Skip to main content

Impacts of Metal Nanoparticles on Fish

  • Living reference work entry
  • First Online:
Handbook of Green and Sustainable Nanotechnology

Abstract

Nanosized metals react with large masses because of their high stability in the aquatic environment, smaller size, and larger specific surface area. Due to advanced physical and chemical properties of nanosized metals, their use in the industry has been increasing with a high acceleration day by day. Since this increase results in higher levels of release to the environment, it poses a danger especially for aquatic organisms. Overproduction and use of nanosized metals accelerate their precipitation in the aquatic ecosystem, causing metal accumulation in organisms and being transferred more intensively to the upper trophic levels. Acute or chronic effects of metal nanoparticles entering aquatic ecosystems cause changes in metabolic and physiological events by affecting biochemical parameters in serum as well as accumulation in tissues and organs of fish. There are studies stating in favor or against the finding that the effect of metal nanoparticles is different from the other forms of the same metal on fish. Hence, this chapter will concentrate on the impacts of metal nanoparticles on fish.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abdel-Khalek AA, Kadry MAM, Badran SR, Marie MS (2015) Comparative toxicity of copper oxide bulk and nano particles in Nile tilapia; Oreochromis niloticus: biochemical and oxidative stress. J Basic Appl Biol 72:43–57

    Article  CAS  Google Scholar 

  • Al-Bairuty GA, Shaw BJ, Handy RD, Henry TB (2013) Histopathological effects of waterborne copper nanoparticles and copper sulphate on the organs of rainbow trout (Oncorhynchus mykiss). Aquat Toxicol 126:104–115

    Article  CAS  Google Scholar 

  • Artacho P, Soto-Gamboa M, Verdugo C, Nespolo RF (2007) Blood biochemistry reveals malnutrition in black-necked swans (Cygnus melanocoryphus) living in a conservation priority area. Comp Biochem Physiol A Mol Integr Physiol 146:283–290

    Article  CAS  Google Scholar 

  • Asagba SA, Eriyamremu GE, Igberaese ME (2008) Bioaccumulation of cadmium and its biochemical effect on selected tissues of the catfish (Clarias gariepinus). Fish Physiol Biochem 34:61–69

    Article  CAS  Google Scholar 

  • Ateş M, Dugo MA, Demir V, Arslan Z, Tchounwou PB (2014) Effect of copper oxide nanoparticles to sheepshead minnow (Cyprinodon variegatus) at different salinities. Dig J Nanomater Biostruct 9(1):369–377

    Google Scholar 

  • Balint T, Ferenczy J, Katai F, Kiss I, Kraczer L, Kufcsak O, Lang G, Polyhos C, Szabó I, Szegletes T, Nemcsok J (1997) Similarities and differences between the massive eel (Anguilla anguilla L.) devastations that occurred in Lake Balaton in 1991 and 1995. Ecotoxicol Environ Saf 37(1):17–23

    Article  CAS  Google Scholar 

  • Bernet D, Schmidt H, Wahli T, Burkhardt-Holm P (2001) Effluent from a sewage treatment works causes changes in serum chemistry of brown trout (Salmo trutta L.). Ecotoxicol Environ Saf 48(2):140–147

    Article  CAS  Google Scholar 

  • Bhatt I, Tripathi BN (2011) Interaction of engineered nanoparticles with various components of the environment and possible strategies for their risk assessment. Chemosphere 82(3):308–317

    Article  CAS  Google Scholar 

  • Bo J, Wang DJ, Li TL, Li Y, Zhang G, Wang C, Zhang SQ (2015) Accumulation and risk assessment of heavy metals in water, sediments and aquatic organisms in rural rivers in the Taihu Lake Region, China. Environ Sci Pollut Res 22:6721–6731

    Article  CAS  Google Scholar 

  • Brown JA (1993) Endocrine responses to environmental pollutants. In: Rankin JC, Jensen FB (eds) Fish ecophysiology. Chapman and Hall, London, pp 276–296

    Chapter  Google Scholar 

  • Bundschuh M, Filser J, Lüderwald S, McKee MS, Metreveli G, Schaumann GE, Schulz R, Wagner S (2018) Nanoparticles in the environment: where do we come from, where do we go to? Environ Sci Eur 30(1):6

    Article  CAS  Google Scholar 

  • Chae YJ, Pham CH, Lee J, Bae E, Yi J, Gu MB (2009) Evaluation of the toxic impact of silver nanoparticles on Japanese Medaka (Oryzias latipes). Aquat Toxicol 94:320–327

    Article  CAS  Google Scholar 

  • Cousins RJ (1985) Absorbtion, transport and hepatic metabolism of copper and zinc: special reference to metallothionein and ceruloplasmin. Physiol Rev 65(2):238–309

    Article  CAS  Google Scholar 

  • Daoud A, Saud A, Sudhir K, Maqusood A, Maqsood AS (2012) Oxidative stress and genotoxic effect of zinc oxide nanoparticles in freshwater snail Lymnaea luteola L. Aquat Toxicol 124(125):83–90

    Google Scholar 

  • Dawood MAO, Koshio S, Ishikawa M, Yokoyama S, El Basuini MF, Hossain MS, Nhu TH, Dossoua S, Moss AS (2016) Effects of dietary supplementation of Lactobacillus rhamnosus or/and Lactococcus lactis on the growth, gut microbiota and immune responses of red sea bream, Pagrus major. Fish Shellfish Immunol 49:275–285

    Article  CAS  Google Scholar 

  • Dietschy JM, Turley SD, Spady DK (1993) Role of liver in the maintenance of cholesterol and low density lipoprotein homeostasis in different animal species, including humans. J Lipid Res 34:1637–1659

    Article  CAS  Google Scholar 

  • Evans DH, Piermarini PM, Choe KP (2005) The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation and excretion of nitrogenous waste. Physiol Rev 85:97–177

    Article  CAS  Google Scholar 

  • Fabrega J, Luoma SN, Tyler CR, Galloway TM, Lead JR (2011) Silver nanoparticles: behaviour and effects in the aquatic environment. Environ Int 37(2):517–531

    Article  CAS  Google Scholar 

  • Farre M, Gajda-Schrantz K, Kantiani L, Barcelo D (2009) Ecotoxicity and analysis of nanomaterials in the aquatic environment. Anal Bioanal Chem 393:81–95

    Article  CAS  Google Scholar 

  • Federici G, Shaw BJ, Handy RD (2007) Toxicity of titanium dioxide nanoparticles to rainbow trout (Oncorhynchus mykiss): gill injury, oxidative stress, and other physiological effects. Aquat Toxicol 84(4):415–430

    Article  CAS  Google Scholar 

  • Ferrari A, Venturino A, de D’Angelo AMP (2007) Effects of carbaryl and azinphos methyl on juvenile rainbow trout (Oncorhynchus mykiss) detoxifying enzymes. Pestic Biochem Physiol 88(2):134–142

    Article  CAS  Google Scholar 

  • Fournie JW, Keven-Summers J, Courtney LA, Engle VD, Blazer VS (2001) Utility of splenic macrophage aggregates as an indicator of fish exposure to degraded environments. J Aquat Anim Health 13(2):105–116

    Article  Google Scholar 

  • Fu PP, Xia Q, Hwang HM, Ray PC, Yu H (2014) Mechanisms of nanotoxicity: generation of reactive oxygen species. J Food Drug Anal 22:64–75

    Article  CAS  Google Scholar 

  • George SG (1994) Enzymology and molecular biology of phase II xenobiotic conjugating enzymes in fish. In: Malins DC, Ostrander GK (eds) Aquatic toxicology. Molecular, biochemical, and cellular perspectives. Lewis Publishers, Boca Raton, pp 37–85

    Google Scholar 

  • Goede RW, Barton BA (1990) Organismic indices and an autopsy-based assessment as indicators of health and condition of fish. Am Fish Soc Symp 8:93–108

    Google Scholar 

  • Gomes T, Pereira CG, Cardoso C, Bebianno MJ (2013) Differential protein expression in mussels Mytilus galloprovincialis exposed to nano and ionic Ag. Aquat Toxicol 136(137):79–90

    Article  CAS  Google Scholar 

  • Griffin S, Masood MI, Nasim MJ, Sarfraz M, Ebokaiwe AP, Schäfer KH, Keck CM, Jacob C (2017) Natural nanoparticles: a particular matter inspired by nature. Antioxidants 7(1):3

    Article  CAS  Google Scholar 

  • Griffitt RJ, Weil R, Hyndman KA, Denslow ND, Powers K, Taylor D, Barber DS (2007) Exposure to copper nanoparticles causes gill injury and acute lethality in zebrafish (Danio rerio). Environ Sci Technol 41:8178–8186

    Article  CAS  Google Scholar 

  • Griffitt RJ, Luo J, Gao J, Bonzongo JC, Barber DS (2008) Effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms. Environ Toxicol Chem 27:1972–1978

    Article  CAS  Google Scholar 

  • Griffitt RJ, Hyndman K, Denslow ND, Barber DS (2009) Comparison of molecular and histological changes in zebrafish gills exposed to metallic nanoparticles. Toxicol Sci 107(2):404–415

    Article  CAS  Google Scholar 

  • Handy RD, Cornelis G, Fernandes T, Tsyusko O, Decho A, Sabo-Attwood T, Metcalfe C, Steevens JA, Klaine SJ, Koelmans AA, Horne N (2012) Ecotoxicity test methods for engineered nanomaterials: practical experiences and recommendations from the bench. Environ Toxicol Chem 31:15–31

    Article  CAS  Google Scholar 

  • Hao L, Wang Z, Xing B (2009) Effect of sub-acute exposure to TiO2 nanoparticles on oxidative stress and histopathological changes in juvenile carp (Cyprinus carpio). J Environ Sci 21:1459–1466

    Article  CAS  Google Scholar 

  • Hao L, Chen L, Hao J, Zhong N (2013) Bioaccumulation and sub-acute toxicity of zinc oxide nanoparticles in juvenile carp (Cyprinus carpio): a comparative study with its bulk counterparts. Ecotoxicol Environ Saf 91:52–60

    Article  CAS  Google Scholar 

  • Heath AG (1995) Water pollution and fish physiology. CRC Press, Florida, p 245

    Google Scholar 

  • Heydarnejad MS, Khosravian-Hemami M, Nematollahi A, Rahnama S (2013) Effects of copper at sublethal concentrations on growth and biochemical parameters in rainbow trout (Oncorhynchus mykiss). Int Rev Hydrobiol 98:71–79

    Article  CAS  Google Scholar 

  • Hinton DE, Baumann PC, Gardner GR, Hawkins WE, Hendricks JD, Murchelano RA, Okihiro MS (1992) Histopathologic biomarkers. Biochemical, physiological, and histological markers of anthropogenic stress. In: Biomarkers. Lewis Publishers, Boca Raton, pp 155–209

    Google Scholar 

  • Hoseini SM, Hosseini SA, Soudagar M (2012) Dietary tryptophan changes serum stress markers, enzyme activity, and ions concentration of wild common carp Cyprinus carpio exposed to ambient copper. Fish Physiol Biochem 38(5):1419–1426

    Article  CAS  Google Scholar 

  • Hoseini SM, Hedayati A, Taheri Mirghaed A, Ghelichpour M (2016) Toxic effects of copper sulfate and copper nanoparticles on minerals, enzymes, thyroid hormones and protein fractions of plasma and histopathology in common carp Cyprinus carpio. Exp Toxicol Pathol 68(9):493–503

    Article  CAS  Google Scholar 

  • Ikem A, Egiebog NO, Nyavor K (2003) Trace elements in water, fish and sediment from Tuskegee Lake, Southeastern USA. Water Air Soil Pollut 149:51–75

    Article  CAS  Google Scholar 

  • Javed M, Ahmad I, Ahmad A, Usmani N, Ahmad M (2016) Studies on the alterations in hematological indices, micronuclei induction and pathological marker enzyme activities in Channa punctatus (spotted snakehead) perciformes, channidae exposed to thermal power plant effluent. Springerplus 5:761

    Article  CAS  Google Scholar 

  • Jezierska B, Sarnowski P, Witeska M, Lugowska K (2009) Disturbances of early development of fish caused by heavy metals (a review). Electron J Ichthyol 2:76–96

    Google Scholar 

  • Johari SA, Kalbassi MR, Yu IJ, Lee JH (2015) Chronic effect of waterborne silver nanoparticles on rainbow trout (Oncorhynchus mykiss): histopathology and bioaccumulation. Comp Clin Pathol 5:995–1007

    Article  CAS  Google Scholar 

  • Kong X, Jiang H, Wang S, Wu X, Fei W, Li L, Nie G, Li X (2013) Effects of copper exposure on the hatching status and antioxidant defense at different develop-mental stages of embryos and larvae of goldfish Carassius auratus. Chemosphere 92:1458–1464

    Article  CAS  Google Scholar 

  • Kopp R, Hetesa J (2000) Changes of hematological indices of juvenile carp (Cyprinus carpio L.) under influence of natural population cyanobacterial water blooms. Acta Vet Brno 69:13–137

    Article  Google Scholar 

  • Kumar O, Sugendran K, Vijayaraghavan R (2003) Oxidative stress associated hepatic and renal toxicity İnduced by ricin in mice. Toxicology 41:333–338

    CAS  Google Scholar 

  • Lakani BF, Meshkini S, Sadati YMA, Falahatkar B (2016) Bioaccumulation of copper nanoparticle in gill, liver, intestine and muscle of Siberian sturgeon (Acipenser baerii) juvenile. Caspian J Environ Sci 14(2):105–115

    Google Scholar 

  • Lee B, Duong CN, Cho J, Lee J, Kim K, Seo Y, Kim P, Choi K, Yoon J (2012) Toxicity of citrate-capped silver nanoparticles in common carp (Cyprinus carpio). J Biomed Biotechnol 2012:262670

    Google Scholar 

  • Levesque HM, Moon TW, Campbell PGC, Hontela A (2002) Seasonal variation in carbohydrate and lipid metabolism of yellow perch (Perca flavescens) chronically exposed to metals in the field. Aquat Toxicol 60:257–267

    Article  CAS  Google Scholar 

  • Li H, Zhang J, Wang T, Luo W, Zhou Q, Jiang G (2008) Elemental selenium particles at nano-size (Nano-Se) are more toxic to Medaka (Oryzias latipes) as a consequence of hyper-accumulation of selenium: a comparison with sodium selenite. Aquat Toxicol 89:251–256

    Article  CAS  Google Scholar 

  • Ma LL, Liu J, Li N, Wang J, Duan YM, Yan JY, Liu HT, Wang H, Hong FS (2010) Oxidative stress in the brain of mice caused by translocated nanoparticulate TiO2 delivered to the abdominal cavity. Biomaterials 31:99–105

    Article  CAS  Google Scholar 

  • Mansouri B, Maleki A, Davari B, Johari SA, Shahmoradi B, Mohammadi E, Shahsavari S (2016) Histopathological effects following short-term coexposure of Cyprinus carpio to nanoparticles of TiO2 and CuO. Environ Monit Assess 188(575):5–12

    Google Scholar 

  • Mazandarini M, Hoseini SM (2015) Anaemia and plasma lipid profile in common carp (Cyprinus carpio) exposed to ambient copper sulphate and nano-scale copper oxide. Aquac Res 48:1–9

    Google Scholar 

  • Newman SH, Piatt JF, White J (1997) Hematological and plasma biochemical reference ranges of Alaskan seabirds: their ecological significance and clinical importance. Waterbirds 20(3):492–504

    Article  Google Scholar 

  • Oliveira-Filho EC, Lopes RM, Paumgartten FJR (2004) Comparative study on the susceptibility of freshwater species to copper-based pesticides. Chemosphere 56:369–374

    Article  CAS  Google Scholar 

  • Öner M, Atli G, Canli M (2008) Changes in serum biochemical parameters of freshwater fish Oreochromis niloticus following prolonged metal (Ag, Cd, Cr, Cu, Zn) exposures. Environ Toxicol Chem 27:360–366

    Article  Google Scholar 

  • Ortiz JB, González De Canales ML, Sarasquete C (2003) Histopathological changes induced by lindane (γ-HCH) in various organs of fishes. Sci Mar 67(1):53–61

    Article  CAS  Google Scholar 

  • Ostaszewska T, Chojnacki M, Kamaszewski M, Sawosz-Chwalibóg E (2015) Histopathological effects of silver and copper nanoparticles on the epidermis, gills, and liver of Siberian sturgeon. Environ Sci Pollut Res 23(2):1621–1633

    Article  CAS  Google Scholar 

  • Pena-Llopis S, Pena JB, Sancho E, Fernandez-Vega C, Ferrando MD (2001) Glutathione-dependent resistance of the European eel Anguilla anguilla to the herbicide molinate. Chemosphere 45(4):671–681

    Article  CAS  Google Scholar 

  • Perkins EJ, Griffin B, Hobbs M, Gollon J, Wolford L, Schlenk D (1997) Sexual differences in mortality and sublethal stress in channel catfish following a 10 week exposure to copper sulfate. Aquat Toxicol 37:327–339

    Article  CAS  Google Scholar 

  • Sakai N, Matsui Y, Nakayama A, Tsuda A, Yoneda M (2011) Functional-dependent and size-dependent uptake of nanoparticles in PC12. J Phys 304:1

    Google Scholar 

  • Samak DH, El-Sayed YS, Shaheen HM et al (2020) Developmental toxicity of carbon nanoparticles during embryogenesis in chicken. Environ Sci Pollut Res Int 27:19058–19072

    Article  CAS  Google Scholar 

  • Sanchez W, Palluel O, Meunier L, Coquery M, Porcher JM, Ait-Aissa S (2005) Copper-induced oxidative stress in three-spined stickleback: relationship with hepatic metal levels. Environ Toxicol Pharmacol 19:177–183

    Article  CAS  Google Scholar 

  • Schrand AM, Rahman MF, Hussain SM, Schlager JJ, Smith DA, Syed AF (2010) Metal-based nanoparticles and their toxicity assessment. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2(5):544–568

    Article  CAS  Google Scholar 

  • Scown TM, Van Aerle R, Johnston BD, Cumberland S, Lead JR, Owen R, Tyler CR (2009) High doses of intravenously administered titanium dioxide nanoparticles accumulate in the kidneys of rainbow trout but with no observable impairment of renal function. Toxicol Sci 109:372–380

    Article  CAS  Google Scholar 

  • Shaw BJ, Al-Baurity G, Handy RD (2012) Effects of waterborne copper nanoparticles and copper sulphate on rainbow trout, (Oncorhynchus mykiss): physiology and accumulation. Aquat Toxicol 116(117):90–101

    Article  CAS  Google Scholar 

  • Singh N, Savanur MA, Srivastava S, D’Silva P, Mugesh G (2019) A manganese oxide nanozyme prevents the oxidative damage of biomolecules without affecting the endogenous antioxidant system. Nanoscale 11:3855–3863

    Article  CAS  Google Scholar 

  • Suresh A, Sivaramakrishna B, Radhakrishnaiah K (1995) Cadmium induced changes in ion levels and ATPase activities in the muscle of the fry and fingerlings of the freshwater fish, Cyprinus carpio. Chemosphere 30(2):365–375

    Article  Google Scholar 

  • Tang F, Li L, Chen D (2012) Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. Adv Mater 24:1504–1534

    Article  CAS  Google Scholar 

  • Tunçsoy M (2021) Impacts of titanium dioxide nanoparticles on serum parameters and enzyme activities of Clarias gariepinus. Bull Environ Contam Toxicol 106:629–636

    Article  CAS  Google Scholar 

  • Tunçsoy M, Duran S (2020) Acute toxicity of titanium dioxide nanoparticles on some serum parameters and enzyme activities of Cyprinus carpio. J Anatol Environ Anim Sci 5(4):704–710

    Google Scholar 

  • Tunçsoy M, Erdem C (2018) Copper accumulation in tissues of Oreochromis niloticus exposed to copper oxide nanoparticles and copper sulphate with their effect on antioxidant enzyme activities in liver. Water Air Soil Pollut 229:269

    Article  CAS  Google Scholar 

  • Valavanidis A, Vlahogianni T, Dassenakis M, Scoullos M (2006) Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants. Ecotoxicol Environ Saf 64:178–189

    Article  CAS  Google Scholar 

  • Vale G, Mehennaoui K, Cambier S, Libralato G, Jomini S, Domingos RF (2016) Manufactured nanoparticles in the aquatic environment-biochemical responses on freshwater organisms: a critical overview. Aquat Toxicol 170:162–174

    Article  CAS  Google Scholar 

  • Van der Oost R, Beyer J, Vermeulen NP (2003) Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environmental toxicology and pharmacology 13(2):57–149

    Google Scholar 

  • Villarreal FD, Das GK, Abid A, Kennedy M, Kultz D (2014) Sublethal Effects of CuO Nanoparticles on Mozambique Tilapia (Oreochromis mossambicus) are Modulated by Environmental Salinity. Plos One 9(2):1–15

    Google Scholar 

  • Vosyliene MZ (1999) The Effect of Heavy Metals on Hematological Indices. Acta Zoologica Litvanica Hydrobiologia 9:76–82

    Google Scholar 

  • Vutukuru S (2005) Acute Effects of Hexavalent Chromium on Survival, Oxygen Consumption, Hematological Parameters and Some Biochemical Profiles of the Indian Major Carp, Labeo rohita. Int J Environ Res Pub Health 2:456–62

    Google Scholar 

  • Wang SL, Xu XR, Sun YX, Liu JL, Li HB (2013) Heavy Metal Pollution in Coastal Areas of South China: A Review. Mar Pollut Bull 76(1–2):7–15

    Google Scholar 

  • Wang T, Long X, Cheng Y, Liu Z, Yan S (2014) The potential toxicity of copper nanoparticles and copper sulphate on juvenile Epinephelus coioides. Aquat Toxicol 152:96–104

    Article  CAS  Google Scholar 

  • Wang T, Long X, Cheng Y, Liu Z, Yan S (2015) A comparison effect of copper nanoparticles versus copper sulphate on juvenile Epinephelus coioides: growth parameters, digestive enzymes, body composition, and histology as biomarkers. Int J Genomics 215:1–10

    Google Scholar 

  • Xiong D, Fang T, Yu L, Sima X, Zhu W (2011) Effects of nano-scale TiO2, ZnO and their bulk counterparts on zebrafish: acute toxicity, oxidative stress and oxidative damage. Sci Total Environ 409:1444–1452

    Article  CAS  Google Scholar 

  • Yi YJ, Zhang SH (2012) The relationships between fish heavy metal concentrations and fish size in the upper and middle reach of Yangtze River. Procedia Environ Sci 13:1699–1707

    Article  CAS  Google Scholar 

  • Yousef MI, Awad TI, Elhag FA, Khaled FA (2007) Study of the protective effect of ascorbic acid against the toxicity of stannous chloride on oxidative damage, antioxidant enzymes and biochemical parameters in rabbits. Toxicology 235:194–202

    Article  CAS  Google Scholar 

  • Zhao J, Wang Z, Liu X, Xie X, Zhang K, Xing B (2011) Distribution of CuO Nanoparticles in Juvenil Carp (Cyprinus carpio) and Their Potential Toxicity. Journal of Hazardous Materials 197:304–310

    Google Scholar 

  • Zhu B, Wu Z, Li J, Wang G (2011) Single and joint action toxicity of heavy metals on early developmental stages of Chinese rare minnow (Gabiocypris rarus). Ecotoxicol Environ Saf 74:2193–2202

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Tunçsoy, M. (2022). Impacts of Metal Nanoparticles on Fish. In: Shanker, U., Hussain, C.M., Rani, M. (eds) Handbook of Green and Sustainable Nanotechnology. Springer, Cham. https://doi.org/10.1007/978-3-030-69023-6_39-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69023-6_39-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69023-6

  • Online ISBN: 978-3-030-69023-6

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics