  Google Scholar 

  71. Stach EM, Bull A (2005) Estimating and comparing the diversity of marine actinobacteria. Antonie Leeuwenhoek 87:3–9

    Article  PubMed  Google Scholar 

  72. Strous M, Fuerst JA, Kramer EHM, Logemann S, Muyzer G, van de Pas-Schoonen KT, Webb R, Kuenen JG, Jetten MSM (1999) Missing lithotroph identified as new planctomycete. Nature 400:446–449

    Article  PubMed  CAS  Google Scholar 

  73. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  74. Teske A, Hinrichs KU, Edgcomb V et al (2002) Microbial diversity of hydrothermal sediments in the Guaymas Basin: evidence for anaerobic methanotrophic communities. Appl Environ Microbiol 68:1994–2007

    Article  PubMed  CAS  Google Scholar 

  75. Teske A, Sørensen KB (2008) Uncultured archaea in deep marine subsurface sediments: have we caught them all? ISME J 2:3–18

    Article  PubMed  CAS  Google Scholar 

  76. Thamdrup B, Dalsgaard T (2002) Production of N2 through anaerobic ammonium oxidation coupled to nitrate reduction in marine sediments. Appl Environ Microbiol 68:1312–1318

    Article  PubMed  CAS  Google Scholar 

  77. Valentine DL (2007) Adaptations to energy stress dictate the ecology and evolution of the archaea. Nat Rev Microbiol 5:316–323

    Article  PubMed  CAS  Google Scholar 

  78. Valentine DL, Reeburgh WS (2000) New perspectives on anaerobic methane oxidation. Environ Microbiol 2:477–484

    Article  PubMed  CAS  Google Scholar 

  79. Webster G, John Parkes R, Cragg BA, Newberry CJ, Weightman AJ, Fry JC (2006) Prokaryotic community composition and biogeochemical processes in deep subseafloor sediments from the Peru margin. FEMS Microbiol Ecol 58:65–85

    Article  PubMed  CAS  Google Scholar 

  80. Webster G, Parkes RJ, Fry JC, Weightman AJ (2004) Widespread occurrence of a novel division of bacteria identified by 16S rRNA gene sequences originally found in deep marine sediments. Appl Environ Microbiol 70:5708–5713

    Article  PubMed  CAS  Google Scholar 

  81. Webster G, Watt LC, Rinna J, Fry JC, Evershed RP, Parkes RJ, Weightman AJ (2006) A comparison of stable-isotope probing of DNA and phospholipid fatty acids to study prokaryotic functional diversity in sulfate-reducing marine sediment enrichment slurries. Environ Microbiol 8:1575–1589

    Article  PubMed  CAS  Google Scholar 

  82. Webster G, Yarram L, Freese E, Köster J, Sass H, Parkes RJ, Weightman AJ (2007) Distribution of candidate division JS1 and other bacteria in tidal sediments of the German Wadden Sea using targeted 16S rRNA gene PCR-DGGE. FEMS Microbiol Ecol 62:78–89

    Article  PubMed  CAS  Google Scholar 

  83. Wilms R, Köpke B, Sass H, Chang TS, Cypionka H, Engelen B (2006) Deep biosphere-related bacteria within the subsurface of tidal flat sediments. Environ Microbiol 8:709–719

    Article  PubMed  CAS  Google Scholar 

  84. Wolda H (1981) Similarity indices, sample size and diversity. Oecologia 50:296–302

    Article  Google Scholar 

  85. Woodside JM, Ivanov MK et al (1998) Shallow gas and gas hydrates in the Anaximander Mountains region. Eastern Mediterranean Sea Gas hydrates: relevance to world margin stability and climate change Geol Soc Spec Publ 137:177–193

    CAS  Google Scholar 

  86. Zhou J, Davey ME, Figueras JB, Rivkina E, Gilichinsky D, Tiedje JM (1997) Phylogenetic diversity of a bacterial community determined from Siberian tundra soil DNA. Microbiology 143:3913–3919

    Article  PubMed  CAS  Google Scholar 

  87. Zitter TAC (2006) Mud volcanism and fluid emissions in Eastern Mediterranean neotectonic zones, VU University

Download references

Acknowledgements

This research project is co-financed by EU-European Social Fund (75%) and the Greek Ministry of Development-GSRT (25%). This work was partly supported by the European Commission projects ANAXIMANDER (contract no. EVK3-CT-2002-00068) and HERMIONE (contract no 226354). Captain, crew and participants of the R/V AEGAEO are gratefully acknowledged for their contribution to the field work, sampling and analyses. The authors thank the three anonymous reviewers for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantinos Ar. Kormas.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 6.88 mb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pachiadaki, M.G., Kallionaki, A., Dählmann, A. et al. Diversity and Spatial Distribution of Prokaryotic Communities Along A Sediment Vertical Profile of A Deep-Sea Mud Volcano. Microb Ecol 62, 655–668 (2011). https://doi.org/10.1007/s00248-011-9855-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-011-9855-2

Keywords

Navigation