Skip to main content

Metal Oxides–Based Nanomaterials: Green Synthesis Methodologies and Sustainable Environmental Applications

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Handbook of Green and Sustainable Nanotechnology

Abstract

Environmental pollution is increasing day by day due to the development of various types of industries at the present time. These industries dump their untreated, contaminated waste and harmful smoke into the environment. Water and air pollution are some of the most concerning topics around the world. With the help of several types of nanomaterials, nanotechnology has found great potential in the removal of toxic pollutants from the environment. Metal oxides and metal oxide–based nanomaterials were found to be very effective toward the removal of harmful pollutants from the environment. The photocatalytic degradation practice in bare metal oxide semiconductors such as ZnO, TiO2, NiO, Fe2O3, and others is usually initiated in the presence of UV light, and this process is very efficient and the utilization of energy is high in this UV light irradiation but is lower in natural light and visible light. Incorporation of dopant improves the photocatalytic properties of metal oxides nanomaterials such as lowers band gap energy, delays the recombination rate as well as separation of charge carriers, and enhances the surface area. Metal-coupled nanoparticles show excellent photocatalytic activity under direct solar and visible light than undoped nanomaterial. In the present chapter, some recently developed techniques for sustainable environmental applications are briefly discussed. Metal oxides and their classification as monometallic and bimetallic synthesis of metal oxides and metal oxide–based nanomaterials using green methodology are summarized below.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abboud Y, Saffaj T, Chagraoui A, El Bouari A, Brouzi K (2014) Biosynthesis, characterization and antimicrobial activity of copper oxide nanoparticles (CONPs) produced using brown alga extract (Bifurcaria bifurcata). 4(5):571–576. https://doi.org/10.1007/s13204-013-0233-x

  • Ahmad R, Mirza A (2018) Facile one pot green synthesis of chitosan-iron oxide (CS-Fe2O3) nanocomposite: removal of Pb(II) and Cd(II) from synthetic and industrial wastewater. J Clean Prod S0959652618307327:342. https://doi.org/10.1016/j.jclepro.2018.03.075

    Article  CAS  Google Scholar 

  • Ahmad N, Sharma S, Alam MK, Singh VN, Shamsi SF, Mehta BR, Fatma A (2010) Rapid synthesis of silver nanoparticles using dried medicinal plant of basil. Colloids Surf B Biointerfaces 81:81–87

    Article  CAS  Google Scholar 

  • Ali, Md Arshad; Ahmed, Temoor; Wu, Wenge; Hossain, Afsana; Hafeez, Rahila; Islam Masum, Md Mahidul; Wang, Yanli; An, Qianli; Sun, Guochang; Li, Bin (2020). Advancements in plant and microbe-based synthesis of metallic nanoparticles and their antimicrobial activity against plant pathogens. Nanomaterials, 10(6), https://doi.org/10.3390/nano10061146

  • Anastas PT, Werner JC (1998) Green chemistry: theory and practice. Oxford University Press, New York

    Google Scholar 

  • Armendariz V, Herrera I, Peralta-videa JRP-V, Jose-Yacaman M, Troiani H, Santiago P (2004) Size controlled gold nanoparticle formation by Avena sativa biomass: use of plants in nanobiotechnology. J Nanopart Res 6:377–382. https://doi.org/10.1007/s11051-004-0741-4

    Article  CAS  Google Scholar 

  • Bai RG, Sabouni R, Husseini G (2018) Green nanotechnology – a road map to safer nanomaterials. Appl Nanomater:133–159. https://doi.org/10.1016/B978-0-08-101971-9.00006-5

  • Baruah S, Pal SK, Dutta J (2012) Nanostructured zinc oxide for water treatment. Nanosci Nanotechnol -Asia 2(2):90–102. [Online]. Available: http://www.eurekaselect.com/node/105689/article

    CAS  Google Scholar 

  • Bhatia P, Nath M (2020) Green synthesis of p-NiO/n-ZnO nanocomposites: excellent adsorbent for removal of Congo red and efficient catalyst for reduction of 4-nitrophenol present in wastewater. J Water Process Eng 33:101017. https://doi.org/10.1016/j.jwpe.2019.1010

    Article  Google Scholar 

  • Bhavyasree PG, Xavier TS (2021) Green synthesised copper and copper oxide based nanomaterials using plant extracts and their application in antimicrobial activity: review. Curr Res Green Sustain Chem 5:100249.,ISSN 2666-0865. https://doi.org/10.1016/j.crgsc.2021.100249

    Article  CAS  Google Scholar 

  • Bindhu MR, Umadevi M (2015) Antibacterial and catalytic activities of green synthesized silver nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc 135:373–378

    Article  CAS  Google Scholar 

  • Biswal SK, Panigrahi GK, Sahoo SK (2020) Green synthesis of Fe2O3-Ag nanocomposite using Psidium guajava leaf extract: An eco-friendly and recyclable adsorbent for remediation of Cr(VI) from aqueous media. Biophys Chem 263. https://doi.org/10.1016/j.bpc.2020.106392

  • Boudiaf M, Messai Y, Bentouhami E, Schmutz M, Blanck C, Ruhlmann L, Eddine Mekki D (2021) Green synthesis of NiO nanoparticles using Nigella sativa extract and their enhanced electro-catalytic activity for the 4-nitrophenol degradation. J Phys Chem Solids 153:110020. https://doi.org/10.1016/j.jpcs.2021.110020

    Article  CAS  Google Scholar 

  • Cheng P, Wang Y, Xu L, Sun P, Su Z, Jin F, Liu F, Sun Y, Lu G (2016) High specific surface area urchin-like hierarchical ZnO-TiO2 architectures: hydrothermal synthesis and photocatalytic properties. Mater Lett., S0167577X16304426–. https://doi.org/10.1016/j.matlet.2016.03.120

  • Corr SA (2013) Metal oxide nanoparticles Nanoscience: Volume 1: Nanostructures through chemistry. R Soc Chem:180–207

    Google Scholar 

  • Daneshvar N, Rabbani M, Modirshahla N, Behnajady MA (2004) Kinetic modeling of photocatalytic degradation of Acid Red 27 in UV/TiO2 process. 168(1–2):39–45. https://doi.org/10.1016/j.jphotochem.2004.05.011

  • Das S, Chakraborty J, Chatterjee S, Kumar H (2018) Prospects of biosynthesized nanomaterials for the remediation of organic and inorganic environmental contaminants. Environ Sci Nano 5(12):2784–2808. https://doi.org/10.1039/c8en00799c

    Article  CAS  Google Scholar 

  • Dhand C, Dwivedi N, Loh XJ, Ying J, Ng A, Varma NK, Beuerman RW, Lakshminarayanan R, Ramakrishna S (2015) Methods and strategies for the synthesis of diverse nanoparticles and their applications: a comprehensive overview. RSC Adv. https://doi.org/10.1039/C5RA19388E

  • Dikshit P, Kumar J, Das A, Sadhu S, Sharma S, Singh S, Gupta P, Kim B (2021) Green synthesis of metallic nanoparticles: applications and limitations. Catalysts 11. https://doi.org/10.3390/catal11080902

  • El Golli A, Fendrich M, Bazzanella N, Dridi C, Miotello A, Orlandi M (2021) Wastewater remediation with ZnO photocatalysts: green synthesis and solar concentration as an economically and environmentally viable route to application. J Environ Manag 286:112226. https://doi.org/10.1016/j.jenvman.2021.112226

    Article  CAS  Google Scholar 

  • Elhalil A, Elmoubarki R, Farnane M, Machrouhi A, Sadiq M, Mahjoubi FZ, Qourzal S, Barka N (2018) Photocatalytic degradation of caffeine as a model pharmaceutical pollutant on mg doped ZnO-Al2O3 heterostructure. Environ. Nanotechnology. Monit Manag 10:63–72. https://doi.org/10.1016/j.enmm.2018.02.002

    Article  Google Scholar 

  • Fan Z, Meng F, Gong J, Li H, Hu Y, Liu D (2016) Enhanced photocatalytic activity of hierarchical flower-like CeO2/TiO2 heterostructures. Mater Lett 175:36–39. https://doi.org/10.1016/j.matlet.2016.03.136

    Article  CAS  Google Scholar 

  • Fernández GM, Rodriguez J (2007) Metal oxide nanoparticles-nanomaterials: inorganic and bioinorganic perspectives. Brookhaven National Laboratory

    Google Scholar 

  • Gao T, Jin Z, Liao M, Xiao J, Yuan H, Xiao D (2015) A trimetallic V–Co–Fe oxide nanoparticle as an efficient and stable electrocatalyst for oxygen evolution reaction. J Mater Chem A. https://doi.org/10.1039/C5TA04058B

  • Garrafa-Galvez HE, Nava O, Soto-Robles CA, Vilchis-Nestor AR, Castro-Beltrán A, Luque PA (2019) Green synthesis of SnO2 nanoparticle using Lycopersicon esculentum peel extract. J Mol Struct., S0022286019308968–. https://doi.org/10.1016/j.molstruc.2019.07.052

  • Gatoo MA, Naseem S, Arfat MY, Mahmood A, Qasim K, Zubair S (2014) Physicochemical properties of nanomaterials: implication in associated toxic manifestations. Biomed Res Int:8

    Google Scholar 

  • Guesh K, Mayoral Á, Márquez-Álvarez C, Chebude Y, Díaz I (2015) Enhanced photocatalytic activity of TiO2 supported on zeolites tested in real wastewaters from the textile industry of Ethiopia. Microporous Mesoporous Mater., S1387181115006599–. https://doi.org/10.1016/j.micromeso.2015.12.001

  • Guo M, Song W, Wang T, Li Y, Wang X, Du X (2015) Phenyl-functionalization of titanium dioxide-nanosheets coating fabricated on a titanium wire for selective solid-phase microextraction of polycyclic aromatic hydrocarbons from environment water samples. Talanta 144:998–1006. https://doi.org/10.1016/j.talanta.2015.07.064

    Article  CAS  Google Scholar 

  • Gupta SK, Mao Y (2021) A review on molten salt synthesis of metal oxide nanomaterials: Status, opportunity, and challenge. Prog Mater Sci:100734. https://doi.org/10.1016/j.pmatsci.2020.100734

  • Huynh K-H, Pham X-H, Kim J, Lee SH, Chang H, Rho W-Y, Jun B-H (2020) Synthesis, properties, and biological applications of metallic alloy nanoparticles. Int J Mol Sci 21(14):5174. https://doi.org/10.3390/ijms21145174

    Article  CAS  Google Scholar 

  • Araújo IMS, Silva RR, Pacheco G, Lustri WR, Tercjak A, Gutierrez J, Júnior JRS, Azevedo FHC, Figuêredo GS, Vega ML, Ribeiro SJL, Barud HS (2017) Hydrothermal synthesis of bacterial cellulose–copper oxide nanocomposites and evaluation of their antimicrobial activity. Carbohydr Polym. S0144861717311141–. https://doi.org/10.1016/j.carbpol.2017.09.081

  • Kaur A, Gupta G, Ibhadon AO, Salunke DB, Sinha ASK, Kansal SK (2018) A facile synthesis of silver modified ZnO nanoplates for efficient removal of ofloxacin drug in aqueous phase under solar irradiation. J Environ Chem Eng 6:3621–3630. https://doi.org/10.1016/j.jece.2017.05.032

    Article  CAS  Google Scholar 

  • Khan S, Mansoor S, Rafi Z, Kumari B, Shoaib A, Saeed M, Alshehri S, Ghoneim M, Rahamathulla M, Hani U, Shakeel F (2021) A review on nanotechnology: properties, applications, and mechanistic insights of cellular uptake mechanisms. J Mol Liq 348. https://doi.org/10.1016/j.molliq.2021.118008

  • Kiran SV, Tayade RJ, Shah KJ, Joshi PA, Shukla AD, Gandhi VG (2020) Photocatalytic degradation of pharmaceutical and pesticide compounds (PPCs) using doped TiO2 nanomaterials: a review. Water-Energy Nexus 3:46–61

    Article  Google Scholar 

  • Kou J, Li Z, Guo Y, Gao J, Yang M, Zou Z (2010) Photocatalytic degradation of polycyclic aromatic hydrocarbons in GaN:ZnO solid solution-assisted process: direct hole oxidation mechanism. J Mol Catal A Chem 325:48–54

    Article  CAS  Google Scholar 

  • Kruth A, Peglow S, Rockstroh N, Junge H, Bruser V, Weltmann KD (2014) Enhancement of photocatalyic activity of dye sensitised anatase layers by application of a plasma-polymerized allylamine encapsulation. J Photochem Photobiol A Chem 290:31–37

    Article  CAS  Google Scholar 

  • Kumaravel J, Lalitha K, Arunthirumeni M, Shivakumar MS (2021) Mycosynthesis of bimetallic zinc oxide and titanium dioxide nanoparticles for control of Spodoptera frugiperda. Pestic Biochem Physiol 178:104910. https://doi.org/10.1016/j.pestbp.2021.104910

    Article  CAS  Google Scholar 

  • Lei Y, Chen F, Luo Y, Zhang L (2014) Three-dimensional magnetic graphene oxide foam/Fe3O4nanocomposite as an efficient absorbent for Cr(VI) removal. J Mater Sci 49(12):4236–4245. https://doi.org/10.1007/s10853-014-8118-2

    Article  CAS  Google Scholar 

  • Liang XT, Fang WS (2006) Medicinal chemistry of bioactive natural products. Wiley-Interscience, New York. https://doi.org/10.1002/0471739340

    Book  Google Scholar 

  • Lu F, Astruc D (2020) Nanocatalysts and other nanomaterials for water remediation from organic pollutants. Coord Chem Rev. https://doi.org/10.1016/j.ccr.2020.213180

  • Mahmoudi B, Soleimani F, Keshtkar H, Ali NM, Kazemnejadi M (2021) Green synthesis of trimetallic oxide nanoparticles and their use as an efficient catalyst for the green synthesis of quinoline and spirooxindoles: Antibacterial, cytotoxicity and anti-colon cancer effects. Inorg Chem Commun 133:108923.,ISSN 1387-7003. https://doi.org/10.1016/j.inoche.2021.108923

    Article  CAS  Google Scholar 

  • Manjula R, Thenmozhi M, Thilagavathi S, Srinivasan R, Kathirvel A (2019) Green synthesis and characterization of manganese oxide nanoparticles from Gardenia resinifera leaves. Mater Today Chem 26:3559–3563. https://doi.org/10.1016/j.matpr.2019.07.396

    Article  CAS  Google Scholar 

  • Mashjoor S, Yousefzadi M, Zolgharnain H, Kamrani E, Alishahi M (2018) Organic and inorganic nano-Fe 3O4: alga Ulva flexuosa -based synthesis, antimicrobial effects and acute toxicity to briny water rotifer Brachionus rotundiformis. Environ Pollut 237:50–64. https://doi.org/10.1016/j.envpol.2018.02.036

    Article  CAS  Google Scholar 

  • Mujbeer RK, Tanveer FR (2014) Nanotechnology: scope and application in Plant Disease Management. Plant Pathol J 148:148–162. https://doi.org/10.3923/ppj.2014.214.231

  • Nabi G, Majid A, Riaz A, Alharbi T, Arshad Kamran M, Al-Habardi M (2021) Green synthesis of spherical TiO2 nanoparticles using citrus Limetta extract: excellent photocatalytic water decontamination agent for RhB dye. Inorg Chem Commun 129:108618. https://doi.org/10.1016/j.inoche.2021.108618

    Article  CAS  Google Scholar 

  • Nakamura S, Sato M, Sato Y, Ando N, Takayama T, Fujita M, Ishihara M (2019) Synthesis and application of silver nanoparticles (Ag NPs) for the prevention of infection in healthcare workers. Int J Mol Sci 20(15). https://doi.org/10.3390/ijms20153620

  • Naseem T, Durrani T (2021) The role of some important metal oxide nanoparticles for wastewater and antibacterial applications: a review. Environ Chem Ecotoxicol 3:59–75. https://doi.org/10.1016/j.enceco.2020.12.001

    Article  CAS  Google Scholar 

  • Naz S, Islam M, Tabassum S, Fernandes N, Freitas, de Blanco C, Esperanza J, Zia M (2019) Green synthesis of hematite (α-Fe2O3) nanoparticles using Rhus punjabensis extract and their biomedical prospect in pathogenic diseases and cancer. J Mol Struct S0022286019302248:1. https://doi.org/10.1016/j.molstruc.2019.02.088

    Article  CAS  Google Scholar 

  • Niu M, Cheng D, Cao D (2014) Understanding the mechanism of photocatalysis enhancements in the graphene-like semiconductor sheet/TiO2 composites. J Phys Chem C 118:5954–5960

    Article  CAS  Google Scholar 

  • Nizamuddin S, Siddiqui MTH, Mubarak NM, Baloch HA, Abdullah EC, Mazari SA et al (2019) Iron oxide nanomaterials for the removal of heavy metals and dyes from wastewater. Nanoscale Mat Water Purifi:447–472

    Google Scholar 

  • Parsons J, Peralta-Videa J, Gardea-Torresdey J (2007) Use of plants in biotechnology: synthesis of metal nanoparticles by inactivated plant tissues, plant extracts, and living plants. Dev Enviro Sci 5:463

    CAS  Google Scholar 

  • Patwardhan, Siddharth V.; Manning, Joseph R.H.; Chiacchia, Mauro (2018). Bioinspired synthesis as a potential green method for the preparation of nanomaterials: Opportunities and challenges. Curr Opin Green Sustain Chem, S2452223617300913–. https://doi.org/10.1016/j.cogsc.2018.08.004

  • Permien S, Indris S, Hansen A, Scheuermann M, Zahn D, Schürmann U, Neubüser G, Kienle L, Yegudin E, Bensch W (2016) Elucidation of the conversion reaction of CoMnFeO4 nanoparticles in lithium ion battery anode via operando studies. ACS Appl Mater Interfaces., acsami.6b03185–. https://doi.org/10.1021/acsami.6b03185

  • Qin R, Meng F, Khan MW, Bo Y, Li H, Fan Z, Gong J (2019) Fabrication and enhanced photocatalytic property of TiO2-ZnO composite photocatalysts. Mater Lett 240:84–87. https://doi.org/10.1016/j.matlet.2018.12.139

    Article  CAS  Google Scholar 

  • Rachna, Rani M, Shanker U (2020a) Synergistic effects of zinc oxide coupled copperhexacyanoferrate nanocomposite: robust visible-light driven dye degradation. J Colloid Interface Sci. https://doi.org/10.1016/j.jcis.2020.09.079

  • Rachna, Rani M, Shanker U (2020b) Sunlight assisted degradation of toxic phenols by zinc oxide doped Prussian blue nanocomposite. J Environ Chem Eng 8:104040. https://doi.org/10.1016/j.jece.2020.104040

  • Rahimi R, Zargari S, Ghaffarinejad A, Morsali A (2016) Investigation of the synergistic effect of porphyrin photosensitizer on graphene-TiO2 nanocomposite for visible light photoactivity improvement. Environ Prog Sustain Energy 35:642–652

    Google Scholar 

  • Raliya R, Tarafdar JC (2013) ZnO nanoparticle biosynthesis and its effect on phosphorous-mobilizing enzyme secretion and gum contents in Clusterbean (Cyamopsis tetragonolobaL.). Agric Res 2(1):48–57. https://doi.org/10.1007/s40003-012-0049-z

    Article  CAS  Google Scholar 

  • Raliya R, Biswas P, Tarafdar JC (2015) TiO2 nanoparticle biosynthesis and its physiological effect on mung bean (Vigna radiata L.). Biotechnol Rep 5:22–26. https://doi.org/10.1016/j.btre.2014.10.009

    Article  Google Scholar 

  • Ramu AG, Kumari MLA, Elshikh MS, Alkhamis HH, Alrefaei AF, Choi D (2021) A facile and green synthesis of CuO/NiO nanoparticles and their removal activity of toxic nitro compounds in aqueous medium. Chemosphere 271:129475. https://doi.org/10.1016/j.chemosphere.2020.129475

    Article  CAS  Google Scholar 

  • Ramzan M, Obodo RM, Shahzad MI, Mukhtar S, Ilyas SZ, Mahmood T (2021) Green synthesis of cu@TiO2 via cedrus deodara leaf extract: a novel composite with high photocatalytic and antibacterial activity. Current Research in Green and Sustainable Chemistry 4:100137. https://doi.org/10.1016/j.crgsc.2021.100137

    Article  CAS  Google Scholar 

  • Rani M, Shanker U (2018) Insight in to the degradation of bisphenol A by doped ZnO@ZnHCF nanocubes: high photocatalytic performance. J Colloid Interface Sci 530:16–28. https://doi.org/10.1016/j.jcis.2018.06.070

    Article  CAS  Google Scholar 

  • Rani M, Rachna, Shanker U (2019) Mineralization of carcinogenic anthracene and phenanthrene by sunlight active bimetallic oxides nanocomposites. J Colloid Interface Sci 555:676–688

    Article  CAS  Google Scholar 

  • Rani M, Rachna, Shanker U (2020) Efficient photocatalytic degradation of bisphenol a by metal ferrites nanoparticles under sunlight. Environ Technol Innov 19:100792–100809

    Google Scholar 

  • Ren G, Hu D, Cheng EWC, Vargas-Reus MA, Reip P, Allaker RP (2009) Characterisation of copper oxide nanoparticles for antimicrobial applications. Int J Antimicrob Agents 33(6):587–590. https://doi.org/10.1016/j.ijantimicag.2008.12.004

    Article  CAS  Google Scholar 

  • Ruan X, Li R, Ding Z, Luo J, Liu Q, Deng C, Li D (2020) J Nanosci Nanotechnol 20(3):1907–1916

    Article  CAS  Google Scholar 

  • Ruhaimi AH, Ab Aziz MA (2021) Spherical CeO2 nanoparticles prepared using an egg-shell membrane as a bio-template for high CO2 adsorption. Chem Phys Lett 779:138842. https://doi.org/10.1016/j.cplett.2021.138842

    Article  CAS  Google Scholar 

  • Sadhukhan S, Bhattacharyya A, Rana D, Ghosh TK, Orasugh JT, Khatua S, Acharya K, Chattopadhyay D (2020) Synthesis of RGO/NiO nanocomposites adopting a green approach and its photocatalytic and antibacterial properties. Mater Chem Phys. https://doi.org/10.1016/j.matchemphys.2020.122906

  • Salvadori MR, Ando RA, Oller Nascimento CA, Corrêa B (2015) Extra and intracellular synthesis of nickel oxide nanoparticles mediated by dead fungal biomass. PLoS One 10(6):e0129799. https://doi.org/10.1371/journal.pone.0129799

    Article  CAS  Google Scholar 

  • Sankar R, Manikandan P, Malarvizhi V, Fathima T, Shivashangari KS, Ravikumar V (2014) Green synthesis of colloidal copper oxide nanoparticles using Carica papaya and its application in photocatalytic dye degradation. Spectrochim Acta A Mol Biomol Spectrosc 121:746–750

    Article  CAS  Google Scholar 

  • Sarkar J, Mollick MMR, Chattopadhyay D, Acharya K (2016) An eco-friendly route of γ-Fe2O3 nanoparticles formation and investigation of the mechanical properties of the HPMC-γ-Fe2O3 nanocomposites. Bioprocess Biosyst Eng 40(3):351–359. https://doi.org/10.1007/s00449-016-1702-x

    Article  CAS  Google Scholar 

  • Sawsan D, Haik Y, Ayesh AI, Tit N (2014) Synthesis and optical properties of colloidal CuO nanoparticles. J Lumin 151:149–154. https://doi.org/10.1016/j.jlumin.2014.02.015

    Article  CAS  Google Scholar 

  • Shanker U, Jassal V, Rani M, Kaith BS (2016) Towards green synthesis of nanoparticles: from bio-assisted sources to benign solvents. A review. Int J Environ Anal Chem 96(9):801–835

    CAS  Google Scholar 

  • Sharma G, Kumar A, Naushad M, Sharma S, Ghfar AA, Ahamad T, Si C, Stadler FJ (2019) Graphene oxide supported La/Co/Ni trimetallic nano-scale systems for photocatalytic remediation of 2-chlorophenol. J Mol Liq 294., 111605–. https://doi.org/10.1016/j.molliq.2019.111605

  • Tariq M, Khan AU, Rehman AU, Ullah S, Jan AU, Zakareya et al (2021) Green synthesis of Zno@GO nanocomposite and its’ efficient antibacterial activity. Photodiagn Photodyn Ther 35:102471. https://doi.org/10.1016/j.pdpdt.2021.102471

    Article  CAS  Google Scholar 

  • Torralvo MJ, Sanz J, Sobrados I, Soria J, Garlisi C, Palmisano G, Çetinkaya S, Yurdakal S, Augugliaro V (2018) Anatase photocatalyst with supported low crystalline TiO2: the influence of amorphous phase on the activity. Appl Catal B Environ 221:140–151. https://doi.org/10.1016/j.apcatb.2017.08.089

    Article  CAS  Google Scholar 

  • Wu D, Guo J, Wang H, Zhang X, Yang Y, Yang C, Gao Z, Wang Z, Jiang K (2021) Green synthesis of boron and nitrogen co-doped TiO2 with rich B-N motifs as Lewis acid-base couples for the effective artificial CO2 photoreduction under simulated sunlight. J Colloid Interface Sci 585:95–107. https://doi.org/10.1016/j.jcis.2020.11.075

    Article  CAS  Google Scholar 

  • Yallappa S, Manjanna J, Dhananjaya BL (2015) Phytosynthesis of stable Au, Ag and Au-Ag alloy nanoparticles using J. Sambac leaves extract, and their enhanced antimicrobial activity in presence of organic antimicrobials. Spectrochim Acta A Mol Biomol Spectrosc 137:236–243

    Article  CAS  Google Scholar 

  • Yi C, Liao Q, Deng W, Huang Y, Mao J, Zhang B, Wu G (2019) The preparation of amorphous TiO2 doped with cationic S and its application to the degradation of DCFs under visible light irradiation. Sci Total Environ 684:527–536

    Article  CAS  Google Scholar 

  • Yousefi N, Emtyazjoo M, Sepehr MN, Darzi SJ, Sepahy AA (2020) Green synthesis of Pseudomonas aeruginosa immobilized Fe3O4-multiwalled carbon nanotubes bio-adsorbent for the removal of 2,4,6-trinitrophenol from aqueous solution. Environ Technol Innov. https://doi.org/10.1016/j.eti.2020.101071

  • Zhang X, Lei L (2008) Preparation of photocatalytic Fe2O3–TiO2 coatings in one step by metal organic chemical vapor deposition. Appl Surf Sci 254(8):2406–2412. https://doi.org/10.1016/j.apsusc.2007.09.067

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uma Shanker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Shanker, U., Vipin, Rani, M. (2023). Metal Oxides–Based Nanomaterials: Green Synthesis Methodologies and Sustainable Environmental Applications. In: Shanker, U., Hussain, C.M., Rani, M. (eds) Handbook of Green and Sustainable Nanotechnology. Springer, Cham. https://doi.org/10.1007/978-3-030-69023-6_80-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69023-6_80-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69023-6

  • Online ISBN: 978-3-030-69023-6

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Metal Oxides–Based Nanomaterials: Green Synthesis Methodologies and Sustainable Environmental Applications
    Published:
    02 March 2023

    DOI: https://doi.org/10.1007/978-3-030-69023-6_80-2

  2. Original

    Metal Oxides–Based Nanomaterials: Green Synthesis Methodologies and Sustainable Environmental Applications
    Published:
    16 February 2023

    DOI: https://doi.org/10.1007/978-3-030-69023-6_80-1