Skip to main content

From Leaky Gut to Tissue Microbiota in Metabolic Diseases

  • Reference work entry
  • First Online:
Gut Microbiome, Microbial Metabolites and Cardiometabolic Risk

Part of the book series: Endocrinology ((ENDOCR))

  • 207 Accesses

Abstract

Although the gut microbiota has shown its importance in the control of health, recent discoveries have shifted the paradigm to the tissue microbiota. This hypothesis is defined by alive bacteria residing chronically in tissues and or bacterial fragments often characterized by the sequencing of the 16SrRNA gene. The tissue microbiota is specific per tissue and widely spread even in non-pathogenic situations. At the onset of metabolic disease, it is supposed to trigger metabolic inflammation leading to insulin resistance, and adipose cells proliferation, thereby obesity. Many other diseases have been so far characterized by a tissue microbiota, notably hepatic steatosis and fibrosis. Its origin requires an impaired intestinal function meaning a leaky gut. A gut leakiness occurring during diseases will lead to the translocation of specific sets of bacteria or fragments toward tissues. The mechanisms are unknown but could be related to impaired intestinal immune system or defensin production by enterocytes no longer preventing from mucosal bacteria crossing through the epithelial layer and lamina propria. A control of gut leakiness could help prevent the occurrence of chronic inflammatory diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al Nabhani Z, Eberl G. Imprinting of the immune system by the microbiota early in life. Mucosal Immunol. 2020;13(2):183–9.

    Article  PubMed  Google Scholar 

  • Amar J, Chabo C, Waget A, Klopp P, Vachoux C, Bermudez-Humaran LG, et al. Intestinal mucosal adherence and translocation of commensal bacteria at the early onset of type 2 diabetes: molecular mechanisms and probiotic treatment. EMBO Mol Med. 2011a;3(9):559–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amar J, Serino M, Lange C, Chabo C, Iacovoni J, Mondot S, et al. Involvement of tissue bacteria in the onset of diabetes in humans: evidence for a concept. Diabetologia. 2011b;54(12):3055–61.

    Article  CAS  PubMed  Google Scholar 

  • Amar J, Lange C, Payros G, Garret C, Chabo C, Lantieri O, et al. Blood microbiota dysbiosis is associated with the onset of cardiovascular events in a large general population: the D.E.S.I.R. Study. PLoS One. 2013;8(1):e54461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anhe FF, Jensen BAH, Varin TV, Servant F, Van Blerk S, Richard D, et al. Type 2 diabetes influences bacterial tissue compartmentalisation in human obesity. Nat Metab. 2020;2(3):233–42.

    Article  PubMed  Google Scholar 

  • Bai GH, Lin SC, Hsu YH, Chen SY. The human Virome: viral metagenomics, relations with human diseases, and therapeutic applications. Viruses. 2022;14(2)

    Google Scholar 

  • Bresciani A, Paul S, Schommer N, Dillon MB, Bancroft T, Greenbaum J, et al. T-cell recognition is shaped by epitope sequence conservation in the host proteome and microbiome. Immunology. 2016;148(1):34–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burcelin R, Garidou L, Pomie C. Immuno-microbiota cross and talk: the new paradigm of metabolic diseases. Semin Immunol. 2012;24(1):67–74.

    Article  CAS  PubMed  Google Scholar 

  • Burcelin R, Serino M, Chabo C, Garidou L, Pomie C, Courtney M, et al. Metagenome and metabolism: the tissue microbiota hypothesis. Diabetes Obes Metab. 2013;15(Suppl 3):61–70.

    Article  CAS  PubMed  Google Scholar 

  • Burgueno JF, Barba A, Eyre E, Romero C, Neunlist M, Fernandez E. TLR2 and TLR9 modulate enteric nervous system inflammatory responses to lipopolysaccharide. J Neuroinflammation. 2016;13(1):187.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D, et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007;56(7):1761–72.

    Article  CAS  PubMed  Google Scholar 

  • Cavallari JF, Denou E, Foley KP, Khan WI, Schertzer JD. Different Th17 immunity in gut, liver, and adipose tissues during obesity: the role of diet, genetics, and microbes. Gut Microbes. 2016;7(1):82–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costantini L, Magno S, Albanese D, Donati C, Molinari R, Filippone A, et al. Characterization of human breast tissue microbiota from core needle biopsies through the analysis of multi hypervariable 16S-rRNA gene regions. Sci Rep. 2018;8(1):16893.

    Article  PubMed  PubMed Central  Google Scholar 

  • Denou E, Lolmede K, Garidou L, Pomie C, Chabo C, Lau TC, et al. Defective NOD2 peptidoglycan sensing promotes diet-induced inflammation, dysbiosis, and insulin resistance. EMBO Mol Med. 2015.

    Google Scholar 

  • Depommier C, Everard A, Druart C, Plovier H, Van Hul M, Vieira-Silva S, et al. Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: a proof-of-concept exploratory study. Nat Med. 2019;25(7):1096–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faber J, van Limpt K, Kegler D, Luiking Y, Garssen J, van Helvoort A, et al. Bacterial translocation is reduced by a specific nutritional combination in mice with chemotherapy-induced neutropenia. J Nutr. 2011;141(7):1292–8.

    Article  CAS  PubMed  Google Scholar 

  • Fouts DE, Torralba M, Nelson KE, Brenner DA, Schnabl B. Bacterial translocation and changes in the intestinal microbiome in mouse models of liver disease. J Hepatol. 2012;56(6):1283–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gabele E, Dostert K, Hofmann C, Wiest R, Scholmerich J, Hellerbrand C, et al. DSS induced colitis increases portal LPS levels and enhances hepatic inflammation and fibrogenesis in experimental NASH. J Hepatol. 2011;55(6):1391–9.

    Article  PubMed  Google Scholar 

  • Garidou L, Pomie C, Klopp P, Waget A, Charpentier J, Aloulou M, et al. The gut microbiota regulates intestinal CD4 T cells expressing RORgammat and controls metabolic disease. Cell Metab. 2015;22(1):100–12.

    Article  CAS  PubMed  Google Scholar 

  • Gill SR, Pop M, Deboy RT, Eckburg PB, Turnbaugh PJ, Samuel BS, et al. Metagenomic analysis of the human distal gut microbiome. Science. 2006;312(5778):1355–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ha CWY, Martin A, Sepich-Poore GD, Shi B, Wang Y, Gouin K, et al. Translocation of viable gut microbiota to mesenteric adipose drives formation of creeping fat in humans. Cell. 2020;183(3):666–83 e17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanson ML, Hixon JA, Li W, Felber BK, Anver MR, Stewart CA, et al. Oral delivery of IL27 recombinant bacteria attenuates immune colitis in mice. Gastroenterology 2013.

    Google Scholar 

  • Henao-Mejia J, Elinav E, Jin C, Hao L, Mehal WZ, Strowig T, et al. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature. 2012;482(7384):179–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holmes E, Kinross J, Gibson GR, Burcelin R, Jia W, Pettersson S, et al. Therapeutic modulation of microbiota-host metabolic interactions. Sci Transl Med. 2012;4(137):137rv6.

    Article  PubMed  Google Scholar 

  • Hoskinson C, Zheng K, Gabel J, Kump A, German R, Podicheti R, et al. Composition and functional potential of the human mammary microbiota prior to and following breast tumor diagnosis. mSystems. 2022;7(3):e0148921.

    Article  PubMed  Google Scholar 

  • Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G, et al. Richness of human gut microbiome correlates with metabolic markers. Nature. 2013;500(7464):541–6.

    Article  PubMed  Google Scholar 

  • Lelouvier B, Servant F, Paisse S, Brunet AC, Benyahya S, Serino M, et al. Changes in blood microbiota profiles associated with liver fibrosis in obese patients: a pilot analysis. Hepatology 2016.

    Google Scholar 

  • Leonardi I, Gao IH, Lin WY, Allen M, Li XV, Fiers WD, et al. Mucosal fungi promote gut barrier function and social behavior via type 17 immunity. Cell. 2022.

    Google Scholar 

  • Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Human gut microbes associated with obesity. Nature. 2006;444:1022–3.

    Article  CAS  PubMed  Google Scholar 

  • Li M, Wang B, Zhang M, Rantaleinen M, Wang S, Zhou H, et al. Symbiotic gut microbes modulate human metabolic phenotypes. Proc Natl Acad Sci USA. 2008;105:2117–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Jia H, Cai X, Zhong H, Feng Q, Sunagawa S, et al. An integrated catalog of reference genes in the human gut microbiome. Nat Biotechnol. 2014;32(8):834–41.

    Article  CAS  PubMed  Google Scholar 

  • Lluch J, Servant F, Paisse S, Valle C, Valiere S, Kuchly C, et al. The characterization of novel tissue microbiota using an optimized 16S metagenomic sequencing pipeline. PLoS One. 2015;10(11):e0142334.

    Article  PubMed  PubMed Central  Google Scholar 

  • Luche E, Cousin B, Garidou L, Serino M, Waget A, Barreau C, et al. Metabolic endotoxemia directly increases the proliferation of adipocyte precursors at the onset of metabolic diseases through a CD14-dependent mechanism. Mol Metab. 2013;2(3):281–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luche E, Robert V, Cuminetti V, Pomie C, Sastourne-Arrey Q, Waget A, et al. Corrupted adipose tissue endogenous myelopoiesis initiates diet-induced metabolic disease. elife. 2017:6.

    Google Scholar 

  • Mao K, Baptista AP, Tamoutounour S, Zhuang L, Bouladoux N, Martins AJ, et al. Innate and adaptive lymphocytes sequentially shape the gut microbiota and lipid metabolism. Nature. 2018;554(7691):255–9.

    Article  CAS  PubMed  Google Scholar 

  • Massier L, Chakaroun R, Tabei S, Crane A, Didt KD, Fallmann J, et al. Adipose tissue derived bacteria are associated with inflammation in obesity and type 2 diabetes. Gut. 2020.

    Google Scholar 

  • Massier L, Bluher M, Kovacs P, Chakaroun RM. Impaired intestinal barrier and tissue bacteria: pathomechanisms for metabolic diseases. Front Endocrinol (Lausanne). 2021;12:616506.

    Article  PubMed  Google Scholar 

  • Merlini E, Bellistri GM, Tincati C, d'Arminio Monforte A, Marchetti G. Sequencing of bacterial microflora in peripheral blood: our experience with HIV-infected patients. J Vis Exp. 2011;52

    Google Scholar 

  • Moreno-Navarrete JM, Escote X, Ortega F, Serino M, Campbell M, Michalski MC, et al. A role for adipocyte-derived lipopolysaccharide-binding protein in inflammation- and obesity-associated adipose tissue dysfunction. Diabetologia. 2013;56(11):2524–37.

    Article  CAS  PubMed  Google Scholar 

  • Nagpal R, Yadav H. Bacterial translocation from the gut to the distant organs: an overview. Ann Nutr Metab. 2017;71(Suppl 1):11–6.

    Article  CAS  PubMed  Google Scholar 

  • Ortega FJ, Mercader JM, Moreno-Navarrete JM, Sabater M, Pueyo N, Valdes S, et al. Targeting the association of calgranulin B (S100A9) with insulin resistance and type 2 diabetes. J Mol Med (Berl). 2013;91(4):523–34.

    Article  CAS  PubMed  Google Scholar 

  • Paisse S, Valle C, Servant F, Courtney M, Burcelin R, Amar J, et al. Comprehensive description of blood microbiome from healthy donors assessed by 16S targeted metagenomic sequencing. Transfusion. 2016;56:1138–47.

    Article  CAS  PubMed  Google Scholar 

  • Pomie C, Blasco-Baque V, Klopp P, Nicolas S, Waget A, Loubieres P, et al. Triggering the adaptive immune system with commensal gut bacteria protects against insulin resistance and dysglycemia. Mol Metab. 2016;5(6):392–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pomie C, Servant F, Garidou L, Azalbert V, Waget A, Klopp P, et al. CX3CR1 regulates gut microbiota and metabolism. A risk factor of type 2 diabetes. Acta Diabetol. 2021.

    Google Scholar 

  • Raymond F, Boissinot M, Ouameur AA, Deraspe M, Plante PL, Kpanou SR, et al. Culture-enriched human gut microbiomes reveal core and accessory resistance genes. Microbiome. 2019;7(1):56.

    Article  PubMed  PubMed Central  Google Scholar 

  • Riedel S, Pheiffer C, Johnson R, Louw J, Muller CJF. Intestinal barrier function and immune homeostasis are missing links in obesity and type 2 diabetes development. Front Endocrinol (Lausanne). 2021;12:833544.

    Article  PubMed  Google Scholar 

  • Steed H, Macfarlane GT, Blackett KL, Macfarlane S, Miller MH, Bahrami B, et al. Bacterial translocation in cirrhosis is not caused by an abnormal small bowel gut microbiota. FEMS Immunol Med Microbiol. 2011;63(3):346–54.

    Article  CAS  PubMed  Google Scholar 

  • Townsend EM, Kelly L, Muscatt G, Box JD, Hargraves N, Lilley D, et al. The human gut Phageome: origins and roles in the human gut microbiome. Front Cell Infect Microbiol. 2021;11:643214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verges B, Duvillard L, Lagrost L, Vachoux C, Garret C, Bouyer K, et al. Changes in lipoprotein kinetics associated with type 2 diabetes affect the distribution of lipopolysaccharides among lipoproteins. J Clin Endocrinol Metab. 2014:jc20133463.

    Google Scholar 

  • Wu H, Esteve E, Tremaroli V, Khan MT, Caesar R, Manneras-Holm L, et al. Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nat Med. 2017;23(7):850–8.

    Article  CAS  PubMed  Google Scholar 

  • Yilmaz D, Guncu GN, Kononen E, Baris E, Caglayan F, Gursoy UK. Overexpressions of hBD-2, hBD-3, and hCAP18/LL-37 in gingiva of diabetics with periodontitis. Immunobiology. 2015;220(11):1219–26.

    Article  CAS  PubMed  Google Scholar 

  • Zelante T, Iannitti RG, Cunha C, De Luca A, Giovannini G, Pieraccini G, et al. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity. 2013;39(2):372–85.

    Article  CAS  PubMed  Google Scholar 

  • Zhao L, Lou H, Peng Y, Chen S, Fan L, Li X. Elevated levels of circulating short-chain fatty acids and bile acids in type 2 diabetes are linked to gut barrier disruption and disordered gut microbiota. Diabetes Res Clin Pract. 2020;169:108418.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rémy Burcelin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Burcelin, R. (2024). From Leaky Gut to Tissue Microbiota in Metabolic Diseases. In: Federici, M., Menghini, R. (eds) Gut Microbiome, Microbial Metabolites and Cardiometabolic Risk. Endocrinology. Springer, Cham. https://doi.org/10.1007/978-3-031-35064-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35064-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35063-4

  • Online ISBN: 978-3-031-35064-1

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics