Skip to main content

Variational Problems in Molecular Simulation

  • Reference work entry
  • First Online:
Encyclopedia of Applied and Computational Mathematics
  • 101 Accesses

Short Definition

At the basis of all computations in atomic and molecular physics and chemistry lies the fact that all their possible states are given as critical points of some functional. The ground states are minimizers. So, most computations in this area are based on the analytical study of the corresponding variational problems, and their numerical discretization.

General Presentation

When trying to understand the properties of a (nonrelativistic) molecule with M atomic nuclei and N electrons, the basic tool is the so-called Schrödinger Hamiltonian [29]

$$\displaystyle\begin{array}{rcl} H :& =& -\sum _{i=1}^{N}\frac{1} {2}\varDelta _{x_{i}} -\sum _{i=1}^{N}\sum _{ k=1}^{M} \frac{z_{k}} {\vert x_{i} -\bar{x}_{k}\vert } {}\\ & & +\sum _{1\leq i<j\leq N} \frac{1} {\vert x_{i} - x_{j}\vert }\,, {}\\ \end{array}$$

where for \(i = 1,\ldots ,M\), the i-th nucleus is supposed to be at \(\bar{x}_{i} \in \mathbb{R}^{3}\) and have charge z i . In writing the above Hamiltonian, we have...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 999.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Born, M., Oppenheimer, R.: Zur Quantentheorie der Molekeln, Ann. Phys. (Leipzig) 84, 457–484 (1927)

    Article  MATH  Google Scholar 

  2. Cancès, E., Defranceschi, M., Kutzelnigg, W., Le Bris, C., Maday, Y.: Computational quantum chemistry: a primer. In: Ciarlet, Ph., Le Bris, C. (eds.) Handbook of Numerical Analysis, vol. X. North-Holland, Amsterdam (2003)

    Google Scholar 

  3. Anantharaman, A., Cancs, E.: Existence of minimizers for Kohn–Sham models in quantum chemistry. Ann. IHP (C) Nonlinear Anal. 26(6), 2425–2455 (2009)

    Google Scholar 

  4. Benguria, R., Lieb, E.H.: The most negative ion in the Thomas-Fermi-von Weizsäcker theory of atoms and molecules. J. Phys. B 18, 1045–1059 (1985)

    Article  MathSciNet  Google Scholar 

  5. Daubechies, I., Lieb, E.H.: Relativistic molecules with Coulomb interaction. In: Knowles, I.W., Lewis, R.T. (eds.) Differential Equations (Birmingham, Ala., 1983). North-Holland Mathematical Studies, vol. 92, pp. 143–148. North-Holland, Amsterdam (1984)

    Google Scholar 

  6. Epstein, S.T.: The Variation Method in Quantum Chemistry. Academic, New York (1974)

    Google Scholar 

  7. Nesbet, R.K.: Variational Principles and Methods in Theoretical Physics and Chemistry. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  8. Esteban, M.J., Lewin, M., Séré, E.: Variational methods in relativistic quantum mechanics. Bull. Am. Math. Soc. 45, 535–593 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fefferman, C.: The N-body problem in quantum mechanics. Commun. Pure Appl. Math. 39, S67–S109 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fermi, E.: Un metodo statistico per la determinazione di alcune proprieta del atomo. Rend. Accad. Nat. Lincei 6, 602–607 (1927)

    Google Scholar 

  11. Fock, V.: Näherungsmethode zur Lösung des quantenmechanischen Mehrkörper problem. Zeits. für Physik 61, 126–148 (1930)

    Article  MATH  Google Scholar 

  12. Hartree, D.: The wave mechanics of an atom with a non-coulomb central field. Part I. theory and methods. Proc. Comb. Phil. Soc. 24, 89–132 (1928)

    Article  MATH  Google Scholar 

  13. Hohenberg, P., Kohn, W.: Inhomogeneous electron gas. Phys. Rev. B 136, 864–871 (1964)

    Article  MathSciNet  Google Scholar 

  14. Hunziker, W., Sigal, I.M.: The quantum N-body problem. J. Math. Phys. 41, 3348–3509 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kohn, W.: Nobel Lecture: Electronic structure of matter-wave functions and density functionals. Rev. Mod. Phys. 71, 1253–1266 (1999)

    Article  Google Scholar 

  16. Kohn, W., Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. A 140, 1133–1138 (1965)

    Article  MathSciNet  Google Scholar 

  17. Le Bris, C.: Some results on the Thomas-Fermi-Dirac-von Weizsäcker model. Diff. Int. Eq. 6, 337–353 (1993)

    MATH  Google Scholar 

  18. Lewin, M.: A mountain pass for reacting molecules. Ann. Henri Poincar 5(3), 477–521 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lieb, E.H.: Thomas–Fermi and related theories of atoms and molecules. Rev. Mod. Phys. 53, 603–642 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lieb, E.H., Thirring, W.E.: Universal nature of van der Waals forces for Coulomb systems. Phys. Rev. A 34, 40–46 (1986)

    Article  Google Scholar 

  21. Lieb, E.H., Simon, B.: The Thomas-Fermi theory of atoms, molecules and solids. Adv. Math. 23, 22–116 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lieb, E.H., Simon, B.: The Hartree–Fock theory for Coulomb systems. Commun. Math. Phys. 53(3), 185–194 (1977)

    Article  MathSciNet  Google Scholar 

  23. Lieb, E.H., Yau, H-T.: The stability and instability of relativistic matter. Commun. Math. Phys. 118(2), 177–213 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lions, P.-L.: The concentration-compactness principle in the calculus of variations. The locally compact case. II. Ann. Inst. H. Poincar Anal. Non Linaire 1(4), 223–283 (1984)

    MATH  Google Scholar 

  25. Lions, P.-L.: The concentration-compactness principle in the calculus of variations. The locally compact case. I. Ann. Inst. H. Poincar Anal. Non Linaire 1(2), 109–145 (1984)

    MATH  Google Scholar 

  26. Lions, P.-L.: Solutions of Hartree-Fock equations for Coulomb systems. Commun. Math. Phys. 109(1), 33–97 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  27. Löwdin, P.O.: Quantum theory of many-particle systems. III. Extension of the Hartree-Fock scheme to include degenerate systems and correlation effects. Phys. Rev. 97, 1509–1520 (1955)

    MATH  Google Scholar 

  28. Morgan III, J.D., Simon, B.: Behavior of molecular potential energy curves for large nuclear separations. Int. J. Quantum Chem. 17(6), 1143–1166 (1980)

    Article  Google Scholar 

  29. Schrödinger, E.: Quantisierung als Eigenwertproblem. Annalen der Physik 385(13), 437–490 (1926)

    Article  MATH  Google Scholar 

  30. Simon, B.: Schrödinger operators in the twentieth century. J. Math. Phys. 41(6), 3523–3555 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  31. Slater, J.C.: A note on Hartree’s method. Phys. Rev. 35, 210–211 (1930)

    Article  Google Scholar 

  32. Thomas, L.H.: The calculation of atomic fields. Proc. Camb. Philos. Soc. 23, 542–548 (1927)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Esteban, M. (2015). Variational Problems in Molecular Simulation. In: Engquist, B. (eds) Encyclopedia of Applied and Computational Mathematics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70529-1_244

Download citation

Publish with us

Policies and ethics