Skip to main content

Identification and Determination of Characteristics of Endophytes from Rice Plants

  • Reference work entry
  • First Online:
Endophytes and Secondary Metabolites

Part of the book series: Reference Series in Phytochemistry ((RSP))

  • 894 Accesses

Abstract

Rice is the staple food of more than half of the world’s population. It is considered the oldest and the most important crop throughout the world, especially in Asia. Considerable agricultural areas are under cultivation of rice in the world. Studies on beneficial microbial interactions that lead to plant health and development are significantly increasing. Local and systemic colonizing microorganisms of plant tissues that have beneficial effects, such as increasing access to food or suppressing pathogens, are parts of endophytic populations. In this article, we tried to highlight the recent studies about identification and determination of characteristics of endophytes from various rice cultivars in the world. Numerous evidence show that rice plant harbors beneficial bacterial endophytic communities. These endophytes have many capabilities including plant growth-promoting activity, plant protection against biotic and abiotic stresses, and synergistic interactions with root-colonizing bacteria, which, in turn, are all in the direction of sustainable agriculture for sustainable agriculture development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Dias ACF, Costa FEC, Andreote FD, Lacava PT, Teixeira MA et al (2009) Isolation of micropropagated strawberry endophytic bacteria and assessment of their potential for plant growth promotion. World J Microbiol Biotechnol 25:189–195

    Article  CAS  Google Scholar 

  2. Lucero M, Barrow JR, Osuna P, Reyes I (2008) A cryptic microbial community persists within micropropagated Bouteloua eriopoda (Torr.) Torr. cultures. Plant Sci 174:570–575

    Article  CAS  Google Scholar 

  3. Baker KF, Smith SH (1966) Dynamics of seed transmission of plant pathogens. Annu Rev Phytopathol 14:311–334

    Article  Google Scholar 

  4. Mundt JO, Hinkle NF (1976) Bacteria within ovules and seeds. Appl Environ Microbiol 32:694–698

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Mano H, Tanaka F, Watanabe A, Kaga H, Okunishi S et al (2006) Culturable surface and endophytic bacterial flora of the maturing seeds of rice plants (Oryza sativa) cultivated in a paddy field. Microbes Environ 21:86–100

    Article  Google Scholar 

  6. Kaga H, Mano H, Tanaka F, Watanabe A, Kaneko S et al (2009) Rice seeds as sources of endophytic bacteria. Microbes Environ 24:154–162

    Article  Google Scholar 

  7. Mano H, Morisaki H (2008) Endophytic bacteria in the rice plant. Microbes Environ 23:109–117

    Article  Google Scholar 

  8. Puente ME, Li CY, Bashan Y (2009) Endophytic bacteria in cacti seeds can improve the development of cactus seedlings. Environ Exp Bot 66:402–408

    Article  CAS  Google Scholar 

  9. Johnston-Monje D, Raizada MN (2011) Conservation and diversity of seed associated endophyes in Zea across boundaries of evolution, ethnography and ecology. PLoS One 6(6):e20396. https://doi.org/10.1371/journal.pone.0020396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hardoim PR, Hardoim CCP, van Overbeek LS, van Elsas JD (2012) Dynamics of seed-borne rice endophytes on early plant growth stages. PLoS One 7(2):e30438. https://doi.org/10.1371/journal.pone.0030438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hallmann J, Berg G (2006) Spectrum and population dynamics of bacterial root endophytes. In: Schulz BJE, Boyle CJC, Sieber TN, eds Microbial root endophytes Dordrecht: Springer pp 15–31

    Chapter  Google Scholar 

  12. Reiter B, Pfeifer U, Schwab H, Sessitsch A (2002) Response of endophytic bacterial communities in potato plants to infection with Erwinia carotovora subsp. atroseptica. Appl Environ Microbiol 68:2261–2268

    Article  CAS  Google Scholar 

  13. Hardoim PR, van Overbeek LS, van Elsas JD (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16:463–471

    Article  CAS  Google Scholar 

  14. Compant S, Clement C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678

    Article  CAS  Google Scholar 

  15. Raaijmakers JM, Paulitz TC, Steinberg C, Alabouvette C, Moënne Y (2009) The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil 321:341–361

    Article  CAS  Google Scholar 

  16. Hardoim PR, Sessitsch A, Reinhold-Hurek B, van Overbeek LS, van Elsas JD (2011) Assessment of rice root endophytes and their potential for plant growth promotion. In: Hardoim PR (ed) Bacterial endophytes of rice – their diversity, characteristics and perspectives, University of Groningen, Groningen, pp 77–100

    Google Scholar 

  17. Collavino MM, Sansberro PA, Mroginski LA, Aguilar OM (2010) Comparison of in vitro solubilization activity of diverse phosphate-solubilizing bacteria native to acid soil and their ability to promote Phaseolus vulgaris growth. Biol Fertil Soils 46:727–738

    Article  Google Scholar 

  18. Loaces I, Ferrando L, Scavino AF (2011) Dynamics, diversity and function of endophytic siderophore-producing bacteria in rice. Microb Ecol 61:606–618

    Article  Google Scholar 

  19. Ramette A, Frapolli M, Sauxb MF et al (2011) Pseudomonas protegens sp. nov., widespread plant protecting bacteria producing the biocontrol compounds 2,4 diacetylphloroglucinol and pyoluteorin. Syst Appl Microbiol 34:180–188

    Article  CAS  Google Scholar 

  20. Jung HM, Ten LN, Kim KH et al (2009) Dyella ginsengisoli sp nov., isolated from soil of a ginseng field in South Korea. Int J Syst Evol Microbiol 59:460–465

    Article  CAS  Google Scholar 

  21. Anandham R, Gandhi PI, Madhaiyan M, Sa T (2008) Potential plant growth promoting traits and bioacidulation of rock phosphate by thiosulfate oxidizing bacteria isolated from crop plants. J Basic Microbiol 48:439–447

    Article  CAS  Google Scholar 

  22. Pikovskaya RI (1948) Mobilization of phosphorous in soil in connection with vital activity of some microbial species. Mikrobiologya 17:362–370

    CAS  Google Scholar 

  23. Mehta S, Nautiyal SC (2001) An efficient method for qualitative screening of phosphate-solubilizing bacteria. Curr Microbiol 43:51–56

    Article  CAS  Google Scholar 

  24. Döbereiner J, Baldani VLD, Baldani JI (1995) Como isolar e identificar bacteri as diazotroficas de plantas. EMBRAPA-SPI, Brasilia, 60 pp

    Google Scholar 

  25. Oliveira NA, Oliveira LA, Andrade JS, Chagas Júnior AF (2006) Atividade enzimática de isolados de rizóbia nativos da amazônia central crescendo em diferentes níveis de acidez. Ciênc Tecnol Aliment 26:204–210

    Article  Google Scholar 

  26. Vermelho AB, Pereira AF, Coelho RRR, Souto-Padrón T (2006) Práticas de Microbiologia. Guanabara Koogan, Rio de Janeiro

    Google Scholar 

  27. Cattelan A, Hartel P, Furhmann F (1999) Screening for plant growth promoting rhizobacteria to promote early soybean growth. Soil Sci Soc Am J 63:1670–1680

    Article  CAS  Google Scholar 

  28. Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56

    Article  CAS  Google Scholar 

  29. Alexander D, Zuberer D (1991) Use of chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria. Biol Fertil Soils 12(1):39–45

    Article  CAS  Google Scholar 

  30. Milagres A, Machuca A, Napoleao D (1999) Detection of siderophore production from several fungi and bacteria by a modification of chrome azurol S (CAS) agar plate assay. J Microbiol Methods 37:1–6

    Article  CAS  Google Scholar 

  31. Hungria M, Vargas MAT, Suhet AR, Peres JRR (1994) Fixacão biológica do nitrogênio na soja. In: Araújo RS, Hungria M (eds) Microorganismos de importância agrícola. EMBRAPA-SPI, Brasília, pp 9–89

    Google Scholar 

  32. Bragaa LF, Oliveiraa FA, Coutoa EAP, Santosa KFEN, Ferreirab EPB, Martin-Didonet CCG (2018) Polyphasic characterization of bacteria obtained from upland rice cultivated in Cerrado soil. Braz J Microbiol 4(9):20–28

    Article  Google Scholar 

  33. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL X Windows interface: exible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  CAS  Google Scholar 

  34. Beneduzi A, Peres D, Vargas LK, Bodanese-Zanettini MH, Passaglia LMP (2008) Evaluation of genetic diversity and plant growth promoting activities of nitrogen-fixing bacilli isolated from rice fields in South Brazil. Appl Soil Ecol 39:311–320

    Article  Google Scholar 

  35. Walitang DI, Kim K, Madhaiyan M, Kim YK, Kang Y, Sa T (2017) Characterizing endophytic competence and plant growth promotion of bacterial endophytes inhabiting the seed endosphere of Rice. BMC Microbiol 17:209. https://doi.org/10.1186/s12866-017-1117-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Desai S, Reddy MS, Kloepper JW (2002) Comprehensive testing of biocontrol agents. In: Gnanamanickam SS (ed) Biological control of crop diseases. Marcel Dekker, Basel, pp 387–420

    Google Scholar 

  37. Ji SH, Gururani MA, Chun SCH (2014) Isolation and characterization of plant growth promoting endophytic diazotrophic bacteria from Korean rice cultivars. Microbiol Res 169:83–98

    Article  CAS  Google Scholar 

  38. Carrim AJI, Barbosa EC, Vieira JDG (2006) Enzymatic activity of endophytic bacterial isolates of Jacaranda decurrens Cham. (Carobinha-do-campo). Braz Arch Biol Technol 49:353–359

    Article  Google Scholar 

  39. Müller DB, Vogel C, Bai Y, Vorholt JA (2016) The plant microbiota: systems-level insights and perspectives. Annu Rev Genet 50:211–234

    Article  Google Scholar 

  40. Duca D, Lorv J, Patten CL, Rose D, Glick BR (2014) Indole-3-acetic acid in plant-microbe interactions. Antonie Van Leeuwenhoek 106(1):85–125

    Article  CAS  Google Scholar 

  41. Sukumar P, Legué V, Vayssières A, Martin F, Tuskan GA, Kalluri UC (2013) Involvement of auxin pathways in modulating root architecture during beneficial plant-microorganism interactions. Plant Cell Environ 36:909–919

    Article  CAS  Google Scholar 

  42. Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31:425–448

    Article  CAS  Google Scholar 

  43. Chakraborty U, Chakraborty BN, Chakraborty AP (2010) Influence of Serratia marcescens TRS-1 on growth promotion and induction of resistance in Camellia sinensis against Fomes lamaoensis. J Plant Interact 5:261–272

    Article  CAS  Google Scholar 

  44. Neupane S, Hoqberq N, Alstrom S et al (2012) Complete genome sequence of the rapeseed plant-growth promoting Serratia plymuthica strain AS9. Stand Genomic Sci 6:54–62

    Article  CAS  Google Scholar 

  45. Devi U, Khatri I, Kuamr N, Kumar L, Sharma D, Subramanian S, Saini AK (2013) Draft genome sequence of a plant growth-promoting rhizobacterium, Serratia fonticola strain AU-P3(3). Genome Announc 1:e00946-13

    Article  Google Scholar 

  46. Sessitsch A, Hardoin P, Döring J et al (2012) Functional characteristics of an endophyte community colonizing rice roots as revealed by metagenomic analysis. Mol Plant-Microbe Interact 25:28–36

    Article  CAS  Google Scholar 

  47. Prakamhang J, Minamisawa K, Teamtaisong K, Boonkerd N, Teaumroong N (2009) The communities of endophytic diazotrophic bacteria in cultivated rice (Oryza sativa L.). Appl Soil Ecol 42:141–149

    Article  Google Scholar 

  48. Spaepen S, Vanderleyden J (2011) Auxin and plant-microbe interactions. Cold Spring Harb Perspect Biol 3(4):a001438

    Article  Google Scholar 

  49. Kim YC, Leveau J, Gardener BBM, Pierson EA, Pierson LS, Ryu C-M (2011) The multifactorial basis for plant health promotion by plant-associated bacteria. Appl Environ Microbiol 77(5):1548–1555

    Article  CAS  Google Scholar 

  50. Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255(2): 571–586

    Article  CAS  Google Scholar 

  51. Moronta-Barrios F, Gionechetti F, Pallavicini A, Marys E, Venturi V (2018) Bacterial microbiota of rice roots: 16S-based taxonomic profiling of endophytic and rhizospheric diversity, endophytes isolation and simplified endophytic community. Microorganisms 6:14. https://doi.org/10.3390/microorganisms6010014

    Article  CAS  PubMed Central  Google Scholar 

  52. Jha CK, Aeron A, Patel BV, Maheshwari DK, Saraf M (2011) Enterobacter: role in plant growth promotion. In: Maheshwari DK (ed) Bacteria in Agrobiology: plant growth responses. Springer, Heidelberg, pp 159–182

    Chapter  Google Scholar 

  53. Nakkeeran S, Fernando WGD, Siddiqui ZA (2005) Plant growth promoting rhizobacteria formulations and its scope in commercialization for the management of pests and diseases. In: Siddiqui ZA (ed) PGPR: biocontrol and biofertilization. Springer, Dordrecht, pp 257–296

    Google Scholar 

  54. Castro-Sowinski S, Herschkovitz Y, Okon Y, Jurkevitch E (2007) Effects of inoculation with plant growth-promoting rhizobacteria on resident rhizosphere microorganisms. FEMS Microbiol Lett 276:1–11

    Article  CAS  Google Scholar 

  55. Berg G, Zachow C, Cardinale M, Müller H (2011) Ecology and human pathogenicity of plant-associated bacteria. In: Ehlers RU (ed) Regulation of biological control agents. Springer, Dordrecht, pp 175–189. https://doi.org/10.1007/978-90-481-3664-3_8

    Chapter  Google Scholar 

  56. Busby PE, Soman C, Waqner MR et al (2017) Research priorities for harnessing plant microbiomes in sustainable agriculture. PLoS Biol 15:e20011793

    Article  Google Scholar 

  57. Bai Y, Muller DB, Srinivas G et al (2015) Functional overlap of the Arabidopsis leaf and root microbiota. Nature 528:364–369

    Article  CAS  Google Scholar 

  58. Niu B, Paulson JN, Zheng X, Kolter R (2017) Simplified and representative bacterial community of maize roots. Proc Natl Acad Sci U S A 114:E2450–E2459

    Article  CAS  Google Scholar 

  59. Yousei H, Hassanzadeh N, Behboudi K, Beiki Firouzjahi F (2018) Identification and determination of characteristics of endophytes from rice plants and their role in biocontrol of bacterial blight caused by Xanthomonas oryzae pv. oryzae. Hellenic Plant Prot J 11:19–33. https://doi.org/10.2478/hppj-2018-0003

    Article  Google Scholar 

  60. Xuan LNT, Dung TV, Hung NN, Diep CN (2016) Isolation and characterization of rice endophytic of bacteria in acid sulphate soil of Mekong delta, Vietnam. J Pharm Sci Exp Pharmacol 5(8):301–317

    CAS  Google Scholar 

  61. Ashfaq M, Haider MS, Ali A, Ali M, Saleem I, Mubashar U (2016) Morphological characterization of endophytic bacterial strains isolated from discolored rice grain. Pak J Phytopathol 28(01):01–08

    Google Scholar 

  62. Nhu VTP, Diep CN (2014) Isolation, characterization and phylogenetic analysis of endophytic bacteria in rice plant cultivated on soil of Phu Yen province, Vietnam. Am J Life Sci 2(3):117–127

    Article  Google Scholar 

  63. Mano H, Tanaka F, Nakamura CH, Kaga H, Morisaki H (2007) Culturable endophytic bacterial flora of the maturing leaves and roots of rice plants (Oryza sativa) cultivated in a paddy field. Microbes Environ 22(2):175–185

    Article  Google Scholar 

  64. Raweekul W, Wuttitummaporn S, Sodchuen W, Kittiwongwattana C (2016) Plant growth promotion by endophytic bacteria isolated from rice (Oryza sativa). Thammasat Int J Sci Technol 21(1):6–17. https://doi.org/10.14456/tijsat.2016.2

    Article  Google Scholar 

  65. Moronta-Barrios F, Gionechetti F, Pallavicini A, Marys E, Venturi V (2018) Rice bacterial endophytes; 16S-based taxonomic profiling, isolation and simplified endophytic community from two Venezuelan cultivars. Microorganisms 6(1):1–20. https://doi.org/10.3390/microorganisms6010014

    Article  Google Scholar 

  66. Bao Z, Okubo T, Kubota K, Kasahara Y, Tsurumaru H, Anda M, Ikeda S, Minamisawa K (2014) Metaproteomic identification of diazotrophic methanotrophs and their localization in root tissues of field-grown rice plants. Appl Environ Microbiol 80(16):5043–5052

    Article  Google Scholar 

  67. Elbeltagy A, Nishioka K, Suzuki H, Sato T, Sato YI, Morisaki H, Mitsui H, Minamisawa K (2000) Isolation and characterization of endophytic bacteria from wild and traditionally cultivated rice varieties. J Soil Sci Plant Nutr 46(3):617–629. https://doi.org/10.1080/00380768.2000.10409127

    Article  Google Scholar 

  68. Elbeltagy A, Nishioka K, Sato T, Suzuki H, Ye B, Hamada T, Isawa T, Mitsui H, Minamisawa K (2001) Endophytic colonization and in planta nitrogen fixation by a Herbaspirillum sp. isolated from wild rice species. Appl Environ Microbiol 67(11):5285–5293. https://doi.org/10.1128/AEM.67.11.5285-5293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Engelhard M, Hurek T, Reinhold-Hurek B (2000) Preferential occurrence of diazotrophic endophytes, Azoarcus spp., in wild rice species and land races of Oryza sativa in comparison with modern races. Environ Microbiol 2:131–141

    Article  CAS  Google Scholar 

  70. Mbai FN, Magiri EN, Matiru VN, Ng’ang’a J, Nyambati VCS (2013) Isolation and characterisation of bacterial root endophytes with potential to enhance plant growth from Kenyan basmati rice. Am Int J Contemp Res 3(4):25–40

    Google Scholar 

  71. Okunishi S, Sako K, Mano H, Imamura A, Morisaki H (2005) Bacterial flora of endophytes in the maturing seed of cultivated Rice (Oryza sativa). Microbes Environ 20(3):168–177

    Article  Google Scholar 

  72. Singh RK, Mishra RPN, Jaiswal HK, Kumar V, Pandey SP, Rao SB, Annapurna K (2006) Isolation and identification of natural endophytic rhizobia from rice (Oryza sativa L.) through rDNA PCR-RFLP and sequence analysis. Curr Microbiol 52:117–122

    Article  CAS  Google Scholar 

  73. Yanni YG, Rizk RY, Corich V et al (1997) Natural endophytic association between Rhizobium leguminosarum bv. trifolii and rice roots and assessment of its potential to promote rice growth. Plant Soil 194:99–114

    Article  CAS  Google Scholar 

  74. Gyaneshwar P, James EK, Mathan N, Reddy PM, Reinhold Hurek B, Ladha J (2001) Endophytic colonization of rice by a diazotrophic strain of Serratia marcescens. J Bacteriol 183:2634–2645

    Article  CAS  Google Scholar 

  75. Harunor Rashid Khan M, Mohiuddin M, Rahman M (2008) Enumeration, isolation and identification of nitrogen-fixing bacterial strains at seedling stage in rhizosphere of rice grown in non-calcareous grey flood plain soil of Bangladesh. J Fac Environ Sci Technol Okayama Univ 13(1):97–101

    Google Scholar 

  76. Hardoim PR (2011) Bacterial endophytes of rice-their diversity, characteristics and perspectives. University Library Groningen, Groningen

    Google Scholar 

  77. Vandenkoornhuyse P, Quaiser A, Duhamel M, Le Van A, Dufresne A (2015) The importance of the microbiome of the plant holobiont. New Phytol 206:1196–1206. pmid: 25655016

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Hasanzadeh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Yousefi, H., Hasanzadeh, N. (2019). Identification and Determination of Characteristics of Endophytes from Rice Plants. In: Jha, S. (eds) Endophytes and Secondary Metabolites. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-90484-9_27

Download citation

Publish with us

Policies and ethics