Skip to main content

Aerobic Degradation of Gasoline Ether Oxygenates

  • Living reference work entry
  • First Online:
Aerobic Utilization of Hydrocarbons, Oils and Lipids

Part of the book series: Handbook of Hydrocarbon and Lipid Microbiology ((HHLM))

  • 302 Accesses

Abstract

Ether oxygenates including methyl tertiary butyl ether (MTBE), ethyl tertiary butyl ether (ETBE), tertiary amyl ether (TAME), and diisopropyl ether (DIPE) have been, and continue to be, widely used components of gasoline. The ether bonds and branched hydrocarbon structures of these compounds make these challenging molecules for microbial biodegradation processes. The collective research over the last 20 years suggests that aerobic biodegradation of MTBE and other ether oxygenates by axenic cultures occurs through three physiologically distinct processes that can be differentiated by the fate of the tertiary alcohol intermediates such as tertiary butyl alcohol (TBA) and tertiary amyl alcohol (TAA) that are common to all of these processes. These biodegradation processes represent a continuum and, in order of increasing complexity, include co-oxidation, cometabolism, and growth-supporting metabolism. This review summarizes the main microorganisms, enzymes, and pathways involved in each of these processes and highlights research areas where there is both clear consensus and areas where results are more ambiguous and likely require further investigation. Where relevant, this review also aims to illustrate how basic microbiological research has implications for the remediation of ether oxygenate contamination by aerobic treatment processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Alexander M (1973) Nonbiodegradable and other recalcitrant molecules. Biotechnol Bioeng 15:611–647

    Article  CAS  Google Scholar 

  • Aslett D, Haas J, Hyman M (2011) Identification of tertiary butyl alcohol (TBA)-utilizing organisms in BioGAC reactors using 13C-DNA stable isotope probing. Biodegradation 22:961–972

    Article  CAS  PubMed  Google Scholar 

  • Auffret M, Labbé D, Thouand G, Greer CW, Fayolle-Guichard F (2009) Degradation of mixtures of hydrocarbons, gasoline and diesel oil additives by Rhodococcus aetherivorans and Rhodococcus wratislaviensis. Appl Environ Microbiol 75:7774–7782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bastida F, Rosell M, Franchini AG, Seifert J, Finsterbusch S, Jehmlich N, Jechalke S, von Bergen M, Richnow HH (2010) Elucidating MTBE degradation in a mixed consortium using a multidisciplinary approach. FEMS Microbiol Ecol 73:370–384

    CAS  PubMed  Google Scholar 

  • Belhaj A, Desnoues N, Elmerich C (2002) Alkane biodegradation in Pseudomonas aeruginosa strains isolated from a polluted zone: Identification of alkB and alkB-related genes. Res Microbiol 153:339–344

    Article  CAS  PubMed  Google Scholar 

  • Bennett K, Sadler NC, Wright AT, Yeager C, Hyman MR (2016) Activity-based protein profiling of ammonia monooxygenase in Nitrosomonas europaea. Appl Environ Microbiol 82:2270–2279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Béguin P, Chauvaux S, Miras I, François A, Fayolle F, Monot F (2003) Genes involved in the degradation of ether fuels by bacteria of the Mycobacterium/Rhodococcus group. Oil Gas Sci Technol 58:489–495

    Article  Google Scholar 

  • Bravo AL, Sigala JC, Borgne SL, Morales M (2015) Expression of an alkane hydroxylase (alkb) gene and methyl-tert-butyl ether co-metabolic oxidation in Pseudomonas citronellolis. Biotechnol Lett 37:807–814

    Article  CAS  PubMed  Google Scholar 

  • Chauvaux S, Chevalier F, Le Dantec C, Fayolle F, Miras I, Kunst F, Béguin P (2001) Cloning of a genetically unstable cytochrome P-450 gene cluster involved in degradation of the pollutant ethyl tert-butyl ether by Rhodococcus ruber. J Bacteriol 183:6551–6557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Curry S, Ciuffetti L, Hyman M (1996) Inhibition of growth of a Graphium sp. on gaseous n-alkanes by gaseous n-alkynes and n-alkenes. Appl Environ Microbiol 62:2198–2200

    CAS  PubMed  PubMed Central  Google Scholar 

  • de Klerk H, van der Linden AS (1974) Bacterial degradation of cyclohexane. Participation of a co-oxidation reaction. Antonie Van Leeuwenhoek 40:7–15

    Article  PubMed  Google Scholar 

  • Deeb RA, Hu H-Y, Hanson JR, Scow KM, Alvarez-Cohen L (2001) Substrate interactions in BTEX and MTBE mixtures by an MTBE-degrading isolate. Environ Sci Technol 35:312–317

    Article  CAS  PubMed  Google Scholar 

  • Degnan PH, Taga ME, Goodman AL (2014) Vitamin B12 as a modulator of gut microbial ecology. Cell Metab 20:769–778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ensign SA (1996) Aliphatic and chlorinated alkenes and epoxides as inducers of alkene monooxygenase and epoxidase activities in Xanthobacter strain Py2. Appl Environ Microbiol 62:61–66

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fan F, Germann MW, Gadda G (2006) Mechanistic studies of choline oxidase with betaine aldehyde and its isosteric analogue, 3-3dimethylbutyraldehyde. Biochemistry 45:1979–1986

    Article  CAS  PubMed  Google Scholar 

  • Fayolle F, Hernandez G, Roux FL, Vandecasteele J-P (1998) Isolation of two aerobic bacterial strains that degrade efficiently ethyl t-butyl ether (ETBE). Biotechnol Lett 20:283–286

    Article  CAS  Google Scholar 

  • Ferreira NL, Maciel H, Mathis H, Monot F, Fayolle-Guichard F, Greer CW (2006a) Isolation and characterization of a new Mycobacterium austroafricanum strain, IFP 2015, growing on MTBE. Appl Microbiol Biotechnol 70:358–365

    Article  CAS  Google Scholar 

  • Ferreira NL, Labbé D, Monot F, Fayolle-Guichard F, Greer CW (2006b) Genes involved in the methyl tert-butyl ether (MTBE) metabolic pathway of Mycobacterium austroafricanum IFP 2012. Microbiology 152:1361–1374

    Article  CAS  Google Scholar 

  • Ferreira NL, Mathis H, Labbé D, Monot F, Greer CW, Fayolle-Guichard F (2007) N-alkane assimilation and tert-butyl alcohol (TBA) oxidation capacity in Mycobacterium austroafricanum strains. Appl Microbiol Biotechnol 75:909–919

    Article  CAS  Google Scholar 

  • Fournier D, Hawari J, Halasz A, Streger SH, McClay KR, Masuda H, Hatzinger PB (2009) Aerobic biodegradation of N-nitrosodimethylamine by the propanotroph Rhodococcus ruber ENV425. Appl Environ Microbiol 75:5088–5093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • François A, Mathis H, Godefroy D, Piveteau P, Fayolle F, Monot F (2002) Biodegradation of methyl tert-butyl ether and other fuel oxygenates by a new strain, Mycobacterium austroafricanum IFP2012. Appl Environ Microbiol 68:2754–2762

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • François A, Garnier L, Mathis H, Fayolle F, Monot F (2003) Roles of tert-butyl formate, tert-butyl alcohol and acetone in the regulation of methyl tert-butyl ether degradation by Mycobacterium austroafricanum IFP 2012. Appl Microbiol Biotechnol 62:256–262

    Article  PubMed  CAS  Google Scholar 

  • Garnier PM, Auria R, Augur C, Revah S (1999) Cometabolic biodegradation of methyl t-butyl ether by Pseudomonas aeruginosa grown on pentane. Appl Microbiol Biotechnol 51:498–503

    Article  CAS  PubMed  Google Scholar 

  • Garnier PM, Auria R, Augur C, Revah S (2000) Cometabolic biodegradation of methyl tert-butyl ether by a soil consortium: effect of components present in gasoline. J Gen Appl Microbiol 46:79–84

    Article  CAS  PubMed  Google Scholar 

  • Gedalanga PB, Pornwongthing P, Mora R, Chiang S-Y D, Baldwin B, Ogles D, Mahendra S (2014) Identification of biomarker genes to predict biodegradation of 1,4-dioxane. Appl Environ Microbiol 80:3209–3218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goodfellow M, Jones AL, Maldonado LA, Salanitro J (2004) Rhodococcus aetherivorans sp. nov., A new species that contains methyl t-butyl ether-degrading actinomycetes. Syst Appl Microbiol 27:61–65

    Article  CAS  PubMed  Google Scholar 

  • Gray JR, Lacrampe-Coulome G, Gandhi D, Scow KM, Wilson RD, Mackay DM, Lollar BS (2002) Carbon and hydrogen isotopic fractionation during biodegradation of methyl tert-butyl ether. Environ Sci Technol 36:1931–1938

    Article  CAS  PubMed  Google Scholar 

  • Hanson JR, Ackerman CE, Scow KM (1999) Biodegradation of methyl tert-butyl ether by a bacterial pure culture. Appl Environ Microbiol 65:4788–4792

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hardison LK, Curry SS, Ciuffetti LM, Hyman MR (1997) Metabolism of diethyl ether and cometabolism of methyl tert-butyl ether by a filamentous fungus, a Graphium sp. Appl Environ Microbiol 63:3059–3067

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hatzinger PB, McClay K, Vainberg S, Tugusheva M, Condee CW, Steffan RJ (2001) Biodegradation of methyl tert-butyl ether by a pure bacterial culture. Appl Environ Microbiol 67:5601–5607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hernandez G, Francois A, Piveteau P, Fayolle F, Monot F (2007) Method for treating bacterial effluent containing at least Gordonia terrae CIP-I-2194 ether. US Patent 7,166,457 B1

    Google Scholar 

  • Hernandez-Perez G, Fayolle F, Vandecasteele J-P (2001) Biodegradation of ethyl t-butyl ether (ETBE), methyl t-butyl ether (MTBE) and t-amyl ether (TAME) by Gordonia terrae. Appl Microbiol Biotechnol 55:117–121

    Article  CAS  PubMed  Google Scholar 

  • Hofrichter M, Ullrich R (2014) Oxidations catalyzed by fungal peroxygenases. Curr Opin Chem Biol 19:116–125

    Article  CAS  PubMed  Google Scholar 

  • House AJ, Hyman MR (2010) Effects of gasoline components on MTBE and TBA cometabolism by Mycobacterium austroafricanum JOB5. Biodegradation 21:525–541

    Article  PubMed  CAS  Google Scholar 

  • Hristova KR, Schmidt R, Chakicherla AY, Legler TC, Wu J, Chain PS, Scow KM, Kane SR (2007) Comparative transcriptome analysis of Methylibium petroleiphilum PM1 exposed to the fuel oxygenates methyl tert-butyl ether and ethanol. Appl Environ Microbiol 73:7347–7357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hunkeler D, Butler BJ, Aravena R, Barker JF (2001) Monitoring biodegradation of methyl tert-butyl ether (MTBE) using compound specific isotope analysis. Environ Sci Technol 35:676–681

    Article  CAS  PubMed  Google Scholar 

  • Inoue D, Tsunoda T, Sawada K, Yamamoto N, Saito Y, Sei K, Ike M (2016) 1,4-dioxane degradation potential of members of the genera Pseudonocardia and Rhodococcus. Biodegradation 27:277–286

    Article  CAS  PubMed  Google Scholar 

  • ITRC (2005) Overview of groundwater remediation technologies for MTBE and TBA. MTBE-1. Interstate Technology and Regulatory Council, MTBE and Other Fuel oxygenates Team. Available at http://www.itrcweb.org

  • Jechalke S, Rosell M, Martínez-Lavanchy PM, Pérez-Leiva P, Rohwerder T, Vogt C, Richnow HH (2011) Linking low-level stable isotope fractionation to expression of the cytochrome P450 monooxygenase-encoding ethB gene for elucidation of methyl tert-butyl ether biodegradation in aerated treatment pond systems. Appl Environ Microbiol 77:1086–1096

    Article  CAS  PubMed  Google Scholar 

  • Johnson EL, Hyman MR (2006) Propane and n-butane oxidation by Pseudomonas putida GPo1. Appl Environ Microbiol 72:950–952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson EL, Smith CA, O’Reilly KT, Hyman MR (2004) Induction of methyl tertiary butyl ether (MTBE)-oxidizing activity in Mycobacterium vaccae JOB5 by MTBE. Appl Environ Microbiol 70:1023–1030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joshi G, Schmidt R, Scow KM, Denison MS, Hristova KR (2015) gen mdpC plays a regulatory role in the methyl tert-butyl ether degradation pathway of Methylibium petroleiphilum strain PM1. FEMS Microbiol Lett 362:1–7

    Article  Google Scholar 

  • Joshi G, Schmidt R, Km S, Denison MS, Hristova KR (2016) Effect of benzene and ethylbenzene on the transcription of methyl tert-butyl ether degradation genes of Methylibium petroleiphilum PM1. Microbiology 162:1563–1571

    Article  CAS  PubMed  Google Scholar 

  • Kane SR, Chakicherla AY, Chain PSG, Schmidt R, Shin MW, Legler TC, Scow KM, Larimer FW, Lucas SM, Richardson PM, Hristova KR (2007) Whole-genome analysis of the methyl-tert-butyl ether-degrading beta-proteobacterium Methylibium petroleiphilum PM1. J Bacteriol 189:1931–1945

    Article  CAS  PubMed  Google Scholar 

  • Katapodis AG, Wimalesena K, Lee J, May SW (1984) Mechanistic studies on non-heme iron monooxygenase catalysis: Epoxidation, aldehyde formation, and demethylation by the ω-hydroxylation system of Pseudomonas oleovorans. J Am Chem Soc 110:7928–7935

    Article  Google Scholar 

  • Kharoune M, Kharoune L, Lebault JM, Pauss A (2001) Isolation and characterization of two aerobic bacterial strains that completely degrade ethyl tert-butyl ether (ETBE). Appl Microbiol Biotechnol 55:348–353

    Article  CAS  PubMed  Google Scholar 

  • Kim Y-H, Engesser K-H, Kim S-J (2007) Physiological, numerical and molecular characterization of alkyl ether-utilizing rhodococci. Environ Microbiol 9:1497–1510

    Article  CAS  PubMed  Google Scholar 

  • Kinne M, Poraj-Kobielska M, Ralph SA, Ullrich R, Hofrichter M, Hammel KE (2009) Oxidative cleavage of diverse ethers by an extracellular fungal peroxygenase. J Biol Chem 284:29343–29349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kohlweyer U, Thiemer B, Schräder T, Andreesen JR (2000) Tetrahydrofuran degradation by a newly isolated culture of Pseudonocardia sp. strain K1. FEMS Microbiol Lett 186:301–306

    Article  CAS  PubMed  Google Scholar 

  • Kottegoda S, Waligora E, Hyman MR (2015) Metabolism of 2-methylpropane (isobutylene) by the aerobic bacterium Mycobacterium sp. strain ELW1. Appl Environ Microbiol 81:1966–1976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuder T, Wilson JT, Kaiser P, Kolhatkar R, Philp P, Allen J (2005) Enrichment of stable carbon and hydrogen isotopes during anaerobic biodegradation of MTBE: microcosm and field evidence. Environ Sci Technol 39:213–220

    Article  CAS  PubMed  Google Scholar 

  • Kurteva-Yaneva N, Zahn M, Weichler M-T, Starke R, Harms H, Müller RH, Sträter N, Rohwerder T (2015) Structural basis of the stereospecificity of bacterial B12-dependent 2-hydroxyisobutyryl-CoA mutase. J Biol Chem 290:9727–9737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kusano M, Sakai Y, Kato N, Yoshomoto H, Sone H, Tani Y (1998) Hemiacetal dehydrogenase activity in alcohol dehydrogenases in Saccharomyces cerevisiae. Biosci Biotechnol Biochem 62:1956–1961

    Article  CAS  PubMed  Google Scholar 

  • Le Digabel Y, Demanéche S, Benoit Y, Vogel TM, Fayolle-Guichard F (2013) Ethyl tert-butyl ether (ETBE) biodegradation by a syntrophic association of Rhodococcus sp. IFP 2042 and Bradyrhizobium sp. IFP 2049 isolated from a polluted aquifer. Appl Microbiol Biotechnol 97:10531–10539

    Article  CAS  PubMed  Google Scholar 

  • Le Digabel Y, Demanéche S, Benoit Y, Fayolle-Guichard F, Vogel TM (2014) Ethyl tert-butyl ether (ETBE)-degrading microbial communities in enrichments from polluted environments. J Hazard Mater 279:502–510

    Article  CAS  PubMed  Google Scholar 

  • Lechner U, Brodkorb D, Geyer R, Hause G, Härtig C, Auling G, Fayolle-Guichard F, Piveteau P, Müller RH, Rohwerder T (2007) Aquincola tertiaricarbonis gen. nov., sp. nov., a tertiary butyl moiety-degrading bacterium. Int J Syst Evol Microbiol 57:1295–1303

    Article  CAS  PubMed  Google Scholar 

  • Liu CY, Speitel GE, Georgiou G (2001) Kinetics of methyl t-butyl ether cometabolism at low concentrations by pure cultures of butane-degrading bacteria. Appl Environ Microbiol 67:2197–2201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magaña-Reyes M, Morales M, Revah S (2005) Methyl tert-butyl ether and tert-butyl alcohol degradation by Fusarium solani. Biotechnol Lett 27:1797–1801

    Article  PubMed  CAS  Google Scholar 

  • Malandain C, Fayolle-Guichard F, Vogel TM (2010) Cytochrome P450-mediated degradation of fuel oxygenates by environmental isolates. FEMS Microbiol Ecol 72:289–296

    Article  CAS  PubMed  Google Scholar 

  • Malone VF, Chastain AJ, Ohlsson JT, Poneleit LS, Nemecek-Marshall M, Fall R (1999) Characterization of a Pseudomonas putida allylic alcohol dehydrogenase induced by growth on 2-methyl-3-buten-2-ol. Appl Environ Microbiol 65:2622–2630

    CAS  PubMed  PubMed Central  Google Scholar 

  • Masuda H, McClay K, Steffan RJ, Zylstra GJ (2012a) Biodegradation of tetrahydrofuran and 1,4-dioxane by soluble diiron monooxygenase in Pseudonocardia sp. strain ENV478. J Mol Microbiol Biotechnol 22:312–316

    Article  CAS  PubMed  Google Scholar 

  • Masuda H, McClay K, Steffan RJ, Zylstra GJ (2012b) Characterization of three propane-inducible oxygenases in Mycobacterium sp. strain ENV421. Lett Appl Microbiol 55:175–181

    Article  CAS  PubMed  Google Scholar 

  • McKelvie JR, Hyman MR, Elsner M, Smith C, Aslett DM, Lacrampe-Couloume G, Sherwood-Lolar (2009) Isotopic fractionation of methyl tert-butyl ether suggests different initial reactions mechanism during aerobic biodegradation. Environ Sci Technol 43:2793–2799

    Article  CAS  PubMed  Google Scholar 

  • Mo K, Lora CO, Wanken AE, Javanmardian M, Yang M, Kulpa CF (1997) Biodegradation of methyl t-butyl ether pure bacterial cultures. Appl Microbiol Biotechnol 47:69–72

    Article  CAS  PubMed  Google Scholar 

  • Morales M, Velázquez E, Jan J, Revah S, González U, Razo-Flores E (2004) Methyl tert-butyl ether biodegradation by microbial consortia obtained from soil samples of gasoline-polluted sites in Mexico. Biotechnol Lett 26:269–275

    Article  CAS  PubMed  Google Scholar 

  • Morales M, Nava V, Velásquez E, Razo-Flores E, Revah S (2009) Mineralization of methyl tert-butyl ether and other gasoline oxygenates by Pseudomonads using short chain n-alkanes as growth source. Biodegradation 20:271–280

    Article  CAS  PubMed  Google Scholar 

  • Müller RH, Rohwerder T, Harms H (2007) Carbon conversion efficiency and limits or productive degradation of methyl tert-butyl ether and related compounds. Appl Environ Microbiol 73:1783–1791

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Müller RH, Rohwerder T, Harms H (2008) Degradation of fuel oxygenates and their main intermediates by Aquincola tertiaricarbonis L108. Microbiology 154:1414–1421

    Article  PubMed  CAS  Google Scholar 

  • Nagy I, Compernolle F, Ghys K, Vanderleyden J, De Mot R (1995a) A single cytochrome P-450 system is involved in degradation of the herbicides EPTC (S-ethyl dithiocarbamate) and atrazine by Rhodococcus sp. strain NI86/21. Appl Environ Microbiol 61:2056–2060

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nagy I, Schoofs G, Compernolle F, Proost P, Vanderleyden J, De Mot R (1995b) Degradation of the thiocarbamate herbicide EPTC (S-ethyl dipropylcarbamothioate) and biosafening by Rhodococcus sp. strain NI86/21 involve an inducible cytochrome P-450 system and aldehyde dehydrogenase. J Bacteriol 177:676–687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakatsu CH, Hristova K, Hanada S, Meng X-Y, Hanson JR, Scow KM, Kamagata Y (2006) Methylibium petroleiphilum gen nov., sp. nov., a novel methyl tert-butyl ether-degrading methylotroph of the Betaproteobacteria. Int J Syst Evol Microbiol 56:983–989

    Article  CAS  PubMed  Google Scholar 

  • Owens CR, Karceski JK, Mattes TE (2009) Gaseous alkene biotransformation and enantioselective epoxyalkane formation by Nocardioides sp. strain JS614. Appl Microbiol Biotechnol 84:685–692

    Article  CAS  PubMed  Google Scholar 

  • Peter S, Kinne M, Wang X, Ullrich R, Kayser G, Groves JT, Hofrichter M (2011) Selective hydroxylation of alkanes by an extracellular fungal peroxygenase. FEBS J 278:3567–3675

    Article  CAS  Google Scholar 

  • Piveteau P, Fayolle F, Vandecasteele J-P, Monot F (2001) Biodegradation of tert-butyl alcohol and related xenobiotics by a methylotrophic bacterial isolate. Appl Microbiol Biotechnol 55:369–373

    Article  CAS  PubMed  Google Scholar 

  • Przybylski D, Rohwerder T, Dilbner C, Maskow T, Harms H, Müller RH (2015) Exploiting mixtures of H2, CO2, and O2 for improved production of methacrylate precursor 2-hydroxyisobutyric acid by engineered Cupriavidus necator strains. Appl Microbiol Biotechnol 99:2131–2145

    Article  CAS  PubMed  Google Scholar 

  • Rohde M-T, Tischer S, Harms H, Rohwerder T (2016) Production of 2-hydroxyisobutyric acid from methanol by Methylobacterium extorquens AM1 expressing (R)-3-hydroxybutyryl-CoA isomerizing enzymes. Appl Environ Microbiol. doi:10.1128/AEM.02622-16

    Google Scholar 

  • Rohwerder T, Müller RH (2010) Biosynthesis of 2-hydroxyisobutyric acid (2-HIBA) from renewable carbon. Microb Cell Factories 9:13

    Article  CAS  Google Scholar 

  • Rohwerder T, Breuer U, Benndorf D, Lechner U, Müller RH (2006) The alkyl tert-butyl ether intermediate 2-hydroxyisobutyrate is degraded by a novel cobalamin-dependent mutase pathway. Appl Environ Microbiol 72:4128–4135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosell M, Barceló D, Rohwerder T, Breuer U, Gehre M, Richnow HH (2007) Variations in 13C/12C and D/H enrichment factors of aerobic bacterial fuel oxygenate degradation. Environ Sci Technol 41:2036–2043

    Article  CAS  PubMed  Google Scholar 

  • Rosell M, Finsterbusch S, Jechalke S, Hübschmann T, Vogt C, Richnow HH (2010) Evaluation of the effects of low oxygen concentration on stable isotope fractionation during aerobic MTBE biodegradation. Environ Sci Technol 44:319–315

    Article  CAS  Google Scholar 

  • Rosell M, Gonzales-Olmos R, Rohwerder T, Rusevova K, Georgi A, Kopinke F-D, Richnow HH (2012) Critical evaluation of the 2D-CSIA scheme for distinguishing fuel oxygenate degradation reaction mechanisms. Environ Sci Technol 46:4757–4766

    Article  CAS  PubMed  Google Scholar 

  • Salanitro JP, Diaz LA, Williams MP, Wisniewski HL (1994) Isolation of a bacterial culture that degrades methyl t-butyl ether. Appl Environ Microbiol 60:2593–2596

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sales CM, Grostern A, Parales JV, Parales RE, Alvarez-Cohen L (2013) Oxidation of the cyclic ethers 1,4-dioxane and tetrahydrofuran by a monooxygenase in two Pseudonocardia species. Appl Environ Microbiol 79:7702–7708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schäfer F, Breuer U, Benndorf D, von Bergen M, Harms H, Müller RH (2007) Growth of Aquincola tertiaricarbonis L108 on tert-butyl alcohol leads to the induction of a phthalate dioxygenase-related protein and its associated oxidoreductase subunit. Eng Life Sci 7:512–519

    Article  CAS  Google Scholar 

  • Schäfer F, Muzica L, Schuster J, Treuter N, Rosell M, Harms H, Müller RH, Rohwerder T (2011) Formation of alkenes via degradation of tert-alkyl ethers and alcohols by Aquincola tertiaricarbonis L108 and Methylibium spp. Appl Environ Microbiol 77:5981–5987

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schäfer F, Schuster J, Wuurz B, Härtig C, Harms H, Müller RH, Rohwerder T (2012) Synthesis of short-chain diols and unsaturated alcohols from secondary alcohol substrates by the Rieske nonheme mononuclear iron oxygenase MdpJ. Appl Environ Microbiol 78:6280–6284

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schmidt R, Battaglia V, Scow K, Kane S, Hristova KR (2008) Involvement of a novel enzyme, MdpA, in methyl-tert-butyl ether degradation in Methylibium petroleiphilum PM1. Appl Environ Microbiol 74:6631–6638

    Google Scholar 

  • Schuster J, Schäfer F, Hübler N, Brandt A, Rosell M, Härtig C, Harms H, Müller RH, Rohwerder T (2012) Bacterial degradation of tert-amyl alcohol proceeds via hemiterpene 2-methyl-3-buten-2-ol by employing the tertiary alcohol desaturase function of the Rieske nonheme mononuclear iron oxygenase MdpJ. J Bacteriol 194:972–981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schuster J, Purswani J, Breuer U, Pozo C, Harms H, Müller RH, Rohwerder T (2013) Constitutive expression of the cytochrome P450 ethABCD monooxygenase system enables degradation of synthetic dialkyl ethers in Aquincola tertiaricarbonis L108. Appl Environ Microbiol 79:2321–2327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharp JO, Sales CM, Alvarez-Cohen L (2010) Functional characterization of propane-enhanced N-nitrosodimethylamine degradation by two actinomycetales. Biotechnol Bioeng 107:924–932

    Article  CAS  PubMed  Google Scholar 

  • Skinner KM, Martinez-Prado A, Hyman MR, Williamson KJ, Ciuffetti LM (2008) Pathway, inhibition and regulation of methyl tertiary butyl ether oxidation in a filamentous fungus, Graphium sp. Appl Microbiol Biotechnol 77:1359–1365

    Article  CAS  PubMed  Google Scholar 

  • Skinner K, Cuifetti L, Hyman M (2009) Metabolism and cometabolism of cyclic ethers by a filamentous fungus, a Graphium sp. Appl Environ Microbiol 75:5514–5522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith CA, Hyman MR (2004) Oxidation of methyl tert-butyl ether by alkane hydroxylase in dicyclopropylketone-induced and n-octane-grown Pseudomonas putida GPo1. Appl Environ Microbiol 70:4544–4550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith CA, Hyman MR (2010) Oxidation of gasoline oxygenates by closely related non-haem-iron alkane hydroxylases in Pseudomonas mendocina KR1 and other n-octane-utilizing Pseudomonas strains. Environ Microbiol Rep 2:426–432

    Article  CAS  PubMed  Google Scholar 

  • Smith CA, O’Reilly KT, Hyman MR (2003a) Characterization of the initial reactions during the cometabolic oxidation of methyl tert-butyl ether by propane-grown Mycobacterium vaccae JOB5. Appl Environ Microbiol 69:796–804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith CA, O’Reilly KT, Hyman MR (2003b) Cometabolism of methyl tertiary butyl ether and gaseous n-alkanes by Pseudomonas mendocina KR-1 grown on C5-C8 n-alkanes. Appl Environ Microbiol 69:7385–7394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smits THM, Witholt B, van Beilen JB (2003) Functional characterization of genes involved in alkane oxidation by Pseudomonas aeruginosa. Antonie Van Leeuwenhoek 84:193–200

    Article  CAS  PubMed  Google Scholar 

  • Steffan RJ, McClay K, Vainberg S, Condee CW, Zhang D (1997) Biodegradation of the gasoline oxygenates methyl tert-butyl ether, ethyl tert-butyl ether, and tert-amyl methyl ether by propane-oxidizing bacteria. Appl Environ Microbiol 63:4216–4222

    CAS  PubMed  PubMed Central  Google Scholar 

  • Streger SH, Vainberg S, Dong H, Hatzinger PB (2002) Enhancing transport of Hydrogenophaga flava ENV735 for bioaugmentation of aquifers contaminated with methyl tert-butyl ether. Appl Environ Microbiol 68:5571–5579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szabó Z, Gyula P, Roboka H, Bató E, Gálik B, Pach P, Pekker P, Papp I, Bihari Z (2015) Draft genome sequence of Methylibium sp. strain T29, a novel fuel oxygenate-degrading bacterial isolate from Hungary. Stand Genomic Sci. doi:10.1186/s40793-015-0023-z

    PubMed  PubMed Central  Google Scholar 

  • Thiemer B, Andreesen JR, Schräder T (2003) Cloning and characterization of a gene cluster involved in tetrahydrofuran degradation in Pseudonocardia sp. strain K1. Arch Microbiol 179:266–277

    Article  CAS  PubMed  Google Scholar 

  • Tomasi I, Artaud I, Bertheau Y, Mansuy D (1995) Metabolism of polychlorinated phenols by Pseudomonas cepacia AC1100: determination of the first two steps and specific inhibitory effect of methimazole. J Bacteriol 177:307–311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trippe KM, Wolpert TJ, Hyman MR, Ciuffetti LM (2014) RNAi silencing of a cytochrome P450 monooxygenase disrupts the ability of the filamentous fungus, Graphium sp., to grow on short-chain gaseous alkanes and ethers. Biodegradation 25:137–151

    Article  CAS  PubMed  Google Scholar 

  • Vainberg S, McClay K, Masuda H, Root D, Condee C, Zylstra GJ, Steffan RJ (2006) Biodegradation of ether pollutants by Pseudonocardia sp. ENV478. Appl Environ Microbiol 72:5218–5224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Beilen JB, Funhoff EG (2007) Alkane hydroxylases involved in microbial alkane oxidation. Appl Microbiol Biotechnol 74:13–21

    Article  CAS  PubMed  Google Scholar 

  • van Beilen JB, Kingma J, Witholt B (1994) Substrate specificity of the alkane hydroxylase system in Pseudomonas oleovorans GPo1. Enzym Microb Technol 16:904–911

    Article  Google Scholar 

  • van Beilen JB, Li Z, Duetz WA, Smits THM, Witholt B (2003) Diversity of alkane hydroxylase systems in the environment. Oil Gas Sci Technol 58:427–440

    Article  Google Scholar 

  • van Beilen JB, Smits THM, Roos FF, Brunner T, Balada SB, Röthlisberger M, Witholt B (2005) Identification of an amino acid position that determines the substrate range of integral membrane alkane hydroxylase. J Bacteriol 187:85–91

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vomberg A, Klinner U (2000) Distribution of alkB genes within n-alkane-degrading bacteria. J Appl Microbiol 89:339–348

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Zhou J, Li Z, Dong W, Hou Y, Cui Z (2015) Involvement of the cytochrome P450 system EthBAD in the N-deethoxymethylation of acetochlor by Rhodococcus sp. strain T3-1. Appl Environ Microbiol 81:2182–2188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weichler M-T, Kurteva-Yaneva N, Przybylski D, Schuster J, Müller RH, Rohwerder T (2015) Thermophilic coenzyme B12-dependent acyl coenzyme A (CoA) mutase from Kyrpidia tusciae DSM 2912 preferentially catalyzes isomerization of (R)-3-hydroxybutyryl-CoA and 2-hydroxyisobutyryl-CoA. Appl Environ Microbiol 81:4564–4572

    Google Scholar 

  • White GF, Russell NJ, Tidswell EC (1996) Bacterial scission of ether bonds. Microbiol Rev 60:216–232

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yamashita M, Tani A, Kawai F (2005) A new ether bond-splitting enzyme found in gram-positive polyethylene glycol 6000-utilizing bacterium, Pseudonocardia sp. strain K1. Appl Microbiol Biotechnol 66:174–179

    Article  CAS  Google Scholar 

  • Yaneva N, Schuster J, Schäfer F, Lede V, Przybylski D, Paproth T, Harms H, Müller RH, Rohwerder T (2012) Bacterial acyl-CoA mutase specifically catalyzes coenzyme B12-dependent isomerization of 2-hydroxyisobutyryl-CoA and (S)-3-hydroxybutyryl-CoA. J Biol Chem 287:15502–15511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaitsev GM, Uotila JS, Häggblom MM (2007) Biodegradation of methyl tert-butyl ether by cold-adapted mixed and pure cultures. Appl Microbiol Biotechnol 74:1092–1102

    Article  CAS  PubMed  Google Scholar 

  • Ziegler DM (2002) An overview of the mechanism, substrate specificities, and structure of FMOs. Drug Metab Rev 34:503–511

    Article  CAS  PubMed  Google Scholar 

  • Zwank L, Berg M, Elsner M, Schmidt T, Schwarzenbach RP, Haderlein SB (2005) New evaluation scheme for two-dimensional isotope analysis to decipher biodegradation processes: application to groundwater contamination by MTBE. Environ Sci Technol 39:1018–1029

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Hyman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this entry

Cite this entry

Hyman, M. (2016). Aerobic Degradation of Gasoline Ether Oxygenates. In: Rojo, F. (eds) Aerobic Utilization of Hydrocarbons, Oils and Lipids. Handbook of Hydrocarbon and Lipid Microbiology . Springer, Cham. https://doi.org/10.1007/978-3-319-39782-5_16-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39782-5_16-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39782-5

  • Online ISBN: 978-3-319-39782-5

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics