Skip to main content
Log in

n-Alkane assimilation and tert-butyl alcohol (TBA) oxidation capacity in Mycobacterium austroafricanum strains

  • Applied Microbial and Cell Physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Mycobacterium austroafricanum IFP 2012, which grows on methyl tert-butyl ether (MTBE) and on tert-butyl alcohol (TBA), the main intermediate of MTBE degradation, also grows on a broad range of n-alkanes (C2 to C16). A single alkB gene copy, encoding a non-heme alkane monooxygenase, was partially amplified from the genome of this bacterium. Its expression was induced after growth on n-propane, n-hexane, n-hexadecane and on TBA but not after growth on LB. The capacity of other fast-growing mycobacteria to grow on n-alkanes (C1 to C16) and to degrade TBA after growth on n-alkanes was compared to that of M. austroafricanum IFP 2012. We studied M. austroafricanum IFP 2012 and IFP 2015 able to grow on MTBE, M. austroafricanum IFP 2173 able to grow on isooctane, Mycobacterium sp. IFP 2009 able to grow on ethyl tert-butyl ether (ETBE), M. vaccae JOB5 (M. austroaafricanum ATCC 29678) able to degrade MTBE and TBA and M. smegmatis mc2 155 with no known degradation capacity towards fuel oxygenates. The M. austroafricanum strains grew on a broad range of n-alkanes and three were able to degrade TBA after growth on propane, hexane and hexadecane. An alkB gene was partially amplified from the genome of all mycobacteria and a sequence comparison demonstrated a close relationship among the M. austroafricanum strains. This is the first report suggesting the involvement of an alkane hydroxylase in TBA oxidation, a key step during MTBE metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashraf W, Midhir A, Murrell JC (1994) Bacterial oxidation of propane. FEMS Microbiol Lett 122:1–6

    Article  CAS  PubMed  Google Scholar 

  • Béguin P, Chauvaux S, Miras I, François A, Fayolle F, Monot F (2003) Genes involved in the degradation of ether fuels by bacteria of the MycobacteriumRhodococcus complex. Oil Gas Sci Technol 58:489–497

    Article  Google Scholar 

  • Chauvaux S, Chevalier F, Le Dantec C, Fayolle F, Miras I, Kunst F, Beguin P (2001) Cloning of a genetically unstable cytochrome P-450 gene cluster involved in degradation of the pollutant ethyl tert-butyl ether by Rhodococcus ruber. J Bacteriol 183:6551–6557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Claros MG, von Heijne G (1994) TopPred II: an improved software for membrane protein structure predictions. CABIOS 10:685–686

    CAS  PubMed  Google Scholar 

  • Fayolle F, Monot F (2005) Biodegradation of fuel ethers. In: Magot M, Ollivier B (eds) Petroleum microbiology, ASM Press, Washington, DC, USA, pp 301–316

    Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  PubMed  Google Scholar 

  • François A, Mathis H, Godefroy D, Piveteau P, Fayolle F, Monot F (2002) Biodegradation of methyl tert-butyl ether and other fuel oxygenates by a new strain, Mycobacterium austroafricanum IFP 2012. Appl Environ Microbiol 68:2754–2762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamamura N, Yeager CM, Arp DJ (2001) Two distinct monooxygenases for alkane oxidation in Nocardioides sp. strain CF8. Appl Environ Microbiol 67:4992–4998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanson JR, Ackerman CE, Scow KM (1999) Biodegradation of methyl tert-butyl ether by a bacterial pure culture. Appl Environ Microbiol 65:4788–4792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hatzinger PB, McClay K, Vainberg S, Tugusheva M, Condee CW, Steffan RJ (2001) Biodegradation of methyl tert-butyl ether by a pure bacterial culture. Appl Environ Microbiol 67:5601–5607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heiss-Blanquet S, Benoit Y, Maréchaux C, Monot F (2005) Assessing the role of alkane hydroxylase genotypes in environmental samples by competitive PCR. J Appl Microbiol 99:1392–1403

    Article  CAS  PubMed  Google Scholar 

  • Hyman M, O’Reilly K (1999) Physiological and enzymatic features of MTBE-degrading bacteria. In: Alleman BC, Leeson A (eds) In situ bioremediation of petroleum hydrocarbons and other organic compounds, Battelle Press, Columbus, OH, pp 7–12

    Google Scholar 

  • Hyman M, Kwon P, Williamson K, O’Reilly K (1998) Cometabolism of MTBE by alkane-utilizing microorganisms. In: Wickramanayake GB, Hinchee RE (eds) Natural attenuation of chlorinated and recalcitrant compounds, Battelle Press, Columbus, OH, pp 321–326

    Google Scholar 

  • Johnson EL, Hyman MR (2006) Propane and n-butane oxidation by Pseudomonas putida GPo1. Appl Environ Microbiol 72:950–952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson R, Pankow J, Bender D, Price C, Zogorsky J (2000) MTBE. To what extent will past releases contaminate community water supply wells? Environ Sci Technol 34:210A–217A

    Article  CAS  PubMed  Google Scholar 

  • Johnson EL, Smith CA, O’Reilly KT, Hyman MR (2004) Induction of methyl tert-butyl ether (MTBE)-oxidizing activity in Mycobacterium vaccae JOB5. Appl Environ Microbiol 70:1023–1030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kotani T, Yamamoto Y, Yurimoto H, Sakai Y, Kato N (2003) Propane monooxygenase and NAD+-dependant secondary alcohol dehydrogenase in propane metabolism by Gordonia sp. strain TY5. J Bacteriol 185:7120–7128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lechner U, Brodkorb D, Geyer R, Hause G, Härtig C, Auling G, Fayolle-Guichard F, Piveteau P, Müller RH, Rohwerder T (2007) Aquincola tertiaricarbonis gen. nov., sp. nov., a tertiary butyl moiety-degrading bacterium. Int J Syst Evol Microbiol (in press)

  • Lopes Ferreira N, Labbé D, Monot F, Fayolle-Guichard F, Greer CW (2006a) Genes involved in the methyl tert-butyl ether (MTBE) metabolic pathway of Mycobacterium austroafricanum IFP 2012. Microbiology 152:1361–1374

    Article  CAS  Google Scholar 

  • Lopes Ferreira N, Maciel H, Mathis H, Monot F, Fayolle-Guichard F, Greer CW (2006b) Isolation and characterization of a new Mycobacterium austroafricanum, IFP 2015, growing on MTBE. Appl Microbiol Biotechnol 70:358–365

    Article  CAS  PubMed  Google Scholar 

  • Nakatsu CH, Hrsitova K, Hanada S, Meng XY, Hanson J, Scow KM, Kagamata Y (2006) Methylibium petroleiphilum PM1T gen. nov., sp. nov., a new methyl tert-butyl ether (MTBE) degrading methylotroph of the beta-Proteobacteria. Int J Syst Evol Microbiol 56:983–989

    Article  CAS  PubMed  Google Scholar 

  • Ooyama J, Foster JM (1965) Bacterial oxidation of cycloparaffinic hydrocarbons. Antonie van Leeuwenhoek 31:45–65

    Article  CAS  PubMed  Google Scholar 

  • Padda RS, Pandey KK, Kaul S, Nair VD, Jain RK, Basu SK, Chakrabarti T (2001) A novel gene encoding a 54 kDa polypeptide is essential for butane utilization by Pseudomonas sp. IMT37. Microbiology 147:2479–2491

    Article  CAS  PubMed  Google Scholar 

  • Piveteau P, Fayolle F, Vandecasteele JP, Monot F (2001) Biodegradation of tert-butyl alcohol and related xenobiotics by a methylotrophic bacterial isolate. Appl Microbiol Biotechnol 55:369–373

    Article  CAS  PubMed  Google Scholar 

  • Pospiech A, Neumann B (1995) A versatile quick-prep of genomic DNA from gram-positive bacteria. Trends Genet 6:217–218

    Article  Google Scholar 

  • Saitou N, Nei M (1987) The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Sambrook J, Russell D (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Schmidt TC, Bittens M, Arp HP, Haderlein SB (2003) Transfer pathways of MTBE into groundwater: the role of diffuse vs. point sources. In: Bilitewski B, Werner P (eds) Proceedings of the First European Conference on MTBE. Dresden University of Technology, Dresden, Germany, pp 4544–4550

    Google Scholar 

  • Shankling J, Whittle E (2003) Evidence linking the Pseudomonas oleovorans alkane omega-hydroxylase, an integral membrane diiron enzyme, and the fatty acid desaturase family. FEBS Lett 545:188–192

    Article  CAS  Google Scholar 

  • Sluis MK, Sayavedro-Soto LA, Arp DJ (2002) Molecular analysis of the soluble butane monooxygenase from “Pseudomonas butanovora”. Microbiology 148:3617–3629

    Article  CAS  PubMed  Google Scholar 

  • Smith CA, Hyman MR (2004) Oxidation of methyl tert-butyl ether by propane-grown Pseudomonas putida GPo1. Appl Environ Microbiol 70:4544–4550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith CA, O’Reilly KT, Hyman MR (2003) Characterization of the initial reactions during the cometabolic oxidation of methyl tert-butyl ether by propane-grown Mycobacterium vaccae JOB5. Appl Environ Microbiol 69:796–804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smits THM, Röthlisberger M, Witholt B, Van Beilen JB (1999) Molecular screening for alkane hydroxylase genes in gram-negative and gram-positive strains. Environ Microbiol 1:307–317

    Article  CAS  PubMed  Google Scholar 

  • Solano-Serena F, Marchal R, Heiss S, Vandecasteele JP (2004) Degradation of isooctane Mycobacterium austroafricanum 2173: growth and catabolic pathway. J Appl Microbiol 97:629–639

    Article  CAS  PubMed  Google Scholar 

  • Steffan RJ, McClay K, Vainberg S, Condee CW, Zhang D (1997) Biodegradation of the gasoline oxygenates methyl tert-butyl ether, ethyl tert-butyl ether, and tert-amyl methyl ether by propane-oxidizing bacteria. Appl Environ Microbiol 63:4216–4222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526

    CAS  PubMed  Google Scholar 

  • Van Beilen JB, Penninga D, Witholt B (1992) Topology of the membrane-bound hydroxylase of Pseudomonas oleovorans. J Biol Chem 267:9194–9201

    PubMed  Google Scholar 

  • Van Beilen JB, Panke S, Lucchini S, Franchini AG, Rothlisberger M, Witholt B (2001) Analysis of Pseudomonas putida alkane-degradation gene clusters and flanking insertion sequences: evolution and regulation of the alk genes. Microbiology 147:1621–1630

    Article  PubMed  Google Scholar 

  • Van Beilen JB, Smits THM, Whyte LG, Schorcht S, Röthlisberger M, Plaggemeier T, Engesser KH, Witholt B (2002) Alkane hydroxylase homologues in gram-positive strains. Environ Microbiol 4:676–682

    Article  PubMed  Google Scholar 

  • Van Beilen JB, Li Z, Duetz WA, Smits THM, Witholt B (2003) Diversity of alkane hydroxylase systems in the environment. Oil Gas Sci Technol 58:427–440

    Article  Google Scholar 

  • Van Beilen JB, Marin MM, Smits THM, Röthlisberger M, Franchini AG, Witholt B, Rojo F (2004) Characterization of two alkane hydroxylase genes from the marine hydrocarbonoclastic bacterium Alcanivorax borkumensis. Environ Microbiol 6:264–273

    Article  CAS  PubMed  Google Scholar 

  • Van Beilen JB, Smits THM, Roos FF, Brunner T, Balada SB, Röthlisberger M, Witholt B (2005) Identification of an amino acid position that determines the substrate range of integral membrane alkane hydroxylases. J Bacteriol 187:85–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vomberg A, Klinner U (2000) Distribution of alkB genes within n-alkane-degrading bacteria. J Appl Microbiol 89:339–348

    Article  CAS  PubMed  Google Scholar 

  • Wilson JT (2003) Fate and transport of MTBE and other gasoline components. In: Moyer EE, Kostecki PT (eds) MTBE remediation handbook. Amherst Scientific Publishers, Amherst, MA, USA, pp 19–61

    Chapter  Google Scholar 

Download references

Acknowledgements

Nicolas Lopes Ferreira was partly supported by a Convention Industrielle de Formation par la REcherche (CIFRE) fellowship provided by the Association Nationale de la Recherche Technique (ANRT) and the IFP. We thank Senta Blanquet for providing us with the alkB primer sequences. We also thank Jan Van Beilen and Rémy Marchal for the helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Françoise Fayolle-Guichard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lopes Ferreira, N., Mathis, H., Labbé, D. et al. n-Alkane assimilation and tert-butyl alcohol (TBA) oxidation capacity in Mycobacterium austroafricanum strains. Appl Microbiol Biotechnol 75, 909–919 (2007). https://doi.org/10.1007/s00253-007-0892-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-007-0892-1

Keywords

Navigation