Skip to main content
Log in

Biodegradation of methyl tert-butyl ether by cold-adapted mixed and pure bacterial cultures

  • Applied Microbial and Cell Physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

An aerobic mixed bacterial culture (CL-EMC-1) capable of utilizing methyl tert-butyl ether (MTBE) as the sole source of carbon and energy with a growth temperature range of 3 to 30°C and optimum of 18 to 22°C was enriched from activated sludge. Transient accumulation of tert-butanol (TBA) occurred during utilization of MTBE at temperatures from 3°C to 14°C, but TBA did not accumulate above 18°C. The culture utilized MTBE at a concentration of up to 1.5 g l−1 and TBA of up to 7 g l−1. The culture grew on MTBE at a pH range of 5 to 9, with an optimum pH of 6.5 to 7.1. The specific growth rate of the CL-EMC-1 culture on 0.1 g l−1 of MTBE at 22°C and pH 7.1 was 0.012 h−1, and the growth yield was 0.64 g (dry weight) g−1. A new MTBE-utilizing bacterium, Variovorax paradoxus strain CL-8, isolated from the mixed culture utilized MTBE, TBA, 2-hydroxy isobutyrate, lactate, methacrylate, and acetate as sole sources of carbon and energy but not 2-propanol, acetone, methanol, formaldehyde, or formate. Two other isolates, Hyphomicrobium facilis strain CL-2 and Methylobacterium extorquens strain CL-4, isolated from the mixed culture were able to grow on C1 compounds. The combined consortium could thus utilize all of the carbon of MTBE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Achten C, Puttmann W (2000) Determination of methyl tert-butyl ether in surface water by use of solid-phase microextraction. Environ Sci Technol 34:1359–1364

    Article  CAS  Google Scholar 

  • Achten C, Kolb A, Puttmann W (2002a) Methyl tert-butyl ether (MTBE) in river and wastewater in Germany. Environ Sci Technol 36:3652–3661

    Article  CAS  Google Scholar 

  • Achten C, Kolb A, Puttmann W (2002b) Occurrence of methyl tert-butyl ether (MTBE) in riverbank filtered water and drinking water produced by riverbank filtration. Environ Sci Technol 36:3662–3670

    Article  CAS  Google Scholar 

  • Ayotte JD, Argue DM, McGarry FJ (2005) Methyl tert-butyl ether occurrence and related factors in public and private wells in southeast New Hampshire. Environ Sci Technol 39:9–16

    Article  CAS  Google Scholar 

  • Deeb RA, Nishino S, Spain J, Hu H-Y, Scow K, Alvarez-Cohen L (2000) MTBE and benzene biodegradation by a bacterial isolate via two independent monooxygenase-initiated pathways. In: Drogos DL, Diaz AL (eds) Exploring the environmental issues of mobile, recalcitrant compounds in gasoline. ACS, San Francisco, CA, pp 280–282

    Google Scholar 

  • Fayolle F, Vandecasteele J-P, Monot F (2001) Microbial degradation and fate in the environment of methyl tert-butyl ether and related fuel oxygenates. Appl Microbiol Biotechnol 56:339–349

    Article  CAS  Google Scholar 

  • Fiorenza S, Rifai HS (2003) Review of MTBE biodegradation and bioremediation. Bioremediation J 7:1–35

    Article  CAS  Google Scholar 

  • Fortin NY, Deshusses MA (1999) Treatment of methyl tert-butyl ether vapors in biotrickling filter. 1. Reactor startup, steady-state performance, and culture characteristics. Environ Sci Technol 33:2980–2986

    Article  CAS  Google Scholar 

  • Francois A, Mathis H, Godefroy D, Piveteau P, Fayolle F, Monot F (2002) Biodegradation of methyl tert-butyl ether and other fuel oxygenates by a new strain, Mycobacterium austroafricanum IFP 2012. Appl Environ Microbiol 68:2754–2762

    Article  CAS  Google Scholar 

  • Francois A, Garnier L, Mathis H, Fayolle F, Monot F (2003) Role of tert-butyl formate, tert-butyl alcohol and acetone in the regulation of methyl tert-butyl ether degradation by Mycobacterium austroafricanum IFP 2012. Appl Microbiol Biotechnol 62:256–262

    Article  CAS  Google Scholar 

  • Garnier PM, Auria R, Augur C, Revah S (1999) Cometabolic biodegradation of methyl t-butyl ether by Pseudomonas aeruginosa grown on pentane. Appl Microbiol Biotechnol 51:498–503

    Article  CAS  Google Scholar 

  • Hanson JR, Ackerman CE, Scow KM (1999). Biodegradation of methyl tert-butyl ether by a bacterial pure culture. Appl Environ Microbiol 65:4788–4792

    Article  CAS  Google Scholar 

  • Hardison LK, Curry SS, Ciuffetti LM, Hyman MR (1997) Metabolism of diethyl ether and cometabolism of methyl tert-butyl ether by a filamentous fungus, a Graphium sp. Appl Environ Microbiol 63:3059–3067

    Article  CAS  Google Scholar 

  • Hatzinger PB, McClay K, Vainberg S, Tugusheva M, Condee CW, Steffan RJ (2001) Biodegradation of methyl tert-butyl ether by pure bacterial cultures. Appl Environ Microbiol 67:5601–5607

    Article  CAS  Google Scholar 

  • Hernandez-Perez G, Fayolle F, Vandecasteele J-P (2001) Biodegradation of ethyl t-butyl ether (ETBE), methyl t-butyl ether (MTBE) and t-amyl methyl ether (TAME) by Gordonia terrae. Appl Microbiol Biotechnol 55:117–121

    Article  CAS  Google Scholar 

  • Johnson R, Pankow J, Bender D, Price C, Zogorski J (2000) MTBE: to what extent will past releases contaminate community water supply wells? Environ Sci Technol 34:210A–217A

    Article  CAS  Google Scholar 

  • Kern EA, Veeh RH, Langner HW, Macur RE, Cunningham AB (2002) Characterization of methyl tert-butyl ether degrading bacteria from a gasoline-contaminated aquifer. Bioremediation J 6:113–124

    Article  CAS  Google Scholar 

  • Kim Y-H, Engesser K-H (2004) Degradation of alkyl ethers, aralkyl eyters, and dibenzyl ether by Rhodococcus sp. strain DEE5151, isolated from diethyl ether-containing enrichment cultures. Appl Environ Microbiol 70:4398–4401

    Article  CAS  Google Scholar 

  • Mo K, Lora CO, Wanken AE, Javanmardian M, Yang X, Kulpa CF (1997) Biodegradation of methyl t-butyl ether by pure bacterial cultures. Appl Microbiol Biotechnol 47:69–72

    Article  CAS  Google Scholar 

  • Nakatsu CH, Krassimira Hristova K, Hanada S, Meng X-Y, Hanson JR, Scow KM, Kamagata Y (2006) Methylibium petroleiphilum gen. nov., sp. nov., a novel methyl tert-butyl ether-degrading methylotroph of the Betaproteobacteria. Int J Syst Evol Microbiol 56:983–989

    Article  CAS  Google Scholar 

  • Pankow JF, Thomson NR, Johnson RL, Baehr AL, Zogorski JS (1997) The urban atmosphere as non-point source for the transport of MTBE and other volatile organic compounds (VOCs) to shallow groundwater. Environ Sci Technol 31:2821–2828

    Article  CAS  Google Scholar 

  • Park K, Cowan RM (1997) Effect of oxygen and temperature on the biodegradation of MTBE. Am Chem Soc Division of Environmental Chemistry Preprints of Extended Abstracts 37(1):421–424

    Google Scholar 

  • Rohwerder T, Breuer U, Benndorf D, Lechner U, Müller RH (2006) The alkyl tert-butyl ether intermediate 2-hydroxyisobutyrate is degraded via a novel cobalamin-dependent mutase pathway. Appl Environ Microbiol 72:4128–4135

    Article  CAS  Google Scholar 

  • Salanitro JP, Diaz LA, Williams MP, Wisniewski HL (1994) Isolation of a bacterial culture that degrades methyl t-butyl ether. Appl Environ Microbiol 60:2593–2596

    Article  CAS  Google Scholar 

  • Schirmer M, Butler BJ, Church CD, Barker JF, Nadarajah N (2003) Laboratory evidence of MTBE biodegradation in Borden aquifer material. J Contam Hydrol 60:229–249

    Article  CAS  Google Scholar 

  • Smith CA, O’Reilly KT, Hyman MR (2003) Characterization of the initial reactions during the cometabolic oxidation of methyl tert-butyl ether by propane-grown Mycobacterium vaccae JOB5. Appl Environ Microbiol 69:796–804

    Article  CAS  Google Scholar 

  • Squillace PJ, Zogorski JS, Wilber WG, Price CV (1996) Preliminary assessment of the occurrence and possible sources of MTBE in groundwater in the United States, 1993–1994. Environ Sci Technol 30:1721–1730

    Article  CAS  Google Scholar 

  • Squillace PJ, Moran MJ, Lapham WW, Price CV, Clawges RM, Zogorski JS (1999) Volatile organic compounds in untreated ambient groundwater of the United States, 1985–1995. Environ Sci Technol 33:4176–4187

    Article  CAS  Google Scholar 

  • Steffan RJ, McClay K, Vainberg S, Condee CW, Zhang D (1997) Biodegradation of the gasoline oxygenates methyl tert-butyl ether, ethyl tert-butyl ether, and tert-amyl methyl ether by propane-oxidizing bacteria. Appl Environ Microbiol 63:4216–4222

    Article  CAS  Google Scholar 

  • Streger SH, Vainberg S, Dong H, Hatzinger PB (2002) Enhancing transport of Hydrogenophaga flava ENV735 for bioaugmentation of aquifers contaminated with methyl tert-butyl ether. Appl Environ Microbiol 68:5571–5579

    Article  CAS  Google Scholar 

  • Sun PT, Salanitro JP, Tang WT (1996) Fate and biokinetics of methyl-t-butyl ether in activated sludge systems and its engineering significance. In: 51st Purdue Industrial Waster Conference Proceedings, Ann Arbor, Chelsea, MI, pp 507–524

  • Vainberg S, Togna AP, Sutton PM, Steffan RJ (2002) Treatment of MTBE-contaminated water in fluidised bed bioreactor. J Environ Eng 128:842–851

    Article  CAS  Google Scholar 

  • Zogorski JS, Morduchowitz A, Baehr AL, Bauman BJ, Conrad DL, Drew RT, Korte NE, Lapham WW, Pankov JF (1997) Fuel oxygenates and water quality: current understanding of sources, occurrence in natural waters, environmental behavior, fate, and significance, chapter 2. In: Interagency assessment of oxygenated fuels. Office of Science and Technology Policy, Exec. Office of the President, Washington, DC

Download references

Acknowledgment

This work was funded in part by a grant from the National Technology Agency of Finland, TEKES to establish the Arctic Microbiology Research Consortium.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. M. Zaitsev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zaitsev, G.M., Uotila, J.S. & Häggblom, M.M. Biodegradation of methyl tert-butyl ether by cold-adapted mixed and pure bacterial cultures. Appl Microbiol Biotechnol 74, 1092–1102 (2007). https://doi.org/10.1007/s00253-006-0737-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-006-0737-3

Keywords

Navigation