Skip to main content

Ocean, Chemical Evolution of

Encyclopedia of Astrobiology
  • 286 Accesses

Synonyms

Ocean salinity

Definition

The chemical composition of the ocean corresponds to the relative composition of major ions (Na+, Mg2+, Ca2+, K+, Sr2+, Cl, \( {\mathrm{SO}}_4^{2-} \), HCO3 , Br, \( {\mathrm{CO}}_3^{2-} \), B(OH)3, B(OH)4 , F) of seawater. The major ion content is considered relatively constant and defined as salinity, which is a measure of the total dissolved salts in seawater (Table 1). The chemical evolution of the ocean is the evolution of its chemistry (major ions, pH, and oxygen content) and the processes that controlled the composition of this terrestrial reservoir.

Table 1 Standard mean seawater chemical composition (Salinity = 35 g/L) reported as mol kg H2O−1 (DOE 1994)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References and Further Reading

  • Appel PWU, Rollinson HR, Touret JLR (2001) Remnants of an early Archaean (>3.75 Ga) seafloor, hydrothermal system in the Isua Greenstone Belt. Precambrian Res 112:27–49

    Article  Google Scholar 

  • Bickle MJ (1986) Implications of melting for stabilisation of the litosphere and heat loss in the Archaean. Earth Planet Sci Lett 80:314–324

    Article  ADS  Google Scholar 

  • Cairns-Smith AG (1978) Precambrian solution photochemistry, inverse segregation, and banded iron formations. Nature 276:807–808

    Article  ADS  Google Scholar 

  • Channer DMD, de Ronde CEJ, Spooner ETC (1997) The Cl-Br-I composition of 3.23 Ga modified seawater: implications for the geological evolution of ocean halide chemistry. Earth Planet Sci Lett 150:325–335

    Article  ADS  Google Scholar 

  • de Ronde CEJ, Channer DMD, Faure K, Bray CJ, Spooner TC (1997) Fluid chemistry of Archean seafloor hydrothermal vents: implications for the composition of circa 3.2 Ga seawater. Geochim Cosmochim Acta 61:4025–4042

    Article  ADS  Google Scholar 

  • DOE (1994) Handbook of methods for the analysis of the various parameters of the carbon dioxide system in sea water. Version 2. In: Dickson AG, Goyet C (eds) ORNL/CDIAC-74

    Google Scholar 

  • Farquhar J, Bao H, Thiemens M (2000) Atmospheric influence of Earth’s earliest sulfur cycle. Science 289:756–758

    Article  ADS  Google Scholar 

  • Foriel J, Philippot P, Rey P, Somogyi A, Banks D, Menez B (2004) Biological control of Cl/Br and low sulfate concentration in a 3.5-Gyr-old seawater from North Pole, Western Australia. Earth Planet Sci Lett 228:451–463

    Article  ADS  Google Scholar 

  • Hardie LA (1996) Secular variation in seawater chemistry: an explanation for the coupled variation in the mineralogies of marine limestones and potash evaporates over the past 600 My. Geology 24:279–283

    Article  ADS  Google Scholar 

  • Holland HD (1972) The geologic history of seawater: an attempt to solve the problem. Geochim Cosmochim Acta 36:637–651

    Article  ADS  Google Scholar 

  • Holland HD (1984) The chemical evolution of the atmosphere and oceans. Princeton University Press, Princeton, 582 pp

    Google Scholar 

  • Holland HD (2003) The geologic history of seawater. In: Elderfield H (ed) Treatise on geochemistry, vol 6. Elsevier, Amsterdam, pp 583–625

    Google Scholar 

  • Holland HD (2006) The oxygenation of the atmosphere and ocean. Trans R Soc B 361:903–915

    Article  Google Scholar 

  • Holland HD, Zimmermann H (2000) The dolomite problem revisited. Int Geol Rev 42:481–490

    Article  Google Scholar 

  • Holser WT (1963) Chemistry of brine inclusions in Permian salt from Hutchinson, Kansas. In: Bersticker AC (ed) Symposium on salt (first). Northern Ohio Geological Society, Cleveland, pp 86–95

    Google Scholar 

  • Horita J, Zimmermann H, Holland HD (2002) The chemical evolution of seawater during the Phanerozoic: implications from the record of marine evaporites. Geochim Cosmochim Acta 66:3733–3756

    Article  ADS  Google Scholar 

  • Kempe S, Degens ET (1985) An early soda ocean? Chem Geol 53:95–108

    Article  Google Scholar 

  • Knauth LP (2005) Temperature and salinity history of the Precambrian ocean: implications for the course of microbial evolution. Palaeogeogr Palaeoclimatol Palaeoecol 219:53–69

    Article  Google Scholar 

  • Martin H, Claeys P, Gargaud M, Pinti D, Selsis F (2006) 6. Environmental context. Earth Moon Planet 98:205–245

    Article  ADS  Google Scholar 

  • McCulloch MT, Bennett VC (1994) Progressive growth of the Earth’s continental crust and depleted mantle: geochemical constraints. Geochim Cosmochim Acta 58:4717–4738

    Article  ADS  Google Scholar 

  • Millero FJ (2003) Physicochemical controls on seawater. In: Elderfield H (ed) Treatise on geochemistry, vol 6. Elsevier, Amsterdam, pp 1–21

    Chapter  Google Scholar 

  • Pinti DL (2005) The formation and evolution of the oceans. In: Gargaud M, Barbier B, Martin H, Reisse J (eds) Lectures in astrobiology. Springer, Berlin, pp 83–107

    Chapter  Google Scholar 

  • Sleep NH, Zahnle K, Neuhoff PS (2001) Initiation of clement surface conditions on the earliest Earth. Proc Natl Acad Sci U S A 98:3666–3672

    Article  ADS  Google Scholar 

  • Spencer RJ, Hardie LA (1990) Control of seawater composition by mixing of river waters and mid-ocean ridge hydrothermal brines. In: Spencer RJ, Chou I-M (eds) Fluid-mineral interactions: a tribute to H.P. Eugster. Geochemical Society, San Antonio, pp 409–419, Special publication 2

    Google Scholar 

  • Veizer J, Hoefs J, Ridler RH, Jensen LS, Lowe DR (1989) Geochemistry of Precambrian carbonates: I. Archean hydrothermal systems. Geochim Cosmochim Acta 53:845–857

    Article  ADS  Google Scholar 

  • Veizer J, Ala D, Azmy K, Bruckschen P, Buhl D, Bruhn F, Carden GAF, Diener A, Ebneth S, Goddéris Y, Jasper T, Korte C, Pawellek F, Podlaha OG, Strauss H (1999) 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chem Geol 161:59–88

    Article  Google Scholar 

  • Weiershauser L, Spooner E (2005) Seafloor hydrothermal fluids, Ben Nevis area, Abitibi greenstone belt: implications for Archean (∼2.7 Ga) seawater properties. Precambrian Res 138:89–123

    Article  Google Scholar 

  • Wilde SA, Valley JW, Peck WH, Graham CM (2001) Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature 409:175–178

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele L. Pinti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Pinti, D.L. (2014). Ocean, Chemical Evolution of. In: Amils, R., et al. Encyclopedia of Astrobiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27833-4_1041-4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27833-4_1041-4

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-27833-4

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Oceans, Chemical Evolution of
    Published:
    03 August 2022

    DOI: https://doi.org/10.1007/978-3-642-27833-4_1041-5

  2. Original

    Ocean, Chemical Evolution of
    Published:
    05 May 2015

    DOI: https://doi.org/10.1007/978-3-642-27833-4_1041-4