Skip to main content

Oceans, Chemical Evolution of

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Encyclopedia of Astrobiology

Definition

The chemical composition of the ocean corresponds to the composition of its major and minor dissolved ions (Na+, Mg2+, Ca2+, K+, Sr2+, Cl, SO4 2− HCO3−, Br, CO23−, B3+,4+, F). The major ion content is considered relatively constant and defined as salinity, which is a measure of the total dissolved salts in seawater. The chemical evolution of the terrestrial oceans is controlled by complex interactions between the Earth system reservoirs, namely the geosphere (mantle and crusts), the biosphere, the atmosphere, and the hydrosphere itself.

Overview

Ocean Chemistry: The Result of Complex Interactions in the Earth System

Table 1resume the average chemical composition of the Earth’s modern oceans with the concentrations of the main ions dissolved in the seawater (in mol/g) and corresponding to an average salinity of 35 g/L (or ca 35,000 ppm, being the density of water equal to 1.025 kg/L). Salinity in the present oceans is relatively constant, between 31 and 38 g/L, yet...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Albarede F, Thibon F, Blichert-Toft J, Tsikos H (2020) Chemical archeoceanography. Chem Geol 548:119625

    Article  ADS  Google Scholar 

  • Appel PWU, Rollinson HR, Touret JLR (2001) Remnants of an early Archaean (>3.75 Ga) seafloor, hydrothermal system in the Isua Greenstone Belt. Precambrian Res 112:27–49

    Article  ADS  Google Scholar 

  • Bickle MJ (1986) Implications of melting for stabilisation of the litosphere and heat loss in the Archaean. Earth Planet Sci Lett 80:314–324

    Article  ADS  Google Scholar 

  • Bonifacie M, Jendrzejewski N, Agrinier P, Humler E, Coleman M, Javoy M (2008) The chlorine isotope composition of Earth’s mantle. Science 319:1518–1520

    Article  ADS  Google Scholar 

  • Broecker WS (1991) The great ocean conveyor. Oceanography 4. https://doi.org/10.5670/oceanog.1991.07

  • Burgess R, Goldsmith SL, Sumino H, Gilmour JD, Marty B, Pujol M, Konhauser KO (2020) Archean to Paleoproterozoic seawater halogen ratios recorded by fluid inclusions in chert and hydrothermal quartz. Am Mineral 105:1317–1325

    Article  ADS  Google Scholar 

  • Cairns-Smith AG (1978) Precambrian solution photochemistry, inverse segregation, and banded iron formations. Nature 276:807–808

    Article  ADS  Google Scholar 

  • Catling DC (2015) Oxygenation of the Earth’s atmosphere. In: Gargaud M et al (eds) Encyclopedia of astrobiology. Springer, Berlin/Heidelberg. https://doi.org/10.1007/978-3-662-44185-5_1141

    Chapter  Google Scholar 

  • Channer DMD, de Ronde CEJ, Spooner ETC (1997) The Cl-Br-I composition of 3.23 Ga modified seawater: implications for the geological evolution of ocean halide chemistry. Earth Planet Sci Lett 150:325–335

    Article  ADS  Google Scholar 

  • Clay PL, Burgess R, Busemann H, Ruzié-Hamilton L, Joachim B, Day JMD, Ballentine CJ (2017) Halogens in chondritic meteorites and terrestrial accretion. Nature 551:614–618

    Article  ADS  Google Scholar 

  • Crowe SA, Paris G, Katsev S, Jones C, Kim S-T, Zerkle AL, Nomosatryo S, Fowle DA, Adkins JF, Sessions AL, Farquhar J, Canfield DE (2014) Sulfate was a trace constituent of Archean seawater. Science 346:735–739

    Article  ADS  Google Scholar 

  • de Ronde CEJ, Channer DMD, Faure K, Bray CJ, Spooner TC (1997) Fluid chemistry of Archean seafloor hydrothermal vents: implications for the composition of circa 3.2 Ga seawater. Geochim Cosmochim Acta 61:4025–4042

    Article  ADS  Google Scholar 

  • DOE (1994) Handbook of methods for the analysis of the various parameters of the carbon dioxide system in sea water. Version 2. In: Dickson AG, Goyet C (eds) ORNL/CDIAC-74

    Google Scholar 

  • Eggenkamp HGM (2014) The geochemistry of stable chlorine and bromine isotopes. Springer, Heidelberg/New York/Dordrecht/London, 172pp

    Google Scholar 

  • Foriel J, Philippot P, Rey P, Somogyi A, Banks D, Menez B (2004) Biological control of Cl/Br and low sulfate concentration in a 3.5-Gyr-old seawater from North Pole, Western Australia. Earth Planet Sci Lett 228:451–463

    Article  ADS  Google Scholar 

  • Holland HD (1984) The chemical evolution of the atmosphere and oceans. Princeton University Press, Princeton, 582 pp

    Google Scholar 

  • Holland HD (2003) The geologic history of seawater. In: Elderfield H (ed) Treatise on geochemistry, vol 6. Elsevier, Amsterdam, pp 583–625

    Google Scholar 

  • Kempe S, Degens ET (1985) An early soda ocean? Chem Geol 53:95–108

    Article  ADS  Google Scholar 

  • Knauth LP (2005) Temperature and salinity history of the Precambrian ocean: implications for the course of microbial evolution. Palaeogeogr Palaeoclimatol Palaeoecol 219:53–69

    Article  Google Scholar 

  • Maisonneuve J (1982) The composition of the Precambrian ocean waters. Sediment Geol 31:1–11

    Article  ADS  Google Scholar 

  • Martin H, Claeys P, Gargaud M, Pinti D, Selsis F (2006) 6. Environmental context. Earth Moon Planet 98:205–245

    Article  ADS  Google Scholar 

  • Marty B, Avice G, Bekaert DV, Broadley MW (2018) Salinity of the Archaean oceans from analysis of fluid inclusions in quartz. C R Geosci 350:154–163

    Article  Google Scholar 

  • McCulloch MT, Bennett VC (1994) Progressive growth of the Earth’s continental crust and depleted mantle: geochemical constraints. Geochim Cosmochim Acta 58:4717–4738

    Article  ADS  Google Scholar 

  • Millero FJ (2003) Physicochemical controls on seawater. In: Elderfield H (ed) Treatise on geochemistry, vol 6. Elsevier, Amsterdam, pp 1–21

    Google Scholar 

  • Orberger B, Rouchon V, Westall F, de Vries ST, Pinti DL, Wagner C, Wirth R, Hashizume K (2006) Microfacies and origin of some Archaean cherts (Pilbara, Australia). In: Reimold WU, Gibson RL (eds) Processes on the early Earth. Geological Society of America, New York

    Google Scholar 

  • Pinti DL (2005) The formation and evolution of the oceans. In: Gargaud M, Barbier B, Martin H, Reisse J (eds) Lectures in astrobiology. Springer, Berlin, pp 83–107

    Chapter  Google Scholar 

  • Pinti DL, Shouakar-Stash O, Castro MC, Lopéz-Hernández A, Hall CM, Shibata T, Ramírez-Montes M (2020) The chlorine and bromine isotopic composition of the mantle. Geochim Cosmochim Acta 276:14–30

    Article  ADS  Google Scholar 

  • Schilling JG, Unni CK, Bender ML (1978) Origin of chlorine and bromine in the oceans. Nature 273:631–636

    Article  ADS  Google Scholar 

  • Sharp ZD, Barnes JD, Brearley AJ, Chaussidon M, Fischer TP, Kamenetsky VS (2007) Chlorine isotope homogeneity of the mantle, crust and carbonaceous chondrites. Nature 446:1062–1065

    Article  ADS  Google Scholar 

  • Sleep NH, Zahnle K, Neuhoff PS (2001) Initiation of clement surface conditions on the earliest Earth. Proc Natl Acad Sci U S A 98:3666–3672

    Article  ADS  Google Scholar 

  • Staudigel H (2003) 3.15 – Hydrothermal alteration processes in the oceanic crust. In: Holland HA, Turekian KK (eds) Treatise on geochemistry. Pergamon, Oxford, UK, pp 511–535

    Chapter  Google Scholar 

  • Thibon F, Blichert-Toft J, Tsikos H, Foden J, Albalat E, Albarede F (2019) Dynamics of oceanic iron prior to the Great Oxygenation Event. Earth Planet Sci Lett 506:360–370

    Article  ADS  Google Scholar 

  • Thomazo C, Pinti DL, Busigny V, Ader M, Hashizume K, Philippot P (2009) Biological activity and the Earth’s surface evolution: insights from carbon, sulfur, nitrogen and iron stable isotopes in the rock record. C R Palevol 8:665–678

    Google Scholar 

  • Urey HC (1952) On the early chemical history of the Earth and the origin of life. Proc Natl Acad Sci U S A 38:351–363. https://doi.org/10.1073/pnas.38.4.351

    Article  ADS  Google Scholar 

  • Veizer J and Compston W (1976) 87Sr/86Sr in Precambrian carbonates as an index of crustal evolution. Geochim Cosmochim Acta 40:905–914

    Google Scholar 

  • Veizer J, Hoefs J, Ridler RH, Jensen LS, Lowe DR (1989) Geochemistry of Precambrian carbonates: I. Archean hydrothermal systems. Geochim Cosmochim Acta 53:845–857

    Article  ADS  Google Scholar 

  • Weiershauser L, Spooner E (2005) Seafloor hydrothermal fluids, Ben Nevis area, Abitibi greenstone belt: implications for Archean (∼2.7 Ga) seawater properties. Precambrian Res 138:89–123

    Article  ADS  Google Scholar 

Further Readings

  • Holland HD (1984) The chemical evolution of the atmosphere and oceans. Princeton University Press, Princeton, 582 pp

    Google Scholar 

  • Pinti DL (2005) The formation and evolution of the oceans. In: Gargaud M, Barbier B, Martin H, Reisse J (eds) Lectures in astrobiology. Springer, Berlin, pp 83–107

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele L. Pinti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer-Verlag GmbH Germany, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Pinti, D.L. (2022). Oceans, Chemical Evolution of. In: Gargaud, M., et al. Encyclopedia of Astrobiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27833-4_1041-5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27833-4_1041-5

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27833-4

  • Online ISBN: 978-3-642-27833-4

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Oceans, Chemical Evolution of
    Published:
    03 August 2022

    DOI: https://doi.org/10.1007/978-3-642-27833-4_1041-5

  2. Original

    Ocean, Chemical Evolution of
    Published:
    05 May 2015

    DOI: https://doi.org/10.1007/978-3-642-27833-4_1041-4