Dinitrogen-Fixing Prokaryotes

  • Ernesto Ormeño-Orrillo
  • Mariangela Hungria
  • Esperanza Martinez-RomeroEmail author


Dinitrogen fixation is a key process in the N cycle and only carried out by few prokaryotes. Research on dinitrogen fixation includes basic and practical applications: from nif genes to crops, with molecular, genetic, ecological, taxonomic, and agricultural approaches used. Nitrogen fixing rhizobia, which have been used in agriculture for over a 100 years, are excellent research models still leading the knowledge of eukaryote-bacteria symbioses. Other less known symbioses of dinitrogen fixing bacteria are reviewed as well as free-living diazotrophs.


nifH Gene Diazotrophic Bacterium Dinitrogen Fixation Symbiotic Plasmid Gluconacetobacter Diazotrophicus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Thanks to Julio Martínez Romero for technical support. To PAPIIT IN200709 and IN205412 from UNAM.


  1. Achouak W, Normand P, Heulin T (1999) Comparative phylogeny of rrs and nifH genes in the Bacillaceae. Int J Syst Bacteriol 49:961–967PubMedCrossRefGoogle Scholar
  2. Akao S, Kouchi H (1992) A supernodulating mutant isolated from soybean cultivar Enrei. Soil Sci Plant Nutr 38:183–187CrossRefGoogle Scholar
  3. Allen ON, Allen EK (1981) The Leguminosae: a source book of characteristics, uses, and nodulation. University of Wisconsin Press, Wisconsin, p 812Google Scholar
  4. Andrade G, Esteban E, Velasco L, Lorite MJ, Bedmar EJ (1997) Isolation and identification of N2-fixing microorganism from the rhizosphere of Capparis spinosa (L.). Plant Soil 197:19–23CrossRefGoogle Scholar
  5. App AA, Santiago T, Daez C, Menguito C, Ventura V, Tirol A, Po J et al (1984) Estimation of the nitrogen balance for irrigated rice and the contribution of phototrophic nitrogen fixation. Field Crop Res 9:17–27CrossRefGoogle Scholar
  6. App AA, Watanabe I, Ventura TS, Bravo M, Jurey CD (1986) The effect of cultivated and wild rice varieties on the nitrogen balance of flooded soil. Soil Sci 141:448–452CrossRefGoogle Scholar
  7. Araujo da Silva KR, Salles JF, Seldin L, van Elsas JD (2003) Application of a novel Paenibacillus-specific PCR-DGGE method and sequence analysis to assess the diversity of Paenibacillus spp. in the maize rhizosphere. J Microbiol Methods 54:213–231CrossRefGoogle Scholar
  8. Ardley JK, Parker MA, De Meyer SE, Trengove RD, O’Hara GW, Reeve WG, Yates RJ, Dilworth MJ, Willems A, Howieson JG (2011) Microvirga lupini sp. nov., Microvirga lotononidis sp. nov., and Microvirga zambiensis sp. nov. are Alphaproteobacterial root nodule bacteria that specifically nodulate and fix nitrogen with geographically and taxonomically separate legume hosts. Int J Syst Evol Microbiol [Epub ahead of print]Google Scholar
  9. Arnold W, Rump A, Klipp W, Priefer UB, Pühler A (1988) Nucleotide sequence of a 24,206-base-pair DNA fragment carrying the entire nitrogen fixation gene cluster of Klebsiella pneumoniae. J Mol Biol 203:715–738PubMedCrossRefGoogle Scholar
  10. Baker DD, Mullin BC (1992) Actinorhizal symbioses. In: Stacey G, Burris RH, Evans HJ (eds) Biological nitrogen fixation. Chapman and Hall, New York, pp 259–292Google Scholar
  11. Balatti AP, Freire JRJ (eds) (1996) Legume inoculants, selection and characterization of strains, production, use and management. Editorial Kingraf, La Plata, ArgentinaGoogle Scholar
  12. Baldani VLD, Döbereiner J (1980) Host-plant specificity in the infection of cereals with Azospirillum spp. Soil Biol Biochem 12:433–439CrossRefGoogle Scholar
  13. Baldani I, Baldani VLD, Seldin L, Döbereiner J (1986) Characterization of Herbaspirillum seropedicae gen. nov., sp. nov., a root-associated nitrogen-fixing bacterium. Int J Syst Bacteriol 36:86–93CrossRefGoogle Scholar
  14. Baldani JI, Reis VM, Baldani VLD, Döbereiner J (1999) Biological nitrogen fixation (BNF) in non-leguminous plants: the role of endophytic diazotrophs. In: Pedrosa FO, Hungria M et al (eds) 12th international congress on nitrogen fixation, book of abstracts. Universidade Federal do Paraná, Paraná, Brazil, p 12Google Scholar
  15. Bally R, Thomas-Bauzon D, Heulin T, Balandreau J, Richard C, De Ley J (1983) Determination of the most frequent N2-fixing bacteria in a rice rhizosphere. Can J Microbiol 29:881–887CrossRefGoogle Scholar
  16. Balota EL, Lopes ES, Hungria M, Dobereiner J (1997) Inoculação de bactérias diazotróficas e fungos micorrízico-arbusculares na cultura da mandioca. Pesq Agropec Bras 32:627–639Google Scholar
  17. Barcellos FG, Menna P, Batista JSS, Hungria M (2007) Evidence of horizontal transfer of symbiotic genes from a Bradyrhizobium japonicum inoculant strain to indigenous Sinorhizobium (Ensifer) fredii and Bradyrhizobium elkanii in a Brazilian savannah soil. Appl Environ Microbiol 73:2635–2643PubMedCrossRefGoogle Scholar
  18. Barraquio WL, de Guzman MR, Barrion M, Watanabe I (1982) Population of aerobic heterotrophic nitrogen fixing bacteria associated with wetland and dryland rice. Appl Environ Microbiol 43:124–128PubMedGoogle Scholar
  19. Barraquio WL, Ladha JK, Watanabe I (1983) Isolation and identification of N2-fixing Pseudomonas associated with wetland rice. Can J Microbiol 29:867–873PubMedCrossRefGoogle Scholar
  20. Barraquio WL, Revilla L, Ladha JK (1997) Isolation of endophytic diazotrophic bacteria from wetland rice. Plant Soil 194:15–24CrossRefGoogle Scholar
  21. Bashan Y, Holguin G (1997) Azospirillum—plant relationships: environmental and physiological advances (1990–1996). Can J Microbiol 43:103–121CrossRefGoogle Scholar
  22. Bauer CC, Scappino L, Haselkorn R (1993) Growth of the cyanobacterium Anabaena on molecular nitrogen: NifJ is required when iron is limited. Proc Natl Acad Sci USA 90:8812–8816PubMedCrossRefGoogle Scholar
  23. Behar A, Yuval B, Jurkevitch E (2005) Enterobacteria-mediated nitrogen fixation in natural populations of the fruit fly Ceratitis capitata. Mol Ecol 14:2637–2643PubMedCrossRefGoogle Scholar
  24. Bergersen FJ (1974) Formation and function of bacteroids. In: Quispel A (ed) The biology of nitrogen fixation. North-Holland, Amsterdam, pp 473–498Google Scholar
  25. Bergersen FJ (ed) (1980) Methods for evaluating biological nitrogen fixation. Wiley, Chichester, p 701Google Scholar
  26. Bergersen FJ, Hipsley EH (1970) The presence of N2-fixing bacteria in the intestines of man and animals. J Gen Microbiol 60:61–65PubMedCrossRefGoogle Scholar
  27. Bergman B, Rai AN, Johansson C, Söderbäck E (1992) Cyanobacterial-plant symbioses. Symbiosis 14:61–81Google Scholar
  28. Berry AM (1994) Recent developments in the actinorhizal symbioses. Plant Soil 161:135–145CrossRefGoogle Scholar
  29. Boddey RM, Urquiaga S, Reis V, Döbereiner J (1991) Biological nitrogen fixation associated with sugar cane. Plant Soil 137:111–117CrossRefGoogle Scholar
  30. Boddey RM, de Oliveira OC, Urquiaga S, Reis VM, de Olivares FL, Baldani VLD, Döbereiner J (1995) Biological nitrogen fixation associated with sugar cane and rice: contributions and prospects for improvement. Plant Soil 174:195–209CrossRefGoogle Scholar
  31. Bordeleau LM, Prévost D (1994) Nodulation and nitrogen fixation in extreme environments. Plant Soil 161:115–125CrossRefGoogle Scholar
  32. Bottomley PJ (1992) Ecology of Bradyrhizobium and Gluconoacetobacter diazotrophicus. In: Stacey G, Burris RH, Evans HJ (eds) Biological nitrogen fixation. Chapman and Hall, New York, pp 293–348Google Scholar
  33. Brewin NJ, Legocki AB (1996) Biological nitrogen fixation for sustainable agriculture. Trends Microbiol 4:476–477PubMedCrossRefGoogle Scholar
  34. Brigle KE, Weiss MC, Newton WE, Dean DR (1987) Products of the iron-molybdenum cofactor-specific biosynthetic genes, nifE and nifN, are structurally homologous to the products of the nitrogenase molybdenum-iron protein genes, nifD and nifK. J Bacteriol 169:1547–1553PubMedGoogle Scholar
  35. Brockwell J, Bottomley PJ (1995) Recent advances in inoculant technology and prospects for the future. Soil Biol Biochem 27:683–697CrossRefGoogle Scholar
  36. Buendía-Clavería AM, Rodriguez-Navarro DN, Santamaría-Linaza C, Ruiz-Saínz JE, Temprano-Vera F (1994) Evaluation of the symbiotic properties of Rhizobium fredii in European soils. Syst Appl Microbiol 17:155–160CrossRefGoogle Scholar
  37. Bürgmann H, Widmer F, von Sigler W, Zeyer J (2004) New molecular screening tools for analysis of free-living diazotrophs in soil. Appl Environ Microbiol 70:240–247PubMedCrossRefGoogle Scholar
  38. Caballero-Mellado J, Martínez-Romero E (1994) Limited genetic diversity in the endophytic sugarcane bacterium Acetobacter diazotrophicus. Appl Environ Microbiol 60:1532–1537PubMedGoogle Scholar
  39. Caballero-Mellado J, Martínez-Romero E (1999) Soil fertilization limits the genetic diversity of Gluconoacetobacter diazotrophicus obium in bean nodules. Symbiosis 26:111–121Google Scholar
  40. Caballero-Mellado J, Carcano-Montiel M, Mascarua-Esparza MA (1992) Field inoculation of wheat (Triticum aestivum) with Azospirillum brasilense under temperate climate. Symbiosis 13:243–253Google Scholar
  41. Caballero-Mellado J, Fuentes-Ramírez LE, Reis VM, Martínez-Romero E (1995) Genetic structure of Acetobacter diazotrophicus populations and identification of a new genetically distant group. Appl Environ Microbiol 61:3008–3013PubMedGoogle Scholar
  42. Carmichael WW (1994) The toxins of cyanobacteria. Sci Am 270:64–72CrossRefGoogle Scholar
  43. Carrasco CD, Buettner JA, Golden JW (1995) Programed DNA rearrangement of a cyanobacterial hupL gene in heterocysts. Proc Natl Acad Sci USA 92:791–795PubMedCrossRefGoogle Scholar
  44. Carroll BJ, McNeil DL, Gresshoff PM (1985) A supernodulating and nitrate-tolerant symbiotic (nts) soybean mutant. Plant Physiol 78:34–40PubMedCrossRefGoogle Scholar
  45. Carvalho FM, Souza RC, Barcellos FG, Hungria M, Vasconcelos ATR (2010) Genomic and evolutionary comparisons of diazotrophic and pathogenic bacteria of the order Rhizobiales. BMC Microbiol 10:37PubMedCrossRefGoogle Scholar
  46. Catroux G, Hartmann A, Revellin C (2001) Trends in rhizobial production and use. Plant Soil 230:21–30CrossRefGoogle Scholar
  47. Cavalcante VA, Döbereiner J (1988) A new acid-tolerant nitrogen-fixing bacterium associated with sugarcane. Plant Soil 108:23–31CrossRefGoogle Scholar
  48. Cheetham BF, Katz ME (1995) A role for bacteriophages in the evolution and transfer of bacterial virulence determinants. Mol Microbiol 18:201–208PubMedCrossRefGoogle Scholar
  49. Chelius M, Triplett E (2001) The diversity of Archaea and bacteria in association with the roots of Zea mays L. Microb Ecol 41:252–263PubMedGoogle Scholar
  50. Chen T-H, Pen S-Y, Huang T-C (1993) Induction of nitrogen-fixing circadian rhythm Synechococcus RF-1 by light signals. Plant Sci 92:179–182CrossRefGoogle Scholar
  51. Chen WM, Laevens S, Lee TM, Coenye T, De Vos P, Mergeay M, Vandamme P (2001) Ralstonia taiwanensis sp. nov., isolated from root nodules of Mimosa species and sputum of a cystic fibrosis patient. Int J Syst Evol Microbiol 51:1729–1735PubMedCrossRefGoogle Scholar
  52. Chen W-M, Moulin L, Bontemps C, Vandamme P, Béna G, Boivin-Masson C (2003) Legume symbiotic nitrogen fixation by β-proteobacteria is widespread in nature. J Bacteriol 185:7266–7272PubMedCrossRefGoogle Scholar
  53. Christiansen-Weniger C, Groneman AF, van Veen JA (1992) Associative N2 fixation and root exudation of organic acids from wheat cultivars of different aluminum tolerance. Plant Soil 139:167–174CrossRefGoogle Scholar
  54. Cojho EH, Reis VM, Schenberg ACG, Döbereiner J (1993) Interactions of Acetobacter diazotrophicus with an amylolytic yeast in nitrogen-free batch culture. FEMS Microbiol Lett 106:341–346Google Scholar
  55. D’hooghe I, Michiels J, Vlassak K, Verreth C, Waelkens F, Vanderleyden J (1995) Structural and functional analysis of the fixLJ genes of R. leguminosarum biovar phaseoli CNPAF512. Mol Gen Genet 249:117–126PubMedCrossRefGoogle Scholar
  56. Dardanelli MS, Rodríguez-Navarro DN, Megías-Guijo M, Okon Y (2008) Influencia de la coinoculación Azospirillum-rizobios sobre el crecimiento y la fijación de nitrógeno de leguminosas de interés agronómico. In: Cassán FD, Garcia de Salamone I (eds) Azospirillum sp.: cell physiology, plant interactions and agronomic research in Argentina. Asociación Argentina de Microbiologia, Buenos Aires, pp 141–152Google Scholar
  57. Date RA (2001) Advances in inoculant technology: a brief review. Aust J Exp Agric 41:321–325CrossRefGoogle Scholar
  58. Davis CS, McGillicuddy DJ (2006) Transatlantic abundance of the N2 fixing colonial Cyanobacterium Trichodesmium. Science 312:1517–1520PubMedCrossRefGoogle Scholar
  59. De Groote MA, Pace NR, Fulton K, Falkinham JO III (2006) Relationships between Mycobacterium isolates from patients with pulmonary mycobacterial infection and potting soils. Appl Environ Microbiol 72:7602–7606PubMedCrossRefGoogle Scholar
  60. Dean DR, Jacobson MR (1992) Biochemical genetics of nitrogenase. In: Stacey G, Burris RH, Evans HJ (eds) Biological nitrogen fixation. Chapman and Hall, New York, pp 763–834Google Scholar
  61. Dekas AE, Poretsky RS, Orphan VJ (2009) Deep-sea archaea fix and share nitrogen in methane-consuming microbial consortia. Science 326:422–426PubMedCrossRefGoogle Scholar
  62. DeLuca TH, Zackrisson O, Nilsson MC, Sellstedt A (2002) Quantifying nitrogen-fixation in feather moss carpets of boreal forests. Nature 419:917–920PubMedCrossRefGoogle Scholar
  63. Díaz-Zorita M, Fernandez Canigia MV (2008) Análisis de la producción de cereales inoculados con Azospirillum brasilense en la República Argentina. In: Cassán FD, Garcia de Salamone I (eds) Azospirillum sp.: cell physiology, plant interactions and agronomic research in Argentina. Asociación Argentina de Microbiologia, Buenos Aires, pp 152–164Google Scholar
  64. Distel DL, Morrill W, MacLaren-Toussaint N, Franks D, Waterbury J (2002) Teredinibacter turnerae gen. nov., sp. nov., a dinitrogen-fixing, cellulolytic, endosymbiotic gamma-proteobacterium isolated from the gills of wood-boring molluscs (Bivalvia: Teredinidae). Int J Syst Evol Microbiol 52:2261–2269PubMedCrossRefGoogle Scholar
  65. Dixon R (1998) The oxygen-responsive NIFL-NIFA complex: a novel two-component regulatory system controlling nitrogenase synthesis in γ-proteobacteria. Arch Microbiol 169:371–380PubMedCrossRefGoogle Scholar
  66. Döbereiner J (1961) Nitrogen-fixing bacteria of the genus Beijerinckia Derx in the rhizosphere of sugarcane. Plant Soil 15:211–217CrossRefGoogle Scholar
  67. Döbereiner J (1974) Nitrogen-fixing bacteria in the rhizosphere. In: Quispel A (ed) The biology of nitrogen fixation. North-Holland, Amsterdam, pp 86–120Google Scholar
  68. Döbereiner J, Day JM (1976) Associative symbiosis in tropical grasses: characterization of microorganisms and dinitrogen-fixing sites. In: Newton WE, Nyman CT (eds) Proceedings of the international symposium on nitrogen fixation, vol 2. Washington State University Press, Pullman, pp 518–538Google Scholar
  69. Döbereiner J, Marriel I, Nery M (1976) Ecological distribution of Spirillum lipoferum Beijerinck. Can J Microbiol 22:1464–1473PubMedCrossRefGoogle Scholar
  70. Durbin KJ, Watanabe I (1980) Sulphate reducing bacteria and nitrogen fixation in flooded rice soil. Soil Biol Biochem 12:11–14CrossRefGoogle Scholar
  71. Eady RR (1996) Structure-function relationships of alternative nitrogenases. Chem Rev 96:3013–3030PubMedCrossRefGoogle Scholar
  72. Egener T, Hurek T, Reinhold-Hurek B (1998) Use of green fluorescent protein to detect expression of nif genes of Azoarcus sp. BH72, a grass-associated diazotroph, on rice roots. Mol Plant Microbe Interact 11:71–75PubMedCrossRefGoogle Scholar
  73. Engelhard M, Hurek T, Reinhold-Hurek B (1999) Preferential colonization of wild rice species in comparison to modern races of Oryza sativa by Azoarcus spp., diazotrophic endophytes. In: de Wit P et al (eds) 9th international congress, book of abstracts. Molecular Plant-Microbe Interactions, Wageningen, p 198Google Scholar
  74. Estrella MJ, Muñoz S, Soto MJ, Ruiz O, Sanjuán J (2008) Genetic diversity and host range of rhizobia nodulating Lotus tenuis in typical soils of the Salado River Basin (Argentina). Appl Environ Microbiol 75:1088–1098PubMedCrossRefGoogle Scholar
  75. Evans HJ, Hanus FJ, Russell SA, Harker AR, Lambert GR, Dalton DA (1985) Biochemical characterization, evaluation, and genetics of H2 recycling in Gluconoacetobacter diazotrophicus obium. In: Ludden PW, Burris JE (eds) Nitrogen fixation and CO2 metabolism. Elsevier, Amsterdam, pp 3–11Google Scholar
  76. Evans HJ, Harker AR, Papen H, Russell SA, Hanus FJ, Zuber M (1987) Physiology, biochemistry and genetics of uptake hydrogenase in rhizobia. Annu Rev Microbiol 41:335–361PubMedCrossRefGoogle Scholar
  77. Fani R, Casadei S, Lio P (1999) Origin and evolution of nif genes. In: Pedrosa FO, Hungria M et al (eds) 12th international congress on nitrogen fixation, book of abstracts. Universidade Federal do Paraná, Paraná, p 48Google Scholar
  78. Firth P, Thitipoca H, Suthipradit S, Wetselaar R, Beech DF (1973) Nitrogen balance studies in the central plain of Thailand. Soil Biol Biochem 5:41–46CrossRefGoogle Scholar
  79. Fischer HM (1994) Genetic regulation of nitrogen fixation in rhizobia. Microbiol Rev 58:352–386PubMedGoogle Scholar
  80. Fisher K, Hare ND, Newton WE (1998) Mapping the catalytic surface of A. vinelandii MoFe protein by site specific mutagenesis. In: Elmerich C, Kondorosi A, Newton WE (eds) Biological nitrogen fixation for the 21st century. Kluwer, Dordrecht, pp 23–26Google Scholar
  81. Forchhammer K (2003) PII signal transduction in Cyanobacteria. Symbiosis 35:101–115Google Scholar
  82. Fred EB, Baldwin IL, McCoy E (1932) Root nodule bacteria and leguminous plants. University of Wisconsin Press, MadisonGoogle Scholar
  83. Fuentes-Ramírez LE, Jiménez-Salgado T, Abarca-Ocampo IR, Caballero-Mellado J (1993) Acetobacter diazotrophicus, an indoleacetic acid producing bacterium isolated from sugarcane cultivars of Mexico. Plant Soil 154:145–150CrossRefGoogle Scholar
  84. Fuentes-Ramírez LE, Caballero-Mellado J, Sepúlveda J, Martínez-Romero E (1999) Colonization of sugarcane by Acetobacter diazotrophicus is inhibited by high N-fertilization. FEMS Microbiol Ecol 29:117–128CrossRefGoogle Scholar
  85. Fuentes-Ramírez LE, Bustillos-Cristales R, Tapia-Hernandez A, Jimenez-Salgado T, Wang ET, Martinez-Romero E, Caballero-Mellado J (2001) Novel nitrogen-fixing acetic acid bacteria, Gluconacetobacter johannae sp. nov. and Gluconacetobacter azotocaptans sp. nov., associated with coffee plants. Int J Syst Evol Microbiol 51:1305–1314PubMedGoogle Scholar
  86. Fulweiler RW (2009) Fantastic fixers. Science 326:377–378PubMedCrossRefGoogle Scholar
  87. Fulweiler RW, Nixon SW, Buckley BA, Granger SL (2007) Reversal of the net dinitrogen gas flux in coastal marine sediments. Nature 448:180–182PubMedCrossRefGoogle Scholar
  88. Galibert F, Finan TM, Long SR, Puhler A, Abola P, Ampe F, Barloy-Hubler F, Barnett MJ, Becker A, Boistard P, Bothe G, Boutry M, Bowser L, Buhrmester J, Cadieu E, Capela D, Chain P, Cowie A, Davis RW, Dreano S, Federspiel NA, Fisher RF, Gloux S, Godrie T, Goffeau A, Golding B, Gouzy J, Gurjal M, Hernandez-Lucas I, Hong A, Huizar L, Hyman RW, Jones T, Kahn D, Kahn ML, Kalman S, Keating DH, Kiss E, Komp C, Lelaure V, Masuy D, Palm C, Peck MC, Pohl TM, Portetelle D, Purnelle B, Ramsperger U, Surzycki R, Thebault P, Vandenbol M, Vorholter FJ, Weidner S, Wells DH, Wong K, Yeh KC, Batut J (2001) The composite genome of the legume symbiont Sinorhizobium meliloti. Science 293:668–672PubMedCrossRefGoogle Scholar
  89. Giller KE (2001) Nitrogen Fixation in Tropical Cropping Systems. CAB International Publishing, Wallingford, UK, p 448CrossRefGoogle Scholar
  90. Giller KE, Merckx R (2003) Exploring the boundaries of N2 fixation in cereals and grasses: an hypothetical and experimental framework. Symbiosis 35:3–17Google Scholar
  91. Giller KE, Wilson KJ (1991) Nitrogen fixation in tropical cropping systems. CAB International, WallingfordGoogle Scholar
  92. Giller KE, Rowe E, de Ridder N, van Keulen H (2006) Resource use dynamics and interactions in the tropics: scaling up in space and time. Agric Syst 88:8–27CrossRefGoogle Scholar
  93. Gillis M, Van Trân V, Bardin R, Goor M, Hebbar P, Willems A, Segers P, Kersters K, Heulin T, Fernández MP (1995) Polyphasic taxonomy in the genus Burkholderia leading to an emended description of the genus and proposition of Burkholderia vietnamiensis sp. nov. for N2-fixing isolates from rice in Vietnam. Int J Syst Bacteriol 45:274–289CrossRefGoogle Scholar
  94. Girard L, Brom S, Davalos A, Lopez O, Soberon M, Romero D (2000) Differential regulation of fixN-reiterated genes in Rhizobium etli by a novel fixL-fixK cascade. Mol Plant Microbe Interact 13:1283–1292PubMedCrossRefGoogle Scholar
  95. Glazebrook J, Ichige A, Walker GC (1993) A R. meliloti homolog of the Escherichia coli peptide-antibiotic transport protein SbmA is essential for bacteroid development. Genes Dev 7:1485–1497PubMedCrossRefGoogle Scholar
  96. Gollan U, Schneider K, Müller A, Schüddekopf K, Klipp W (1993) Detection of the in vivo incorporation of a metal cluster into a protein: the FeMo cofactor is inserted into the FeFe protein of the alternative nitrogenase of Rhodobacter capsulatus. Eur J Biochem 215:25–35PubMedCrossRefGoogle Scholar
  97. Gough C, Webster G, Vasse J, Galera C, Batchelor C, O’Callaghan K et al (1996) Specific flavonoids stimulate intercellular colonization of non-legumes by Azorhizobium caulinodans. In: Stacey G, Mullin B, Gresshoff PM (eds) Biology of plant-microbe interactions. International Society for Molecular Plant-Microbe Interactions, St. Paul, pp 409–415Google Scholar
  98. Gough C, Vasse J, Galera C, Webster G, Cocking E, Dénarié J (1997) Interactions between bacterial diazotrophs and non-legume dicots: Arabidopsis thaliana as a model plant. Plant Soil 194:123–130CrossRefGoogle Scholar
  99. Graham PH (1981) Some problems of nodulation and symbiotic nitrogen fixation in Phaseolus vulgaris L.: a review. Field Crops Res 4:93–112CrossRefGoogle Scholar
  100. Graham PH, Vance CP (2000) Nitrogen fixation in perspective: an overview of research and extension needs. Field Crops Res 65:93–106CrossRefGoogle Scholar
  101. Graham PH, Vance CP (2003) Legumes: importance and constraints to greater utilization. Plant Physiol 131:872–877PubMedCrossRefGoogle Scholar
  102. Gremaud MG, Harper JE (1989) Selection and initial characterization of partially nitrate tolerant nodulation mutants of soybean. Plant Physiol 89:169–173PubMedCrossRefGoogle Scholar
  103. Guerinot ML, Fong W, Patriquin DG (1977) Nitrogen fixation (acetylene reduction) associated with sea urchins (Strongylocentrotus droebachiensis) feeding on seaweeds and eelgrass. J Fish Res Board Can 34:416–420CrossRefGoogle Scholar
  104. Gutierrez-Zamora ML, Martinez-Romero E (2001) Natural endophytic association between Rhizobium etli and maize (Zea mays L.). J Biotechnol 91(2–3):117–126PubMedCrossRefGoogle Scholar
  105. Haahtela K, Helander I, Nurmiaho-Lassila E-L, Sundman V (1983) Morphological and physiological characteristics of N2-fixing (C2H2-reducing) root-associated Pseudomonas sp. Can J Microbiol 29:874–880PubMedCrossRefGoogle Scholar
  106. Hales BJ, Case EE, Morningstar JE, Dzeda MF, Mauterer LA (1986) Isolation of a new vanadium-containing nitrogenase from Azotobacter vinelandii. Biochemistry 25:7251–7255PubMedCrossRefGoogle Scholar
  107. Han B, Xiaoming Z, Liqing S, Hede G, Bin H, Hede G, Jijun K, Zhen Y, Tong C (2010) Nitrogen fixation of epiphytic plants enwrapping trees in Ailao Mountain cloud forests, Yunnan, China. Protoplasma 247(1):103–110PubMedCrossRefGoogle Scholar
  108. Hardarson G (1993) Methods for enhancing symbiotic nitrogen fixation. Plant Soil 152:1–17CrossRefGoogle Scholar
  109. Hardarson G, Danso SKA (1993) Methods for measuring biological nitrogen fixation in grain legumes. Plant Soil 152:19–23CrossRefGoogle Scholar
  110. Hardy RWF, Havelka UD (1973) Symbiotic N2 fixation with multi-fold enhancement by CO2 enrichment of field-grown soybean. Plant Physiol 46:S35Google Scholar
  111. Hardy RWF, Holsten RD, Jackson EK, Burns RC (1968) The acetylene-ethylene assay for N2 fixation: laboratory and field evaluation. Plant Physiol 43:1185–1207PubMedCrossRefGoogle Scholar
  112. Haselkorn R, Buikema WJ (1992) Nitrogen fixation in cyanobacteria. In: Stacey G, Burris RH, Evans HJ (eds) Biological nitrogen fixation. Chapman and Hall, New York, pp 166–190Google Scholar
  113. Haselkorn R, Jones K, Buikema WJ (1999) Heterocyst differentiation and nitrogen fixation in the cyanobacterium Anabaena. In: Martínez E, Hernández G (eds) Highlights of nitrogen fixation research. Kluwer/Plenum, New York, pp 185–188CrossRefGoogle Scholar
  114. Hennecke H, Kaluza K, Thöny B, Fuhrmann M, Ludwig W, Stackebrandt E (1985) Concurrent evolution of nitrogenase genes and 16S rRNA in Gluconoacetobacter diazotrophicus obium species and other nitrogen fixing bacteria. Arch Microbiol 142:342–348CrossRefGoogle Scholar
  115. Herrero A, Muro-Pastor AM, Flores E (2001) Nitrogen control in cyanobacteria. J Bacteriol 183:411–425PubMedCrossRefGoogle Scholar
  116. Herridge DF, Peoples MB (1990) Ureide assay for measuring nitrogen fixation by nodulated soybean calibrated by 15N methods. Plant Physiol 93:495–503PubMedCrossRefGoogle Scholar
  117. Hewson I, Moisander PH, Achilles KM, Carlson CA, Jenkins BD, Mondragon EA, Morrison AE, Zehr JP (2006) Characteristics of diazotrophs in surface to abyssopelagic waters of the Sargasso Sea. Aquat Microb Ecol 46:15–30CrossRefGoogle Scholar
  118. Hicks WT, Harmon ME, Myrold DD (2003) Substrate controls on nitrogen fixation and respiration in woody debris from the Pacific Northwest, USA. For Ecol Manage 176:25–35CrossRefGoogle Scholar
  119. Hölflich G, Wiehe W, Hecht-Bucholz C (1995) Gluconoacetobacter diazotrophicus osphere colonization of different crops with growth promoting Pseudomonas and Gluconoacetobacter diazotrophicus obium bacteria. Microbiol Res 150:139–147CrossRefGoogle Scholar
  120. Holmes A, Govan J, Goldstein R (1998) Agricultural use of Burkholderia (Pseudomonas) cepacia: a threat to human health? Emerg Infect Dis 4:221–227PubMedCrossRefGoogle Scholar
  121. Hongoh Y, Sharma VK, Prakash T, Noda S, Toh H, Taylor TD, Kudo T, Sakaki Y, Toyoda A, Hattori M, Ohkuma M (2008) Genome of an endosymbiont coupling N2 fixation to cellulolysis within protist cells in termite gut. Science 322:1108–1109PubMedCrossRefGoogle Scholar
  122. Hoover TR, Imperial J, Ludden PW, Shah VK (1989) Homocitrate is a component of the iron-molybdenum cofactor of nitrogenase. Biochemistry 28:2768–2771PubMedCrossRefGoogle Scholar
  123. Howieson JG, Yates RJ, Foster KJ, Real D, Besier RB (2008) Prospects for the future use of legumes. In: Newton WE (ed) Nitrogen fixation: origins, applications and research progress, vol 7, Dilworth MJ, James EK, Sprent JI, Newton WE (eds) Nitrogen-fixing leguminous symbioses. Springer, Dordrecht, pp 363–393Google Scholar
  124. Hungria M, Campo RJ (2004) Economical and environmental benefits of inoculation and biological nitrogen fixation with soybean: situation in South America. In: Proceedings of the seventh world soybean research conference, Embrapa Soja, Londrina Paraná, pp 488–498Google Scholar
  125. Hungria M, Vargas MAT (2000) Environmental factors affecting N2 fixation in grain legumes in the tropics, with an emphasis on Brazil. Field Crops Res 65:151–164CrossRefGoogle Scholar
  126. Hungria M, Andrade DS, Chueire LMO, Probanza A, Guttierrez-Mañero F, Megías M (2000a) Isolation and characterization of new efficient and competitive bean (Phaseolus vulgaris L.) rhizobia from Brazil. Soil Biol Biochem 32:1515–1528CrossRefGoogle Scholar
  127. Hungria M, Vargas MAT, Campo RJ, Chueire LMO, Andrade DS (2000b) The Brazilian experience with the soybean (Glycine max) and common bean (Phaseolus vulgaris) symbiosis. In: Pedrosa FO, Hungria M, Yates G, Newton WE (eds) Nitrogen fixation: from molecules to crop productivity. Kluwer, Dordrecht, pp 515–518Google Scholar
  128. Hungria M, Campo RJ, Chueire LMO, Grange L, Megías M (2001) Symbiotic effectiveness of fast-growing rhizobial strains isolated from soybean nodules in Brazil. Biol Fertil Soils 33:387–394CrossRefGoogle Scholar
  129. Hungria M, Campo RJ, Mendes IC (2003) Benefits of inoculation of the common bean (Phaseolus vulgaris) crop with efficient and competitive Rhizobium tropici strains. Biol Fertil Soils 39:88–93CrossRefGoogle Scholar
  130. Hungria M, Franchini JC, Campo RJ, Graham PH (2005a) The importance of nitrogen fixation to soybean cropping in South America. In: Newton WE (ed) Nitrogen fixation: origins, applications and research progress, vol 4, Werner W, Newton WE (eds) Nitrogen fixation in agriculture, forestry, ecology and the environment. Springer, Dordrecht, pp 25–42Google Scholar
  131. Hungria M, Loureiro MF, Mendes IC, Campo RJ, Graham PH (2005b) Inoculant preparation, production and application. In: Newton WE (ed) Nitrogen fixation: origins, applications and research progress, vol 4, Werner W, Newton WE (eds) Nitrogen fixation in agriculture, forestry, ecology and the environment. Springer, Dordrecht, pp 223–254Google Scholar
  132. Hungria M, Campo RJ, Mendes IC, Graham PH (2006a) Contribution of biological nitrogen fixation to the N nutrition of grain crops in the tropics: the success of soybean (Glycine max L. Merr.) in South America. In: Singh RP, Shankar N, Jaiwal PK (eds) Nitrogen nutrition and sustainable plant productivity. Studium Press, Houston, pp 43–93Google Scholar
  133. Hungria M, Franchini JC, Campo RJ, Crispino CC, Moraes JZ, Sibaldelli RNR, Mendes IC, Arihara J (2006b) Nitrogen nutrition of soybean in Brazil: contributions of biological N2 fixation and of N fertilizer to grain yield. Can J Plant Sci 86:927–939CrossRefGoogle Scholar
  134. Hungria M, Campo RJ, Souza EM, Pedrosa FO (2010) Inoculation with selected strains of Azospirillum brasilense and A. lipoferum improves yields of maize and wheat in Brazil. Plant Soil 331:413–425CrossRefGoogle Scholar
  135. Hunt S, Layzell D (1993) Gas exchange of legume nodules and the regulation of nitrogenase activity. Annu Rev Plant Physiol Plant Mol Biol 44:483–511CrossRefGoogle Scholar
  136. Hurek T, Egener T, Reinhold-Hurek B (1997) Divergence in nitrogenases of Azoarcus spp., Proteobacteria of the β subclass. J Bacteriol 179:4172–4178PubMedGoogle Scholar
  137. Jacobitz S, Bishop PE (1992) Regulation of nitrogenase-2 in Azotobacter vinelandii by ammonium, molybdenum, and vanadium. J Bacteriol 174:3884–3888PubMedGoogle Scholar
  138. James EK, Olivares FL (1997) Infection and colonization of sugar cane and other graminaceous plants by endophytic diazotrophs. Crit Rev Plant Sci 17:77–119CrossRefGoogle Scholar
  139. Jenkins BD, Steward GF, Short SM, Ward BB, Zehr JP (2004) Fingerprinting diazotroph communities in the Chesapeake Bay by using a DNA macroarray. Appl Environ Microbiol 70:1767–1776PubMedCrossRefGoogle Scholar
  140. Jimenez-Salgado T, Fuentes-Ramirez LE, Tapia-Hernandez A, Mascarua-Esparza MA, Martinez-Romero E, Caballero-Mellado J (1997) Coffea arabica L., a new host plant for Acetobacter diazotrophicus, and isolation of other nitrogen-fixing acetobacteria. Appl Environ Microbiol 63:3676–3683PubMedGoogle Scholar
  141. Johnston AWB, Li Y, Ogilvie L (2005) Metagenomic marine nitrogen fixation—feast or famine? Trends Microbiol 13:416–420PubMedCrossRefGoogle Scholar
  142. Kaluza K, Hahn M, Hennecke H (1985) Repeated sequences similar to insertion elements clustered around the nif region of the Gluconoacetobacter diazotrophicus obium japonicum genome. J Bacteriol 162:535–542PubMedGoogle Scholar
  143. Kaminski PA, Batut J, Boistard P (1998) A survey of symbiotic nitrogen fixation by rhizobia. In: Spaink HP, Kondorosi A, Hooykas PJJ (eds) The Gluconoacetobacter diazotrophicus obiaceae. Kluwer, Dordrecht, pp 431–460Google Scholar
  144. Kaneko T, Nakamura Y, Sato S, Asamizu E, Kato T, Sasamoto S, Watanabe A, Idesawa K, Ishikawa A, Kawashima K, Kimura T, Kishida Y, Kiyokawa C, Kohara M, Matsumoto M, Matsuno A, Mochizuki Y, Nakayama S, Nakazaki N, Shimpo S, Sugimoto M, Takeuchi C, Yamada M, Tabata S (2000) Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti. DNA Res 7:331–338PubMedCrossRefGoogle Scholar
  145. Kaneko T, Nakamura Y, Sato S, Minamisawa K, Uchiumi T, Sasamoto S, Watanabe SA, Idesawa K, Iriguchi M, Kawashima K, Kohara M, Matsumoto M, Shimpo S, Tsuruoka H, Wada T, Yamada M, Tabata S (2002) Complete genomic sequence of nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum USDA110. DNA Res 9:189–197PubMedCrossRefGoogle Scholar
  146. Karg T, Reinhold-Hurek B (1996) Global changes in protein composition of N2-fixing Azoarcus sp. strain BH72 upon diazosome formation. J Bacteriol 178:5748–5754PubMedGoogle Scholar
  147. Karl D, Michaels A, Bergman B, Capone D, Carpenter E, Letelier R, Lipschultz F, Paerl H, Sigman D, Stal L (2002) Dinitrogen fixation in the world’s oceans. Biogeochemistry 57:47–98CrossRefGoogle Scholar
  148. Karpati E, Kiss P, Ponyi T, Fendrik I, de Zamaroczy M, Orosz L (1999) Interaction of Azospirillum lipoferum with wheat germ agglutinin stimulates nitrogen fixation. J Bacteriol 181:3949–3955PubMedGoogle Scholar
  149. Kennedy C, Dean D (1992) The nifU, nifS and nifV gene products are required for activity of all three nitrogenases of Azotobacter vinelandii. Mol Gen Genet 231:494–498PubMedCrossRefGoogle Scholar
  150. Kessler PS, Daniel C, Leigh JA (2001) Ammonia switch-off of nitrogen fixation in the methanogenic archaeon Methanococcus maripaludis: mechanistic features and requirement for the novel GlnB homologues, NifI1 and 2. J Bacteriol 183:882–889PubMedCrossRefGoogle Scholar
  151. Keyser HH, Bohlool BB, Hu TS, Weber DF (1982) Fast-growing rhizobia isolated from root nodules of soybeans. Science 215:1631–1632PubMedCrossRefGoogle Scholar
  152. Khadem AF, Pol A, Jetten MSM, Op den Camp HJM (2010) Nitrogen fixation by the verrucomicrobial methanotroph ‘Methylacidiphilum fumariolicum’ SolV. Microbiology 156:1052–1059PubMedCrossRefGoogle Scholar
  153. Kneip C, Lockhart P, Voss C, Maier U-G (2007) Nitrogen fixation in eukaryotes—new models for symbiosis. BMC Evol Biol 7:55PubMedCrossRefGoogle Scholar
  154. Kneip C, Voss C, Lockhart PJ, Maier UW (2008) The cyanobacterial endosymbiont of the unicellular algae Rhopalodia gibba shows reductive genome evolution. BMC Evol Biol 8:30PubMedCrossRefGoogle Scholar
  155. Koponen P, Nygren P, Domenach AM, Le Roux C, Saur E, Roggy JC (2003) Nodulation and dinitrogen fixation of legume trees in a tropical freshwater swamp forest in French Guiana. J Trop Ecol 19:655–666CrossRefGoogle Scholar
  156. Kovach ME, Shaffer MD, Peterson KM (1996) A putative integrase gene defines the distal end of a large cluster of ToxR-regulated colonization genes in Vibrio cholerae. Microbiology 142:2165–2174PubMedCrossRefGoogle Scholar
  157. Koyama T, App AA (1979) Nitrogen balance in flooded rice soils. In: Nitrogen and rice. IRRI, Manila, pp 95–104Google Scholar
  158. Krotzky A, Werner D (1987) Nitrogen fixation in Pseudomonas stutzeri. Arch Microbiol 147:48–57CrossRefGoogle Scholar
  159. Kudo T, Ohkuma M, Moriya S, Noda S, Ohtoko K (1998) Molecular phylogenetic identification of the intestinal anaerobic microbial community in the hindgut of the termite, Reticulitermes speratus, without cultivation. Extremophiles 2:155–161PubMedCrossRefGoogle Scholar
  160. Kustu S, Santero E, Keener J, Popham D, Weiss D (1989) Expression of sigma54 (ntrA)-dependent genes is probably united by a common mechanism. Microbiol Rev 53:367–376PubMedGoogle Scholar
  161. Kuznetsov SI, Dubinina GA, Lapteva NA (1979) Biology of oligotrophic bacteria. Ann Rev Microbiol 33:377–387CrossRefGoogle Scholar
  162. Ladha JK, Barraquio WL, Watanabe I (1982) Immunological techniques to identify Azospirillum associated with wetland rice. Can J Microbiol 28:478–485PubMedCrossRefGoogle Scholar
  163. Ladha JK, Barraquio WL, Watanabe I (1983) Isolation and identification of nitrogen-fixing Enterobacter clocae and Klebsiella planticola associated with rice plants. Can J Microbiol 29:1301–1308CrossRefGoogle Scholar
  164. Ladha JK, Pareek RP, Becker M (1992) Stem-nodulating legume: Gluconoacetobacter diazotrophicus obium symbiosis and its agronomic use in lowland rice. Adv Soil Sci 20:148–192Google Scholar
  165. Ladha JK, Tirol-Padre A, Reddy CK, Ventura W (1993) Prospects and problems of biological nitrogen fixation in rice production: a critical assessment. In: Palacios R, Mora J, Newton WE (eds) New Horizons in nitrogen fixation. Kluwer, Dordrecht, pp 677–682Google Scholar
  166. Laguerre G, Bardin M, Amarger N (1993) Isolation from soil of symbiotic and nonsymbiotic R. leguminosarum by DNA hybridization. Can J Microbiol 39:1142–1149CrossRefGoogle Scholar
  167. Lal B, Khana S (1996) Long term field study shows increased biomass production in tree legumes inoculated with Rhizobium. Plant Soil 184:111–116CrossRefGoogle Scholar
  168. Langlois RJ, Huemmer D, LaRoche J (2008) Abundances and distributions of the dominant nifH phylotypes in the northern Atlantic Ocean. Appl Environ Microbiol 74:1922–1931PubMedCrossRefGoogle Scholar
  169. Larimer FW, Chain P, Hauser L, Lamerdin J, Malfatti S, Do L, Land ML, Pelletier DA, Beatty JT, Lang AS (2004) Complete genome sequence of the metabolically versatile photosynthetic bacterium Rhodopseudomonas palustris. Nat Biotechnol 22:55–61PubMedCrossRefGoogle Scholar
  170. Lechene CP, Luyten Y, McMahon G, Distel DL (2007) Quantitative imaging of nitrogen fixation by individual bacteria within animal cells. Science 317:1563–1566PubMedCrossRefGoogle Scholar
  171. Lee PKH, Jianzhong J, Zinder SH, Alvarez-Cohen L (2009) Evidence for nitrogen fixation by “Dehalococcoides ethenogenes” strain 195. Appl Environ Microbiol 75:7551–7555PubMedCrossRefGoogle Scholar
  172. Leigh JA (2000) Nitrogen fixation in methanogens: the archaeal perspective. In: Triplett EW (ed) Prokaryotic nitrogen fixation: a model system for analysis of a biological process. Horizon Scientific Press, Wymondham, pp 657–669Google Scholar
  173. Li Y, Green LS, Day DA, Bergersen FJ (1999) Ammonia and alanine efflux from nitrogen-fixing soybean bacteroids. In: Pedrosa FO, Hungria M et al (eds) 12th international congress on nitrogen fixation, book of abstracts. Universidade Federal do Paraná, Paraná, pp 13–14Google Scholar
  174. Lie TJ, Leigh JA (2003) A novel repressor of nif and glnA expression in the methanogenic archaeon Methanococcus maripaludis. Mol Microbiol 47:235–246PubMedCrossRefGoogle Scholar
  175. Lilburn TG, Kim KS, Ostrom NE, Byzek KR, Leadbetter JR, Breznak JA (2001) Nitrogen fixation by symbiotic and free-living spirochetes. Science 292:2495–2498PubMedCrossRefGoogle Scholar
  176. Lin DX, Wang ET, Tang H, Han TX, He YR, Guan SH, Chen WX (2008) Shinella kummerowiae sp. nov., a symbiotic bacterium isolated from root nodules of the herbal legume Kummerowia stipulacea. Int J Syst Evol Microbiol 58:1409–1413PubMedCrossRefGoogle Scholar
  177. Lindblad A, Jansson J, Brostedt E, Johansson M, Nordlund S (1993) Sequencing and mutational studies of a nifJ-like gene in Rhodospirillum rubrum. In: Palacios R, Mora J, Newton W (eds) New Horizons in nitrogen fixation. Kluwer, Dordrecht, p 477Google Scholar
  178. Lobo AL, Zinder SH (1992) Nitrogen fixation by methanogenic bacteria. In: Stacey G, Burris RH, Evans HJ (eds) Biological nitrogen fixation. Chapman and Hall, New York, pp 191–211Google Scholar
  179. Lodwig EM, Hosie AHF, Bourdes A, Findlay K, Allaway D, Karunakaran R, Downie JA, Poole PS (2003) Amino-acid cycling drives nitrogen fixation in the legume-Rhizobium symbiosis. Nature 422:722–726PubMedCrossRefGoogle Scholar
  180. Lodwig E, Kumar S, Allaway D, Bourdes A, Prell J, Priefer U, Poole P (2004) Regulation of l-alanine dehydrogenase in Rhizobium leguminosarum bv. viciae and its role in pea nodules. J Bacteriol 186:842–849PubMedCrossRefGoogle Scholar
  181. Lorenz MG, Wackernagel W (1990) Natural genetic transformation of Pseudomonas stutzeri by sand-absorbed DNA. Arch Microbiol 154:380–385PubMedCrossRefGoogle Scholar
  182. Loveless TM, Saah JR, Bishop PE (1999) Isolation of nitrogen-fixing bacteria containing molybdenum-independent nitrogenases from natural environments. Appl Environ Microbiol 65:4223–4226PubMedGoogle Scholar
  183. Lupwayi NZ, Olsen PE, Sande ES, Kayser HH, Collins MM, Singleton PW, Rice WA (2000) Inoculant quality and its evaluation. Field Crops Res 65:259–270CrossRefGoogle Scholar
  184. Madigan M, Cox SS, Stegeman RA (1984) Nitrogen fixation and nitrogenase activities in members of the family Rhodospirillaceae. J Bacteriol 157:73–78PubMedGoogle Scholar
  185. Maier RJ, Triplett EW (1996) Toward more productive, efficient, and competitive nitrogen-fixing symbiotic bacteria. Crit Rev Plant Sci 15:191–234Google Scholar
  186. Man-Aharonovich D, Kress N, Zeev EB, Berman-Frank I, Beja O (2007) Molecular ecology of nifH genes and transcripts in the eastern Mediterranean Sea. Environ Microbiol 9:2354–2363PubMedCrossRefGoogle Scholar
  187. Martínez E, Romero D, Palacios R (1990) The Rhizobium genome. Crit Rev Plant Sci 9:59–93CrossRefGoogle Scholar
  188. Martínez L, Caballero-Mellado J, Orozco J, Martínez-Romero E (2003) Diazotrophic bacteria associated with banana (Musa spp.). Plant Soil 257:35–47CrossRefGoogle Scholar
  189. Martínez J, Martínez L, Rosenblueth M, Silva J, Martínez-Romero E (2004) How are gene sequence analyses modifying bacterial taxonomy? The case of Klebsiella. Int Microbiol 7:261–268PubMedGoogle Scholar
  190. Martínez-Romero E, Caballero-Mellado J (1996) Gluconoacetobacter diazotrophicus obium phylogenies and bacterial genetic diversity. Crit Rev Plant Sci 15:113–140Google Scholar
  191. May BM, Attiwill PM (2003) Nitrogen-fixation by Acacia dealbata and changes in soil properties 5 years after mechanical disturbance or slash-burning following timber harvest. For Ecol Manage 181:339–355CrossRefGoogle Scholar
  192. McIsaac GF, David MB, Gertner GZ, Goolsby DA (2002) Nitrate flux in the Mississppi River. Nature 414:166–167CrossRefGoogle Scholar
  193. Meeks JC, Elhai J, Thiel T, Potts M, Larimer F, Lamerdin J, Predki P, Atlas R (2001) An overview of the genome of Nostoc punctiforme, a multicellular, symbiotic cyanobacterium. Photosynth Res 70:85–106PubMedCrossRefGoogle Scholar
  194. Mehmannavaz R, Prasher SO, Ahmad D (2002) Rhizospheric effects of alfalfa on biotransformation of polychlorinated biphenyls in a contaminated soil augmented with Sinorhizobium meliloti. Proc Biochem 37:955–963CrossRefGoogle Scholar
  195. Mehta MP, Baross JA (2006) Nitrogen fixation at 92 degree C by a hydrothermal vent archaeon. Science 314:1783–1786PubMedCrossRefGoogle Scholar
  196. Mehta MP, Butterfield DA, Baross JA (2003) Phylogenetic diversity of nitrogenase (nifH) genes in deep-sea and hydrothermal vent environments of the Juan de Fuca Ridge. Appl Environ Microbiol 69:960–970PubMedCrossRefGoogle Scholar
  197. Minchin FR, Sheehy JE, Witty JF (1986) Further errors in the acetylene reduction assay: effects of plant disturbance. J Exp Bot 37:1581–1591CrossRefGoogle Scholar
  198. Minerdi D, Fani R, Gallo R, Boarino A, Bonfante P (2001) Nitrogen fixation genes in an endosymbiotic Burkholderia strain. Appl Environ Microbiol 67:725–732PubMedCrossRefGoogle Scholar
  199. Montoya JP, Holl CM, Zehr JP, Hansen A, Villareal TA, Capone DG (2004) High rates of N2 fixation by unicellular diazotrophs in the oligotrophic Pacific Ocean. Nature 430:1027–1032PubMedCrossRefGoogle Scholar
  200. Moore CM, Mills MM, Milne A, Langlois R, Achterberg EP, Lochte K, Geider RJ, La Roche J (2006) Iron limits primary productivity during spring bloom development in the central North Atlantic. Global Change Biol 12:626–634CrossRefGoogle Scholar
  201. Moulin L, Munive A, Dreyfus B, Boivin-Masson C (2001) Nodulation of legumes by members of the β-subclass of Proteobacteria. Nature 411:948–950PubMedCrossRefGoogle Scholar
  202. Mpepereki S, Javaheri F, Davis P, Giller KE (2000) Soybeans and sustainable agriculture: ‘Promiscuous’ soybeans in southern Africa. Field Crops Res 65:137–149CrossRefGoogle Scholar
  203. Muro-Pastor AM, Valladares A, Flores E, Herrero A (1999) The hetC gene is a direct target of the NtcA transcriptional regulator in cyanobacterial heterocyst development. J Bacteriol 181:6664–6669PubMedGoogle Scholar
  204. Muthukumarasamy R, Revathi G, Lakshminarasimhan C (1999) Influence of N fertilisation on the isolation of Acetobacter diazotrophicus and Herbaspirillum spp. from Indian sugarcane varieties. Biol Fertil Soil 29:157–164CrossRefGoogle Scholar
  205. Muyzer G, De Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700PubMedGoogle Scholar
  206. Nardi JB, Mackie RI, Dawson JO (2002) Could microbial symbionts of arthropod guts contribute significantly to nitrogen fixation in terrestrial ecosystems? J Insect Physiol 48:751–763PubMedCrossRefGoogle Scholar
  207. Nees DW, Stein PA, Ludwig RA (1988) The Azorhizobium caulinodans nifA gene: identification of upstream-activating sequences including a new element, the “anaerobox”. Nucleic Acids Res 16:9839–9853PubMedCrossRefGoogle Scholar
  208. Neves MCP, Hungria M (1987) The physiology of nitrogen fixation in tropical grain legumes. CRC Crit Rev Plant Sci 6:267–321CrossRefGoogle Scholar
  209. Newton WE (2000) Nitrogen fixation in perspective. In: Pedrosa FO, Hungria M, Yates MG, Newton WE (eds) Nitrogen fixation: from molecules to crop productivity. Kluwer, Dordrecht, pp 3–8Google Scholar
  210. Noda S, Ohkuma M, Usami R, Horikoshi K, Kudo T (1999) Culture-independent characterization of a gene responsible for nitrogen fixation in the symbiotic microbial community in the gut of the termite Neotermes koshunensis. Appl Environ Microbiol 65:4935–4942PubMedGoogle Scholar
  211. Nordlund S (2000) Regulation of nitrogenase activity in phototrophic bacteria by reversible covalent modification. In: Triplett EW (ed) Prokaryotic nitrogen fixation: a model system for the analysis of a biological process. Horizon Scientific Press, Wymondham, pp 149–164Google Scholar
  212. Normand P, Bousquet J (1989) Phylogeny of nitrogenase sequences in Frankia and other nitrogen-fixing microorganims. J Mol Evol 29:436–447PubMedCrossRefGoogle Scholar
  213. Normand P, Orso S, Cournoyer B, Jeannin P, Chapelon C, Dawson J, Evtushenko L, Misra AK (1996) Molecular phylogeny of the genus Frankia and related genera and emendation of the family Frankiaceae. Int J Syst Bacteriol 46:1–9PubMedCrossRefGoogle Scholar
  214. Normand P, Queiroux C, Tisa LS, Benson DR, Rouy Z, Cruveiller S, Medigue C (2007) Exploring the genomes of Frankia. Physiol Plant 130:331–343CrossRefGoogle Scholar
  215. O’Callaghan KJ, Davey MR, Cocking EC (1999) Xylem colonization of Sesbania rostrata by Azorhizobium caulinodans ORS571. In: Martínez E, Hernández G (eds) Highlights of nitrogen fixation research. Kluwer/Plenum, New York, pp 145–147CrossRefGoogle Scholar
  216. Ohkuma M, Noda S, Kudo T (1999) Phylogenetic diversity of nitrogen fixation genes in the symbiotic microbial community in the gut of diverse termites. Appl Environ Microbiol 65:4926–4934PubMedGoogle Scholar
  217. Ohta H, Hattori T (1983) Agromonas oligotrophica gen. nov., sp. nov., a nitrogen-fixing oligotrophic bacterium. Antonie Van Leeuwenhoek 49:429–446PubMedGoogle Scholar
  218. Okon Y, Labandera-Gonzalez CA (1994) Agronomic applications of Azospirillum: an evaluation of 20 years worldwide field inoculation. Soil Biol Biochem 26:1591–1601CrossRefGoogle Scholar
  219. Olivares FL, Baldani VLD, Reis VM, Baldani JI, Döbereiner J (1996) Occurrence of the endophytic diazotrophs Herbaspirillum spp. in roots, stems, and leaves, predominantly of Gramineae. Biol Fertil Soils 21:197–200CrossRefGoogle Scholar
  220. Oliveira ALM, Stoffles M, Schmid M, Reis VM, Baldani JI, Hartmann A (2009) Colonization of sugarcane plantlets by mixed inoculations with diazotrophic bacteria. Eur J Soil Biol 45:106–113CrossRefGoogle Scholar
  221. Olson JB, Steppe TF, Litaker RW, Paerl HW (1998) N2-fixing microbial consortia associated with the ice cover of Lake Bonney, Antartica. Microb Ecol 36:231–238PubMedCrossRefGoogle Scholar
  222. Paau AS (1989) Improvement of Gluconoacetobacter diazotrophicus obium inoculants. Appl Environ Microbiol 55:862–865PubMedGoogle Scholar
  223. Pau RN, Eldridge ME, Lowe DJ, Mitchenall LA, Eady RR (1993) Molybdenum-independent nitrogenases of Azotobacter vinelandii: a functional species of alternative nitrogenase-3 isolated from a molybdenum-tolerant strain contains an iron-molybdenum cofactor. Biochem J 293:101–107PubMedGoogle Scholar
  224. Perlova O, Ureta A, Meletzus D, Nordlund S (2003) Sensing of N-status in Gluconacetobacter diazotrophicus: biochemistry and genetics of nitrogen fixation and assimilation. Symbiosis 35:73–84Google Scholar
  225. Peters GA, Meeks JC (1989) The Azolla-Anabaena symbiosis: basic biology. Annu Rev Plant Physiol Plant Mol Biol 40:193–210CrossRefGoogle Scholar
  226. Phillips DA (1974) Promotion of acetylene reduction by Gluconoacetobacter diazotrophicus obium-soybean cell associations in vitro. Plant Physiol 54:654–655PubMedCrossRefGoogle Scholar
  227. Phillips DA, Martínez-Romero E (2000) Biological nitrogen fixation. In: Lederberg J (ed) Encyclopedia of microbiology. Academic, New YorkGoogle Scholar
  228. Phillips DA, Martínez-Romero E, Yang GP, Joseph CM (1999) Release of nitrogen: a key trait in selecting bacterial endophytes for agronomically useful nitrogen fixation. In: Ladha JK, Reddy PM (eds) The quest for nitrogen fixation in rice. International Rice Research Institute, Los Baños, pp 205–217Google Scholar
  229. Piehler MF, Swistak JG, Pinckney JL, Paerl HW (1999) Stimulation of diesel fuel biodegradation by indigenous nitrogen fixing bacterial consortia. Microb Ecol 38:69–78PubMedCrossRefGoogle Scholar
  230. Pinto-Tomas AA, Anderson MA, Suen G, Stevenson DM, Chu FST, Cleland WW, Weimer PJ, Currie CR (2009) Symbiotic nitrogen fixation in the fungus gardens of leaf-cutter ants. Science 326:1120–1123PubMedCrossRefGoogle Scholar
  231. Polhill RM, Raven PH (1981) Advances in legume systematics. Royal Botanic Gardens, Kew, p 446Google Scholar
  232. Postgate JR (1982) The fundamentals of nitrogen fixation. Cambridge University Press, Cambridge, UK, p 252Google Scholar
  233. Postgate J (1988) The ghost in the laboratory. New Scientist 117:49–52Google Scholar
  234. Prantera MT, Drozdowicz A, Leite SG, Rosado AS (2002) Degradation of gasoline aromatic hydrocarbons by two N2-fixing soil bacteria. Biotechnol Lett 24:85–89CrossRefGoogle Scholar
  235. Pulver EL, Kueneman EA, Ranga-Rao V (1985) Identification of promiscuous nodulating soybean efficient in N2 fixation. Crop Sci 25:660–663CrossRefGoogle Scholar
  236. Qui YS, Zhou SP, Mo XZ (1981) Study of nitrogen fixing bacteria associated with rice root. 1: isolation and identification of organisms. Acta Microbiol Sinica 21:468–472Google Scholar
  237. Quispel A (1988) Hellriegel and Wilfarth’s discovery of (symbiotic) nitrogen fixation hundred years ago. In: Bothe H, de Bruijn FJ, Newton WE (eds) Nitrogen fixation: hundred years after Gustav. Fischer, Stuttgart, pp 3–12Google Scholar
  238. Rajagopal BS, Belay N, Daniels L (1988) Isolation and characterization of methanogenic bacteria from rice paddies. FEMS Microbiol Ecol 53:153–158CrossRefGoogle Scholar
  239. Ran L, Larsson J, Vigil-Stenman T, Nylander JAA, Ininbergs K, Zheng WW, Lapidus A, Lowry S, Haselkorn R, Bergman B (2010) Genome erosion in a nitrogen-fixing vertically transmitted endosymbiotic multicellular cyanobacterium. PLoS One 5:e11486PubMedCrossRefGoogle Scholar
  240. Rao VR, Ramakrishnan B, Adhya TK, Kanungo PK, Nayak DN (1998) Review: current status and future prospects of associative nitrogen fixation in rice. World J Microbiol Biotechnol 14:621–633CrossRefGoogle Scholar
  241. Rappe MS, Giovannoni SJ (2003) The uncultured microbial majority. Annu Rev Microbiol 57:369–394PubMedCrossRefGoogle Scholar
  242. Raymond J, Siefert JL, Staples CR, Blankenship RE (2004) The natural history of nitrogen fixation. Mol Biol Evol 21:541–554PubMedCrossRefGoogle Scholar
  243. Reddy PM, Ladha JK, So RB, Hernandez RJ, Ramos MC, Angeles OR, Dazzo FB, de Bruijn FJ (1997) Gluconoacetobacter diazotrophicus obial communication with rice roots: induction of phenotypic changes, mode of invasion and extent of colonization. Plant Soil 194:81–98CrossRefGoogle Scholar
  244. Reiter B, Buergmann H, Burg K, Sessitsch A (2003) Endophytic nifH gene diversity in African sweet potato. Can J Microbiol/Rev Can Microbiol 49:549–555CrossRefGoogle Scholar
  245. Ribbe M, Gadkari D, Meyer O (1997) N2 fixation by Streptomyces thermoautotrophicus involves a molybdenum-dinitrogenase and a manganese-superoxide oxidoreductase that couple N2 reduction to the oxidation of superoxide produced from O2 by a molybdenum-CO dehydrogenase. J Biol Chem 272:26627–26633PubMedCrossRefGoogle Scholar
  246. Rivas R, Velazquez E, Willems A, Vizcaino N, Subba-Rao NS, Mateos PF, Gillis M, Dazzo FB, Martinez-Molina E (2002) A new species of Devosia that forms a unique nitrogen-fixing root-nodule symbiosis with the aquatic legume Neptunia natans (L.f.) Druce. Appl Environ Microbiol 68:5217–5222PubMedCrossRefGoogle Scholar
  247. Robson RL, Eady RR, Richardson TH, Miller RW, Hawkins M, Postgate JR (1986) The alternative nitrogenase of Azotobacter chroococcum is a vanadium enzyme. Nature (London) 322:388–390CrossRefGoogle Scholar
  248. Rolfe BG, Verma DPS, Potrykus I, Dixon R, McCully M (1998) Round table: Agriculture 2020: 8 billion people. In: Elmerich C, Kondorosi A, Newton WE (eds) Biological Nitrogen Fixation for the 21st century, Kluwer Academic Publishers, Dordrecht, pp 685–692Google Scholar
  249. Romero D, Palacios R (1997) Gene amplification and genomic plasticity in prokaryotes. Annu Rev Genet 31:91–111PubMedCrossRefGoogle Scholar
  250. Roncato-Maccari LDB, Ramos HJO, Pedrosa FO, Alquini Y, Chubatsu LS, Yates MG, Rigo LU, Steffens MBR, Souza EM (2003) Endophytic Herbaspirillum seropedicae expresses nif genes in gramineous plants. FEMS Microbiol Ecol 45:39–47PubMedCrossRefGoogle Scholar
  251. Rosenblueth M, Martínez L, Silva J, Martínez-Romero E (2004) Klebsiella variicola, a novel species with clinical and plant-associated isolates. Syst Appl Microbiol 27:27–35PubMedCrossRefGoogle Scholar
  252. Roughley RJ (1970) The preparation and use of legume seed inoculants. Plant Soil 32:675–701CrossRefGoogle Scholar
  253. Ruinen J (1974) Nitrogen fixation in the phyllosphere. In: Quispel A (ed) The biology of nitrogen fixation. North-Holland, Amsterdam, pp 121–167Google Scholar
  254. Ruppel S, Hecht-Bucholz C, Remus R, Ortmann U, Schmelzer R (1992) Settlement of the diazotrophic, phytoeffective bacterial strain Pantoea agglomerans on and within winter wheat: an investigation using ELISA and transmission electron microscopy. Plant Soil 145:261–273CrossRefGoogle Scholar
  255. Russelle MP, Birr AS (2004) Large-scale assessment of symbiotic dinitrogen fixation by crops: soybean and alfalfa in the Mississippi river basin. Agron J 96:1754–1760CrossRefGoogle Scholar
  256. Saah JR, Bishop PE (1999) Diazotrophs that group within the Pseudomonadaceae based on phylogenetic evidence. In: Pedrosa FO, Hungria M et al (eds) 12th international congress on nitrogen fixation, book of abstracts. Universidade Federal do Paraná, Paraná, p 117Google Scholar
  257. Sabry SRS, Saleh SA, Batchelor CA et al (1997) Endophytic establishment of Azorhizobium caulinodans in wheat. Proc R Soc Lond B Biol Sci 264:341–346CrossRefGoogle Scholar
  258. Sadowsky MJ, Graham PH (1998a) Soil biology of the Gluconoacetobacter diazotrophicus obiaceae. In: Spaink HP, Kondorosi A, Hooykaas PJJ (eds) The Gluconoacetobacter diazotrophicus obiaceae. Kluwer, Dordrecht, pp 155–172Google Scholar
  259. Sadowsky MJ, Graham PH (1998b) Soil biology of the Rhizobiaceae. In: Spaink HP, Kondorosi A, Hooykaas PJJ (eds) The Rhizobiaceae—molecular biology of model plant/associated bacteria. Kluwer, Dordrecht, pp 155–172Google Scholar
  260. Sanchez PA (2002) Soil fertility and hunger in Africa. Science 295:2019–2020PubMedCrossRefGoogle Scholar
  261. Sánchez PA, Vehara G (1980) Management considerations for acid soils with high phosphorus fixation capacity In: Khasawneh FE, Sample EC, Kamprath EJ (eds) The role of phosphorus in agriculture. American Society of Agronomy, Madison, pp 471–514Google Scholar
  262. Sañudo-Wilhelmy SA, Kustka AB, Gobler CJ, Hutchins DA, Yang M, Lwiza K, Burns J, Capone DG, Raven JA, Carpenter EJ (2001) Phosphorus limitation of nitrogen fixation by Trichodesmium in the central Atlantic Ocean. Nature 411:66–69PubMedCrossRefGoogle Scholar
  263. Segonds C, Heulin T, Marty N, Chabanon G (1999) Differentiation of Burkholderia species by PCR-restriction fragment length polymorphism analysis of the 16S rRNA gene and application to cystic fibrosis isolates. J Clin Microbiol 37:2201–2208PubMedGoogle Scholar
  264. Segovia L, Piñero D, Palacios R, Martínez-Romero E (1991) Genetic structure of a soil population of nonsymbiotic R. leguminosarum. Appl Environ Microbiol 57:426–433PubMedGoogle Scholar
  265. Sessitsch A, Howieson JG, Perret X, Antoun H, Martínez-Romero E (2002) Advances in Rhizobium research. Crit Rev Plant Sci 21:323–378CrossRefGoogle Scholar
  266. Sevilla M, De Oliveira A, Baldani I, Kennedy C (1998) Contributions of the bacterial endophyte Acetobacter diazotrophicus to sugarcane nutrition: a preliminary study. Symbiosis 25:181–191Google Scholar
  267. Sevilla M, Lee S, Meletzus D, Burris R, Kennedy C (1999) Genetic analysis and effect on plant growth of the nitrogen-fixing sugarcane endophyte Acetobacter diazotrophicus. In: Pedrosa FO, Hungria M et al (eds) 12th international congress on nitrogen fixation, book of abstracts. Universidade Federal do Paraná, Paraná, p 12Google Scholar
  268. Shen J, Dean DR, Newton WE (1997) Evidence for multiple substrate-reduction sites and distinct inhibitor-binding sites from an altered Azotobacter vinelandii nitrogenase MoFe protein. Biochemistry 36:4884–4894PubMedCrossRefGoogle Scholar
  269. Siemann S, Schneider K, Oley M, Mueller A (2003) Characterization of a tungsten-substituted nitrogenase isolated from Rhodobacter capsulatus. Biochemistry 42:3846–3857PubMedCrossRefGoogle Scholar
  270. Singleton PW, Tavares JW (1986) Inoculation response of legumes in relation to the number and effectiveness of indigenous Rhizobium population. Appl Environ Microbiol 51:1013–1018PubMedGoogle Scholar
  271. Singleton P, Keyser H, Sande E (2002) Development and evaluation of liquid inoculants. In: Herridge D (ed) Inoculants and nitrogen fixation of legumes in Vietnam, vol 109, ACIAR Proceedings. ACIAR, Brisbane, pp 52–66Google Scholar
  272. Smil V (1999) Nitrogen in crop production. Global Biogeochem Cycles 13:647–662CrossRefGoogle Scholar
  273. Smith RS (1992) Legume inoculant formulation and application. Can J Microbiol 38:485–492CrossRefGoogle Scholar
  274. Smith DR, Doucette-Stamm LA, Deloughery C, Lee H et al (1997) Complete genome sequence of Methanobacterium thermoautotrophicum deltaH: functional analysis and comparative genomics. J Bacteriol 179:7135–7155PubMedGoogle Scholar
  275. Socolow RH (1999) Nitrogen management and the future of food: lessons from the management of energy and carbon. Proc Natl Acad Sci USA 96:6001–6008PubMedCrossRefGoogle Scholar
  276. Sprent JI, Parsons R (2000) Nitrogen fixation in legume and non-legume trees. Field Crops Res 65:183–196CrossRefGoogle Scholar
  277. Staal M, Meysman FJR, Stal JJ (2003) Temperature excludes N2-fixing heterocystous cyanobacteria in the tropical oceans. Nature 425:504–507PubMedCrossRefGoogle Scholar
  278. Stephens JHG, Rask RH (2000) Inoculant production and formulation. Field Crops Res 65:249–258CrossRefGoogle Scholar
  279. Stevens CJ, Dise NB, Mountford JO, Gowing DJ (2004) Impact of nitrogen deposition on the species richness of grasslands. Science 303:1876–1879PubMedCrossRefGoogle Scholar
  280. Steward GF, Jenkins BD, Ward BB, Zehr JP (2004) Development and testing of a DNA macroarray to assess nitrogenase (nifH) gene diversity. Appl Environ Microbiol 70:1455–1465PubMedCrossRefGoogle Scholar
  281. Stewart WDP (1974) Blue-green algae. In: Quispel A (ed) The biology of nitrogen fixation research. North-Holland, Amsterdam, pp 202–237Google Scholar
  282. Suh M, Pulakat L, Gavini N (2003) Functional expression of a fusion-dimeric MoFe protein of nitrogenase in Azotobacter vinelandii. J Biol Chem 278:5353–5360PubMedCrossRefGoogle Scholar
  283. Sullivan JT, Ronson CW (1998) Evolution of rhizobia by acquisition of a 500 kb symbiosis island that integrates into a phe-tRNA gene. Proc Natl Acad Sci USA 95:5145–5149PubMedCrossRefGoogle Scholar
  284. Sullivan JT, Patrick HN, Lowther WL, Scott DB, Ronson CW (1995) Nodulating strains of R. loti arise through chromosomal symbiotic gene transfer in the environment. Proc Natl Acad Sci USA 92:8985–8989PubMedCrossRefGoogle Scholar
  285. Sullivan JT, Eardly BD, van Berkum P, Ronson CW (1996) Four unnamed species of nonsymbiotic rhizobia isolated from the rhizosphere of Lotus corniculatus. Appl Environ Microbiol 62:2818–2825PubMedGoogle Scholar
  286. Sullivan JT, Trzebiatowski JR, Cruickshank RW, Gouzy J, Brown SD, Elliot RM, Fleetwood DJ, McCallum NG, Rossbach U, Stuart GS, Weaver JE, Webby RJ, de Bruijn FJ, Ronson CW (2002) Comparative sequence analysis of the symbiosis island of Mesorhizobium loti strain R7A. J Bacteriol 184:3086–3095PubMedCrossRefGoogle Scholar
  287. Sumner ME (1990) Crop responses to Azospirillum inoculation. Adv Soil Sci 12:54–123Google Scholar
  288. Suominen L, Jussila MM, Makelainen K, Romantschuk M, Lindstrom K (2000) Evaluation of the Galega-Gluconoacetobacter diazotrophicus-Rhizobium galegae system for the bioremediation of oil-contaminated soil. Environ Pollut 107:239–244PubMedCrossRefGoogle Scholar
  289. Sy A, Giraud E, Jourand P, Garcia N, Willems A, de Lajudie P, Prin Y, Neyra M, Gillis M, Boivin-Masson C, Dreyfus B (2001) Methylotrophic Methylobacterium bacteria nodulate and fix nitrogen in symbiosis with legumes. J Bacteriol 183:214–220PubMedCrossRefGoogle Scholar
  290. Tan Z, Hurek T, Reinhold-Hurek B (2003) Effect of N-fertilization, plant genotype and environmental conditions on nifH gene pools in roots of rice. Environ Microbiol 5:1009–1015PubMedCrossRefGoogle Scholar
  291. Thiel T, Lyons EM, Erker JC, Ernst A (1995) A second nitrogenase in vegetative cells of a heterocyst-forming cyanobacterium. Proc Natl Acad Sci USA 92:9358–9362PubMedCrossRefGoogle Scholar
  292. Thies JE, Singleton PW, Bohlool BB (1991) Influence of the size of indigenous rhizobial population on establishment and symbiotic performance of introduced rhizobia on field-grown legumes. Appl Environ Microbiol 57:19–28PubMedGoogle Scholar
  293. Thies JE, Woomer PL, Singleton PW (1995) Enrichment of Bradyrhizobium spp. populations in soil due to cropping of the homologous host plant. Soil Biol Biochem 27:633–636CrossRefGoogle Scholar
  294. Ueda T, Suga Y, Yahiro N, Matsuguchi T (1995) Remarkable N2-fixing bacterial diversity detected in rice roots by molecular evolutionary analysis of nifH gene sequences. J Bacteriol 177:1414–1417PubMedGoogle Scholar
  295. Unkovich MJ, Pate JS (2000) An appraisal of recent field measurements of symbiotic N inferior 2 fixation by annual legumes. Field Crops Res 65:211–228CrossRefGoogle Scholar
  296. Unkovich M, Herridge D, Peoples M, Cadish G, Boddey B, Giller K, Alves BA, Chalk P (2008) Measuring plant-associated nitrogen fixation in agricultural systems. ACIAR, Camberra, p 258Google Scholar
  297. Urquiaga S, Botteon PBL, Boddey RM (1989) Selection of sugar cane cultivars for associated biological nitrogen fixation using 15N-labelled soil. In: Skinner FA et al (eds) Nitrogen fixation with non-legumes. Kluwer, Dordrecht, pp 311–319CrossRefGoogle Scholar
  298. Urquiaga S, Cruz KHS, Boddey RM (1992) Contribution of nitrogen fixation to sugar cane: nitrogen-15 and nitrogen-balance estimates. Soil Sci Soc Am J 56:105–114CrossRefGoogle Scholar
  299. Vaisanen OM, Weber A, Bennasar A, Rainey FA, Busse HJ, Salkinoja-Salonen MS (1998) Microbial communities of printing paper machines. J Appl Microbiol 84:1069–1084PubMedCrossRefGoogle Scholar
  300. Valderrama B, Davalos A, Girard L, Morett E, Mora J (1996) Regulatory proteins and cis-acting elements involved in the transcriptional control of Gluconoacetobacter diazotrophicus obium etli reiterated nifH genes. J Bacteriol 178:3119–3126PubMedGoogle Scholar
  301. Valverde A, Velázquez E, Fernández-Santos F, Vizcaíno N, Rivas R, Mateos PF, Martínez-Molina E, Igual JM, Willems A. (2005) Phyllobacterium trifolii sp. nov., nodulating Trifolium and Lupinus in Spanish soils. Int J Syst Evol Microbiol 55:1985–1989PubMedCrossRefGoogle Scholar
  302. Van Breemen N, Boyer E, Goodale C, Jaworski N, Paustian K, Seitzinger S, Lajtha K, Mayer B, van Dam D, Howarth R, Nadelhoffer K, Eve M, Billen G (2002) Where did all the nitrogen go? Fate of nitrogen inputs to large watersheds in the northeastern U.S.A. Biogeochemistry 57:267–293CrossRefGoogle Scholar
  303. van Kessel C, Hartley C (2000) Agricultural management of grain legumes: has it led to an increase in nitrogen fixation? Field Crops Res 65:165–181CrossRefGoogle Scholar
  304. Van Trân V, Mavingui P, Berge O, Balandreau J, Heulin T (1994) Promotion de croissance du riz inoculé par une bactérie fixatrice d’azote, Burkholderia vietnamiensis, isolée d’un sol sulfaté acide du Vietnam. Agronomie 14:697–707CrossRefGoogle Scholar
  305. Van Trân V, Berge O, Balandreau J, Ngô Kê S, Heulin T (1996) Isolement et activité nitrogénasique de Burkholderia vietnamiensis, bacterie fixatrice d’azote associée au riz (Oryza sativa L.) cultivé sur un sol sulfaté du Vietnam. Agronomie 16:479–491CrossRefGoogle Scholar
  306. Vance CP (1998) Legume symbiotic nitrogen fixation: agronomic aspects. In: Spaink HP, Kondorosi A, Hooykaas PJJ (eds) The Gluconoacetobacter diazotrophicus obiaceae. Kluwer, Dordrecht, pp 509–530Google Scholar
  307. Ventura TS, Bravo M, Daez C, Ventura V, Watanabe I, App A (1986) Effects of N-fertilizers, straw, and dry fallow on the nitrogen balance of a flooded soil planted with rice. Plant Soil 93:405–411CrossRefGoogle Scholar
  308. Vermeiren H, Hai W-L, Vanderleyden J (1998) Colonisation and nifH expression on rice roots by Alcaligenes faecalis A15. In: Malik KA, Mirza MS, Ladha JK (eds) Nitrogen fixation with non-legumes. Kluwer, Dordrecht, pp 167–177CrossRefGoogle Scholar
  309. Vermeiren H, Willems A, Schoofs G, de Mot R, Keijers V, Hai W, Vanderleyden J (1999) The rice inoculant strain Alcaligenes faecalis A15 is a nitrogen-fixing Pseudomonas stutzeri. Syst Appl Microbiol 22:215–224PubMedCrossRefGoogle Scholar
  310. Vlassak KM, Vanderleyden J (1997) Factors influencing nodule occupancy by inoculant rhizobia. Crit Rev Plant Sci 16:163–229Google Scholar
  311. Voelcker JA (1896) “Nitragin” or the use of “pure cultivation” bacteria for leguminous crops. J R Agron Soc 3rd Ser 7:253–264Google Scholar
  312. Von der Weid I, Duarte GF, van Elsas JD, Seldin L (2002) Paenibacillus brasilensis sp. nov., a novel nitrogen-fixing species isolated from the maize rhizosphere in Brazil. Int J Syst Evol Microbiol 52:2147–2153PubMedCrossRefGoogle Scholar
  313. Voss M, Croot P, Lochte K, Mills M, Peeken I (2004) Patterns of nitrogen fixation along 10°N in the tropical Atlantic. Geophys Res Lett 31Google Scholar
  314. Walcott JJ, Chauviroj M, Chinchest A, Choticheuy P, Ferraris R, Norman BW (1977) Long term productivity of intensive rice cropping systems on the central plains of Thailand. Exp Agric 13:305–316CrossRefGoogle Scholar
  315. Wang E, Martínez-Romero E (2000) Sesbania herbacea-Rhizobium huautlense nodulation in flooded soils and comparative characterization of S. herbacea-nodulating rhizobia in different environments. Microb Ecol 40:25–32PubMedGoogle Scholar
  316. Watanabe I, Yoneyama T, Padre B, Ladha JK (1987) Difference in natural abundance of 15 N in several rice (Oryza sativa L.) varieties: applications for evaluating N2 fixation. Soil Sci Plant Nutr 33:407–415CrossRefGoogle Scholar
  317. Waters JK, Hughes BL 2nd, Purcell LC, Gerhardt KO, Mawhinney TP, Emerich DW (1998) Alanine, not ammonia, is excreted from N2-fixing soybean nodule bacteroids. Proc Natl Acad Sci USA 95:12038–12042PubMedCrossRefGoogle Scholar
  318. Weaver RW, Frederick LR (1974) Effect of inoculum rate on competitive nodulation of Glycine max (L.) Merrill II Field studies. Agron J 58:233–236CrossRefGoogle Scholar
  319. Webster G, Jain V, Davey MR, Gough C, Vasse J, Denarie J, Cocking EC (1998) The flavonoid naringenin stimulates the intercellular colonization of wheat roots by Azorhizobium caulinodans. Plant Cell Environ 21:373–383CrossRefGoogle Scholar
  320. Welbaum GE, Meinzer FC, Grayson RL, Thornham KT (1992) Evidence for and consequences of a barrier to solute diffusion between the apoplast and vascular bundles in sugarcane stalk tissue Australian. J Plant Physiol 19:611–623Google Scholar
  321. Wolk CP (1996) Heterocyst formation. Annu Rev Genet 30:59–78PubMedCrossRefGoogle Scholar
  322. Wouters J, Raven JA, Minnhagen S, Janson S (2009) The luggage hypothesis: comparisons of two phototrophic hosts with nitrogen-fixing cyanobacteria and implications for analogous life strategies for kleptoplastids/secondary symbiosis in dinoflagellates. Symbiosis 49:61–70CrossRefGoogle Scholar
  323. Yamada Y, Hoshino K, Ishikawa T (1997) The phylogeny of acetic acid bacteria based on the partial sequences of 16S ribosomal RNA: the elevation of the subgenus Gluconoacetobacter to the generic level. Biosci Biotechnol Biochem 61:1244–1251PubMedCrossRefGoogle Scholar
  324. Yanni YG, Rizk RY, Corich V, Squartini A et al (1997) Natural endophytic association between R. leguminosarum bv. trifolii and rice roots and assessment of its potential to promote rice growth. Plant Soil 194:99–114CrossRefGoogle Scholar
  325. Yoneyama T, Muraoka T, Kim TH, Dacanay EV, Nakanishi Y (1997) The natural 15N abundance of sugarcane and neighbouring plants in Brazil, the Philippines and Miyako (Japan). Plant Soil 189:239–244CrossRefGoogle Scholar
  326. Yoshino J, Sugiyama Y, Sakuda S, Kodama T, Nagasawa H, Ishii M, Igarashi Y (2001) Chemical structure of a novel aminophospholipid from Hydrogenobacter thermophilus strain TK-6. J Bacteriol 183:6302–6304PubMedCrossRefGoogle Scholar
  327. Young JPW (1992) Phylogenetic classification of nitrogen-fixing organisms. In: Stacey G, Burris RH, Evans HJ (eds) Biological nitrogen fixation. Chapman and Hall, New York, pp 43–86Google Scholar
  328. Youzhong L, Parsons R, Day DA, Bergersen FJ (2002) Reassessment of major products of N2 fixation by bacteroids from soybean root nodules. Microbiology 148:1959–1966Google Scholar
  329. Zahran HH (1999) Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol Mol Biol Rev 63:968–989PubMedGoogle Scholar
  330. Zanetti S, Hartwig UA, Luescher A, Hebeisen T, Frehner M, Fischer BU, Hendrey GR, Blum H, Noesberger J (1996) Stimulation of symbiotic N2 fixation in Trifolium repens L. under elevated atmospheric pCO2 in a grassland ecosystem. Plant Physiol 112:575–583PubMedGoogle Scholar
  331. Zehr JP, Mellon M, Braun S, Litaker W, Steppe T, Paerl HW (1995) Diversity of heterotrophic nitrogen fixation genes in a marine cyanobacterial mat. Appl Environ Microbiol 61:2527–2532PubMedGoogle Scholar
  332. Zehr JP, Jenkins BD, Short SM, Steward GF (2003) Nitrogenase gene diversity and microbial community structure: a cross-system comparison. Environ Microbiol 5:539–554PubMedCrossRefGoogle Scholar
  333. Zehr JP, Montoya JP, Jenkins BD, Hewson I, Mondragon E, Short CM, Church MJ, Hansen A, Karl DM (2007) Experiments linking nitrogenase gene expression to nitrogen fixation in the North Pacific subtropical gyre. Limnol Oceanogr 52:169–183CrossRefGoogle Scholar
  334. Zhang Y, Pohlmann EL, Ludden PW, Roberts GP (2003) Regulation of nitrogen fixation by multiple PII homologs in the photosynthetic bacterium Rhodospirillum rubrum. Symbiosis 35:85–100Google Scholar
  335. Zhang L, Hurek T, Reinhold-Hurek B (2007) A nifH-based oligonucleotide microarray for functional diagnostics of nitrogen-fixing microorganisms. Microb Ecol 53:456–470PubMedCrossRefGoogle Scholar
  336. Zurdo-Piñeiro JL, Rivas R, Trujillo ME, Vizcaíno N, Carrasco JA, Chamber M, Palomares A, Mateos PF, Martínez-Molina E, Velázquez E (2007) Ochrobactrum cytisi sp. nov., isolated from nodules of Cytisus scoparius in Spain. Int J Syst Evol Microbiol 57:784–788PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ernesto Ormeño-Orrillo
    • 1
  • Mariangela Hungria
    • 2
  • Esperanza Martinez-Romero
    • 1
    Email author
  1. 1.Genomic Sciences Center, UNAMCuernavacaMexico
  2. 2.Embrapa SojaLondrinaBrazil

Personalised recommendations