Skip to main content

Antioxidant and Antibacterial Activities of Polysaccharides

  • Living reference work entry
  • First Online:
Polysaccharides of Microbial Origin

Abstract

Polysaccharide is a high molecular weight polymer, consisting of at least ten monosaccharides mutually joined by glycosidic linkages. Polysaccharides, present in almost all organisms, are important functional biological macromolecules because of their significant benefit to human health such as antioxidant, antidiabetic, immune potentiation, antitumor, anti-inflammatory, and hypoglycemic activities. More and more studies have shown evidence that polysaccharides have the capacity of scavenging free radicals and may be potential natural antioxidants. The antioxidant activity was found to be determined by multiple factors, including molecular weight, monosaccharide composition, sulfate position and its degree. To address this issue, this chapter summarizes the latest discoveries and advancements in the study of sources, chemical composition, structural characteristics, antimicrobial and antioxidant capacity of polysaccharides, and gives a detailed description of the possible mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Achmad H, Huldani RYF. Antimicrobial activity and sulfated polysaccharides antibiofilms in marine algae against dental plaque bacteria: a literature review. Sys Rev Pharm. 2020;11:459–65.

    CAS  Google Scholar 

  • Ahmadi K, Riazipour M. Effect of Ganoderma lucidum on cytokine release by peritoneal macrophages. Iran J Immunol. 2007;4:220–6.

    CAS  PubMed  Google Scholar 

  • Ananthi S, Raghavendran HRB, Sunil AG, Gayathri V, Ramakrishnan G, Vasanthi HR. In vitro antioxidant and in vivo anti-inflammatory potential of crude polysaccharide from Turbinaria ornata (Marine Brown Alga). Food Chem Toxicol. 2010;48:187–92.

    Google Scholar 

  • Aranaz I, Mengíbar M, Harris R, et al. Functional characterization of chitin and chitosan. Curr Chem Biol. 2009;3:203–30.

    CAS  Google Scholar 

  • Arun J, Selvakumar S, Sathishkumar R, et al. In vitro antioxidant activities of an exopolysaccharide from a salt pan bacterium Halolactibacillus miurensis. Carbohydr Polym. 2017;155:400–6.

    Article  CAS  PubMed  Google Scholar 

  • Bais D, Trevisan A, Lapasin R, et al. Rheological characterization of polysaccharide–surfactant matrices for cosmetic O/W emulsions. J Colloid Interface Sci. 2005;290:546–56.

    Article  CAS  PubMed  Google Scholar 

  • Castro LSEPW, Pinheiro TD, Castro AJG, et al. Potential anti-angiogenic, antiproliferative, antioxidant, and anticoagulant activity of anionic polysaccharides, fucans, extracted from brown algae Lobophora variegata. J Appl Phycol. 2015;27:1315–25.

    Article  CAS  Google Scholar 

  • Castro LSEPW, Castro AJG, Santos MDN, et al. Effect of galactofucan sulfate of a brown seaweed on induced hepatotoxicity in rats, sodium pentobarbital-induced sleep, and anti-inflammatory activity. J Appl Phycol. 2016;28:2005–17.

    Article  CAS  Google Scholar 

  • Chale-Dzul J, Freile-Pelegrin Y, Robledo D, et al. Protective effect of fucoidans from tropical seaweeds against oxidative stress in HepG2 cells. J Appl Phycol. 2017;29:2229–38.

    Article  CAS  Google Scholar 

  • Chang SC, Hsu BY, Chen BH, et al. Structural characterization of polysaccharides from Zizyphus jujuba and evaluation of antioxidant activity. Int J Biol Macromol. 2010;47:445–53.

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Zhang M, Xie B, et al. Components and antioxidant activity of polysaccharide conjugate from green tea. Food Chem. 2005;90:17–21.

    Article  CAS  Google Scholar 

  • Chen Y, Xie MY, Nie SP, et al. Purification, composition analysis and antioxidant activity of a polysaccharide from the fruiting bodies of Ganoderma atrum. Food Chem. 2008;107:231–41.

    Article  CAS  Google Scholar 

  • Chen H, Qu Z, Fu L, et al. Physicochemical properties and antioxidant capacity of 3 polysaccharides from green tea, oolong tea, and black tea. J Food Sci. 2009;74:C469–74.

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Zhang H, Wang Y, et al. Acetylation and carboxymethylation of the polysaccharide from Ganoderma atrum and their antioxidant and immunomodulating activities. Food Chem. 2014;156:279–88.

    Article  CAS  PubMed  Google Scholar 

  • Chen YL, Mao WJ, Tao HW, et al. Preparation and characterization of a novel extracellular polysaccharide with antioxidant activity, from the mangrove-associated fungus fusarium oxysporum. Mar Biotechnol. 2015;17:219–28.

    Article  CAS  Google Scholar 

  • Chen Y, Yan WJ, Liu MX, et al. Purification, chemical characterization, and bioactivity of an extracellular polysaccharide produced by the marine sponge endogenous fungus Alternaria sp SP-32. Mar Biotechnol. 2016;18:301–13.

    Article  CAS  Google Scholar 

  • Cheung YC, Siu KC, Liu YS, et al. Molecular properties and antioxidant activities of polysaccharide-protein complexes from selected mushrooms by ultrasound-assisted extraction. Process Biochem. 2012;47:892–5.

    Article  CAS  Google Scholar 

  • Chun-hui L, Chang-hai W, Zhi-liang X, et al. Isolation, chemical characterization and antioxidant activities of two polysaccharides from the gel and the skin of Aloe barbadensis Miller irrigated with sea water. Process Biochem. 2007;42:961–70.

    Article  CAS  Google Scholar 

  • Delma CR, Somasundaram ST, Srinivasan GP, et al. Fucoidan from Turbinaria conoides: a multifaceted ‘deliverable’ to combat pancreatic cancer progression. Int J Biol Macromol. 2015;76:330.

    Article  CAS  Google Scholar 

  • El-Newary SA, Ibrahim AY, Asker MS, et al. Production, characterization and biological activities of acidic exopolysaccharide from marine bacillus amyloliquefaciens 3MS 2017. Asian Pac J Trop Biomed. 2017;10:715–25.

    Google Scholar 

  • Fan J, Wu Z, Zhao T, et al. Characterization, antioxidant and hepatoprotective activities of polysaccharides from Ilex latifolia Thunb. Carbohydr Polym. 2014;101:990–7.

    Article  CAS  PubMed  Google Scholar 

  • Fernando IPS, Sanjeewa KKA, Samarakoon KW, et al. FTIR characterization and antioxidant activity of water-soluble crude polysaccharides of Sri Lankan marine algae. Algae. 2017;32:75–86.

    Article  CAS  Google Scholar 

  • Gao Y, Zhou S, Huang M, Xu A. Antibacterial and antiviral value of the genus Ganoderma P0. Karst. species (Aphyllophoromycetideae): a review. Int J Med Mushrooms. 2003;5:235–46.

    Article  CAS  Google Scholar 

  • Gao Y, Gao H, Chan E, et al. Antitumor activity and underlying mechanisms of ganopoly, the refined polysaccharides extracted from Ganoderma lucidum, in mice. Immunol Investig. 2005;34:171–98.

    Article  CAS  Google Scholar 

  • Gou X, Wang Q, Gao G, et al. Effects of extraction methods on antioxidant activities of polysaccharides from the Curcuma phaeocaulis rhizomes. Asian J Agric Food Sci. 2014;2(4). Available from: https://ajouronline.com/index.php/AJAFS/article/view/1481

  • Goy RC, de Britto D, Assis OBG. A review of the antimicrobial activity of chitosan. Polímeros. 2009;19:241–7. https://doi.org/10.1590/S0104-14282009000300013.

    Article  CAS  Google Scholar 

  • Gülçin I. Antioxidant and antiradical activities of L-carnitine. Life Sci. 2006;78:803–11.

    Article  PubMed  CAS  Google Scholar 

  • Guo Z, Xing R, Liu S, et al. The synthesis and antioxidant activity of the Schiff bases of chitosan and carboxymethyl chitosan. Bioorg Med Chem Lett. 2005;15:4600–3.

    Article  CAS  PubMed  Google Scholar 

  • Guo Y, Pan D, Li H, et al. Antioxidant and immunomodulatory activity of selenium exopolysaccharide produced by Lactococcus lactis subsp. Lactis. Food Chem. 2013;138:84–9.

    Article  CAS  PubMed  Google Scholar 

  • Guru MMS, Vasanthi M, Achary A. Antioxidant and free radical scavenging potential of crude sulphated polysaccharides from Turbinaria ornata. Biologia. 2015;70:27–33.

    Article  CAS  Google Scholar 

  • Hatfield RD, Ralph J, Grabber JH, et al. Cell wall cross-linking by ferulates and diferulates in grasses. J Sci Food Agric. 1997;79:403–7.

    Article  Google Scholar 

  • He JZ, Xu YY, Chen HB, et al. Extraction, structural characterization, and potential antioxidant activity of the polysaccharides from four seaweeds. Int J Mol Sci. 2016;17:1988. https://doi.org/10.3390/ijms17121988.

    Article  CAS  PubMed Central  Google Scholar 

  • Hou X, Huang X, Li J, et al. Extraction optimization and evaluation of the antioxidant and α-glucosidase inhibitory activity of polysaccharides from Chrysanthemum morifolium cv. Hangju. Antioxidants. 2020;9:59. https://doi.org/10.3390/antiox9010059.

    Article  CAS  PubMed Central  Google Scholar 

  • Hromádková Z, Kostalova Z, Ebringerova A. Comparison of conventional and ultrasound-assisted extraction of phenolics-rich heteroxylans from wheat bran. Ultrason Sonochem. 2008;15:1062–68.

    Google Scholar 

  • Hromádková Z, Paulsen BS, Polovka M, et al. Structural features of two heteroxylan polysaccharide fractions from wheat bran with anti-complementary and antioxidant activities. Carbohydr Polym. 2013;93:22–30.

    Article  PubMed  CAS  Google Scholar 

  • Hu T, Liu D, Chen Y, Wu J, Wang S. Antioxidant activity of sulfated polysaccharide fractions extracted from Undaria pinnitafida in vitro. Int J Biol Macromol. 2010;46:193–8.

    Article  CAS  PubMed  Google Scholar 

  • Ishii T. Structure and functions of feruloylated polysaccharides. Plant Sci. 1997;127:111–27.

    Article  CAS  Google Scholar 

  • Jun JY, Jung MJ, Jeong IH. Antimicrobial and antibiofilm activities of sulfated polysaccharides from marine algae against dental plaque bacteria. Mar Drugs. 2018;16:301. https://doi.org/10.3390/md16090301.

    Article  CAS  PubMed Central  Google Scholar 

  • Jung HY, Bae IY, Lee S, et al. Effect of the degree of sulfation on the physicochemical and biological properties of Pleurotus eryngii polysaccharides. Food Hydrocoll. 2011;25:1291–5.

    Article  CAS  Google Scholar 

  • Kardošová A, Machová E. Antioxidant activity of medicinal plant polysaccharides. Fitoterapia. 2006;77:367–73.

    Article  PubMed  CAS  Google Scholar 

  • Kim S. Competitive biological activities of Chitosan and its derivatives: antimicrobial, antioxidant, anticancer, and anti-inflammatory activities. Int J Polym Sci. 2018;2018:Article ID 1708172. https://doi.org/10.1155/2018/1708172.

    Article  CAS  Google Scholar 

  • Kim DH, Bae EA, Jang IS, et al. Anti-Helicobacter pylori activity of mushrooms. Arch Pharm Res. 1996;19:447–9.

    Article  CAS  Google Scholar 

  • Kim EA, Lee SH, Ko CI, et al. Protective effect of fucoidan against AAPH-induced oxidative stress in zebrafish model. Carbohydr Polym. 2014;102:185–91.

    Article  CAS  PubMed  Google Scholar 

  • Kumar SK, Shankar S, Mohan SC, et al. In vitro antioxidant and antimicrobial activity of polysaccharides extracted from edible mushrooms Pleurotus Florida and Agrocybe cylindracea. Singapore J Chem Biol. 2017;6:17–22.

    Google Scholar 

  • Lee KY, Jeong MR, Choi SM, et al. Synergistic effect of fucoidan with antibiotics against oral pathogenic bacteria. Arch Oral Biol. 2013;58:482–92.

    Article  CAS  PubMed  Google Scholar 

  • Li XM, Li XL, Zhou AG, et al. Evaluation of antioxidant activity of the polysaccharides extracted from Lycium barbarum fruits in vitro. Eur Polym J. 2007;43:488–97.

    Article  CAS  Google Scholar 

  • Li LY, Li LQ, Guo CH, et al. Evaluation of in vitro antioxidant and antibacterial activities of Laminaria japonica polysaccharides. J Med Plants Res. 2010;4:2194–8.

    CAS  Google Scholar 

  • Li H, Xu J, Liu Y. Antioxidant and moisture-retention activities of the polysaccharide from Nostoc commune. Carbohydr Polym. 2011;83:1821–7.

    Article  CAS  Google Scholar 

  • Li GY, Luo ZC, Yuan F, et al. Combined process of high-pressure homogenization and hydrothermalextraction for the extraction of fucoidan with good antioxidant properties from Nemacystus decipients. Food Bioprod Process. 2017;106:35–42.

    Article  CAS  Google Scholar 

  • Lin CL, Wang CC, Chang SC, et al. Antioxidative activity of polysaccharide fractions isolated from Lycium barbarum Linnaeus. Int J Biol Macromol. 2009;45:146–51.

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Wang H, Pang X, et al. Characterization and antioxidant activity of two low-molecular-weight polysaccharides purified from the fruiting bodies of Ganoderma lucidum. Int J Biol Macromol. 2010a;46:451–7.

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Wang H, Yao W, et al. Effects of sulfation on the physicochemical and functional properties of a water-insoluble polysaccharide preparation from Ganoderma lucidum. J Agric Food Chem. 2010b;58:3336–41.

    Article  CAS  PubMed  Google Scholar 

  • Lo TCT, Chang CA, Chiu KH, et al. Correlation evaluation of antioxidant properties on the monosaccharide components and glycosyl linkages of polysaccharide with different measuring methods. Carbohydr Polym. 2011;86:320–7.

    Article  CAS  Google Scholar 

  • Ma CW, Feng M, Zhai X, et al. Optimization for the extraction of polysaccharides from Ganoderma lucidum and their antioxidant and antiproliferative activities. J Taiwan Inst Chem Eng. 2013;44:886–94.

    Article  CAS  Google Scholar 

  • Ma L, Chen H, Zhu W, et al. Effect of different drying methods on physicochemical properties and antioxidant activities of polysaccharides extracted from mushroom Inonotus obliquus. Food Res Int. 2013a;50:633–40.

    Article  CAS  Google Scholar 

  • Manivasagan P, Sivasankar P, Venkatesan J, et al. Production and characterization of an extracellular polysaccharide from Streptomyces violaceus MM72. Int J Biol Macromol. 2013;59:29–38.

    Article  CAS  PubMed  Google Scholar 

  • Mao G, Zou Y, Feng W, et al. Extraction, preliminary characterization and antioxidant activity of Se-enriched Maitake polysaccharide. Carbohydr Polym. 2014;101:213–9.

    Article  CAS  PubMed  Google Scholar 

  • Marudhupandi T, Kumar TTA. Antibacterial effect of fucoidan from Sargassum wightii against the chosen human bacterial pathogens. Int Curr Pharm J. 2013;2:156–8.

    Article  Google Scholar 

  • Meng L, Sun S, Li R, et al. Antioxidant activity of polysaccharides produced by Hirsutella sp. and relation with their chemical characteristics. Carbohydr Polym. 2015;117:452–7.

    Article  CAS  PubMed  Google Scholar 

  • Mu H, Zhang A, Zhang W, et al. Antioxidative properties of crude polysaccharides from Inonotus obliquus. Int J Mol Sci. 2012;13:9194–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mu S, Yang W, Huang G. Antioxidant activities and mechanisms of polysaccharides. Chem Biol Drug Design. 2020. https://doi.org/10.1111/cbdd.13798.

  • O’Sullivan AM, O’Callaghan YC, O’Grady MN, et al. An examination of the potential of seaweed extracts as functional ingredients in milk. Int J Dairy Technol. 2014;67:182–92.

    Article  CAS  Google Scholar 

  • Palanisamy S, Vinosha M, Manikandakrishnan M, et al. Investigation of antioxidant and anticancer potential of fucoidan from Sargassum polycystum. Int J Biol Macromol. 2018;116:151–61.

    Article  CAS  PubMed  Google Scholar 

  • Paterson RR. Ganoderma – a therapeutic fungal biofactory. Phytochemistry. 2006;67:1985–2001.

    Google Scholar 

  • Peasura N, Laohakunjit N, Kerdchoechuen O, et al. Assessment of biochemical and immunomodulatory activity of sulphated polysaccharides from Ulva intestinalis. Int J Biol Macromol. 2016;91:269–77.

    Article  CAS  PubMed  Google Scholar 

  • Pierre G, Sopena V, Juin C, et al. Antibacterial activity of a sulfated galactan extracted from the marine alga Chaetomorpha aerea against Staphylococcus aureus. Biotechnol Bioprocess Eng. 2011;16:937–45.

    Article  CAS  Google Scholar 

  • Priyanka P, Arun AB, Young CC, et al. Prospecting exopolysaccharides produced by selected bacteria associated with marine organisms for biotechnological applications. Chin J Polym Sci. 2015;33:236–44.

    Article  CAS  Google Scholar 

  • Rjeibi I, Feriani A, Hentati F, et al. Structural characterization of water-soluble polysaccharides from Nitraria retusa fruits and their antioxidant and hypolipidemic activities. Int J Biol Macromol. 2019;129:422–32.

    Article  CAS  PubMed  Google Scholar 

  • Rjeibi I, Zaabi R, Jouida W, et al. Characterization of Polysaccharides Extracted from Pulps and Seeds of Crataegus azarolus L. var. aronia: Preliminary Structure, Antioxidant, Antibacterial, α-Amylase, and Acetylcholinesterase Inhibition Properties. Oxid Med Cell Longev. 2020;2020:1903056, 11 pages. https://doi.org/10.1155/2020/1903056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rubavathi S, Ramya M. Invitro assessment of antimicrobial and antioxidant activity of bioactive compounds from marine algae. Int J Curr Microbiol Appl Sci. 2016;5:253–66.

    Article  CAS  Google Scholar 

  • Sabirin F, Kazi JA, Ibrahim IS, Rashit MMA. Screening of seaweeds potential against oral infections. J Appl Sci Res. 2015;11:1–6.

    Google Scholar 

  • Sathishkumar R, Ananthan G, Senthil SL, et al. Structural characterization and anticancer activity of extracellular polysaccharides from ascidian symbiotic bacterium Bacillus thuringiensis. Carbohydr Polym. 2018;190:113–20.

    Article  CAS  Google Scholar 

  • Shanmugan M, Mody KH. Heparinoid-active sulphated polysaccharides from marine algae as potential blood anticoagulant agents. Curr Sci India. 2000;79:1672–83.

    Google Scholar 

  • Shannon E, Ghannam NA. Antibacterial derivatives of marine algae: an overview of pharmacological mechanisms and applications. Mar Drugs. 2016;14(81):1–23.

    Google Scholar 

  • Shao BM, Dai H, Xu W, et al. Immune receptors for polysaccharides from Ganoderma lucidum. Biochem Biophys Res Commun. 2004;323:133–41.

    Article  CAS  PubMed  Google Scholar 

  • Shao P, Chen XX, Sun PL. In vitro antioxidant and antitumor activities of different sulphated polysaccharides isolated from three algae. Int J Biol Macromol. 2013;62:155–61.

    Google Scholar 

  • Shen S, Cheng H, Li X, et al. Effects of extraction methods on antioxidant activities of polysaccharides from camellia seed cake. Eur Food Res Technol. 2014;238:1015–21.

    Article  CAS  Google Scholar 

  • Siu KC, Chen X, Wu JY. Constituents actually responsible for the antioxidant activities of crude polysaccharides isolated from mushrooms. J Funct Foods. 2014;11:548–56.

    Article  CAS  Google Scholar 

  • Skalicka-Woźniak K, Szypowski J, Łoś R, et al. Evaluation of polysaccharides content in fruit bodies and their antimicrobial activity of four Ganoderma lucidum (W Curt.: Fr.) P. Karst. strains cultivated on different wood type substrates. Acta Soc Bot Pol. 2012;81:17–21.

    Article  CAS  Google Scholar 

  • Somasundaram SN, Shanmugam S, Subramanian B, et al. Cytotoxic effect of fucoidan extracted from Sargassum cinereum on colon cancer cell line HCT-15. Int J Biol Macromol. 2016;91:1215–23.

    Article  CAS  PubMed  Google Scholar 

  • Song Y, Yang Y, Zhang Y, et al. Effect of acetylation on antioxidant and cytoprotective activity of polysaccharides isolated from pumpkin (Cucurbita pepo, lady godiva). Carbohydr Polym. 2013;98:686–91.

    Article  CAS  PubMed  Google Scholar 

  • Sousa WM, Silva RO, Bezerra FF, et al. Sulfated polysaccharide fraction from marine algae Solieria filiformis: structural characterization, gastroprotective and antioxidant effects. Carbohydr Polym. 2016;152:140–8.

    Article  CAS  PubMed  Google Scholar 

  • Squillaci G, Finamore R, Diana P, et al. Production and properties of an exopolysaccharide synthesized by the extreme halophilic archaeon Haloterrigena turkmenica. Appl Microbiol Biotechnol. 2015;100:613–23.

    Article  PubMed  CAS  Google Scholar 

  • Suay I, Arenal F, Asensio FJ, et al. Screening of basidiomycetes for antimicrobial activities. Antonie Van Leeuwenhoek. 2000;78:129–39.

    Article  CAS  PubMed  Google Scholar 

  • Sun YY, Wang H, Guo GL, et al. The isolation and antioxidant activity of polysaccharides from the marine microalgae Isochrysis galbana. Carbohydr Polym. 2014a;113:22–31.

    Article  CAS  PubMed  Google Scholar 

  • Sun LQ, Wang L, Li L, et al. Characterization and antioxidant activities of degraded polysaccharides from two marine Chrysophyta. Food Chem. 2014b;160:1–7.

    Article  CAS  PubMed  Google Scholar 

  • Sun ML, Zhao F, Shi M, et al. Characterization and biotechnological potential analysis of a new exopolysaccharide from the arctic marine bacterium Polaribacter sp. Sci Rep. 2015;5:18435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang Z, Zhou C, Cai Y, et al. Purification, characterization and antioxidant activities in vitro of polysaccharides from Amaranthus hybridus L. PeerJ. 2020;8:e9077. https://doi.org/10.7717/peerj.9077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trabelsi L, Chaieb O, Mnari A, et al. Partial characterization and antioxidant and antiproliferative activities of the aqueous extracellular polysaccharides from the thermophilic microalgae Graesiella sp. BMC Complement Altern Med. 2016;16:210.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tsiapali E, Whaley A, Kalbfleisch J, et al. Glucans exhibit weak antioxidant activity, but stimulate macrophage free radical activity. Free Radic Biol Med. 2001;30:393–402.

    Article  CAS  PubMed  Google Scholar 

  • Veenashri BR, Muralikrishna G. In vitro anti-oxidant activity of xylo-oligosaccharides derived from cereal and millet brans – a comparative study. Food Chem. 2011;126:1475–81.

    Google Scholar 

  • Vishwakarma J, Vavilala SL. Evaluating the antibacterial and antibiofilm potential of sulphated polysaccharides extracted from green algae Chlamydomonas reinhardtii. J Appl Microbiol. 2019;127:1004–17.

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Gao XD, Zhou GC, et al. In vitro and in vivo antioxidant activity of aqueous extract from Choerospondias axillaris fruit. Food Chem. 2008;106:888–95.

    Google Scholar 

  • Wang X, Wang J, Zhang J, et al. Structure- antioxidant relationships of sulfated galactomannan from guar gum. Int J of Biol Macromol. 2010;46:59–66.

    Article  CAS  Google Scholar 

  • Wang C, Chen Y, Hu M, et al. In vitro antioxidant activities of the polysaccharides from Tricholoma lobayense. Int J Biol Macromol. 2012a;50:534–9.

    Google Scholar 

  • Wang Y, Yang Z, Wei X, et al. Antioxidant activities potential of tea polysaccharide fractions obtained by ultra filtration. Int J Biol Macromol. 2012b;50:558–64.

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Zhao B, Wang X, et al. Synthesis of selenium-containing polysaccharides and evaluation of antioxidant activity in vitro. Int J Biol Macromol. 2012c;51:987–91.

    Article  PubMed  CAS  Google Scholar 

  • Wang CY, Mao WJ, Chen ZQ, et al. Purification, structural characterization and antioxidant property of an extracellular polysaccharide from Aspergillus terreus. Process Biochem. 2013a;48:1395–401.

    Article  CAS  Google Scholar 

  • Wang Y, Zhao Y, Andrae-Marobela K, et al. Tea polysaccharides as food antioxidants: an old woman’s tale? Food Chem. 2013b;138:1923–7.

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Zhang Z, Yao Z, et al. Sulfation, anticoagulant and antioxidant activities of polysaccharide from green algae Enteromorpha linza. Int J Biol Macromol. 2013c;58:225–30.

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Yang T, Tian J, et al. Synthesis and characterization of phosphorylated galactomannan: the effect of DS on solution conformation and antioxidant activities. Carbohydr Polym. 2014a;113:325–35.

    Article  CAS  PubMed  Google Scholar 

  • Wang QA, Song YF, He YH, et al. Structural characterization of algae Costaria costata fucoidan and its effects on CCl4-induced liver injury. Carbohydr Polym. 2014b;107:247–54.

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Hu S, Nie S, et al. Reviews on mechanisms of in vitro antioxidant activity of polysaccharides. Oxid Med Cell Long. 2016;2016:Article ID 5692852. https://doi.org/10.1155/2016/5692852.

    Article  CAS  Google Scholar 

  • Wang CL, Fan QP, Zhang XF, et al. Isolation, characterization, and pharmaceutical applications of an exopolysaccharide from Aerococcus Uriaeequi. Mar Drugs. 2018;16:337.

    Article  CAS  PubMed Central  Google Scholar 

  • Wei M, Xiong SL, Jin H, et al. Isolation and antioxidant activity of water-soluble acidic polysaccharide from Prunella vulgaris Linn. Food Sci. 2010;1:22.

    Google Scholar 

  • Wei D, Chen T, Yan M, et al. Synthesis, characterization, antioxidant activity and neuroprotective effects of selenium polysaccharide from Radix hedysari. Carbohydr Polym. 2015;125:161–8.

    Article  CAS  PubMed  Google Scholar 

  • Wu Z, Ming J, Gao R, et al. Characterization and antioxidant activity of the complex of tea polyphenols and oat β-glucan. J Agric Food Chem. 2011;59:10737–46.

    Article  CAS  PubMed  Google Scholar 

  • Xia S, Gao BY, Li AF, et al. Preliminary characterization, antioxidant properties and production of chrysolaminarin from marine Diatom Odontella aurita. Mar Drugs. 2014;12:4883–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie W, Xu P, Liu Q. Antioxidant activity of water-soluble chitosan derivatives. Bioorg Med Chem Lett. 2001;11:1699–701.

    Article  CAS  PubMed  Google Scholar 

  • Xie J, Wang Z, Shen M, et al. Sulfated modification, characterization and antioxidant activities of polysaccharide from Cyclocarya paliurus. Food Hydrocoll. 2015;53:7–15.

    Article  CAS  Google Scholar 

  • Xie JH, Jin ML, Morris GA, Zha XQ, ChenHQ YY, LiJE WZJ, GaoJ NSP, Shang P, Xie MY. Advances on bioactive polysaccharides from medicinal plants. Crit Rev Food Sci Nutr. 2016;56(supp1):S60–84. https://doi.org/10.1080/10408398.2015.1069255.

    Article  CAS  PubMed  Google Scholar 

  • Xu H, Huang K. Selenium: its chemistry, biochemistry and application in life science. Wuhan: Huazhong Science and Technology University Press; 1994.

    Google Scholar 

  • Xu J, Liu W, Yao W, et al. Carboxymethylation of a polysaccharide extracted from Ganoderma lucidum enhances its antioxidant activities in vitro. Carbohydr Polym. 2009;78:227–34.

    Article  CAS  Google Scholar 

  • Yamashita S, Sugita-Konishi Y, Shimizu M, et al. In vitro bacteriostatic effects of dietary polysaccharides. Food Sci Technol Res. 2001;7:262–4.

    Article  CAS  Google Scholar 

  • Yamauchi R, Tatsumi Y, Asano M, et al. Effect of metal salts and fructose on the autoxidation of methyl linoleate in emulsions. Agric Biol Chem. 1998;52:849–50.

    Google Scholar 

  • Yan JK, Wang WQ, Ma HL, et al. Sulfation and enhanced antioxidant capacity of an exopolysaccharide produced by the medicinal fungus Cordyceps sinensis. Molecules. 2012;18:167–77.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yan MX, Mao WJ, Liu X, et al. Extracellular polysaccharide with novel structure and antioxidant property produced by the deep-sea fungus Aspergillus versicolor N(2)bC. Carbohydr Polym. 2016;147:272–81.

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Liu D, Chen Y, Wang S. In vitro antioxidant activities of sulfated polysaccharide fractions extracted from Corallina officinalis. Int J Biol Macromol. 2011;49: 1031–7.

    Google Scholar 

  • Yoon SY, Eo SK, Kim YS, et al. Antimicrobial activity of Ganoderma lucidum extract alone and in combination with some antibiotics. Arch Pharm Res. 1994;17:438–4420.

    Article  CAS  PubMed  Google Scholar 

  • Younes I, Rinaudo M. Chitin and chitosan preparation from marine sources. Structure, properties and applications. Mar Drugs. 2015;13:1133–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu F, Sheng J, Xu J, et al. Antioxidant activities of crude tea polyphenols, polysaccharides and proteins of selenium-enriched tea and regular green tea. Eur Food Res Technol. 2007;225:843–8.

    Article  CAS  Google Scholar 

  • Zha XQ, Wang JH, Yang XF, et al. Antioxidant properties of polysaccharide fractions with different molecular mass extracted with hot-water from rice bran. Carbohydr Polym. 2009;78:570–5.

    Article  CAS  Google Scholar 

  • Zhao L, Zhao G, Du M, et al. Effect of selenium on increasing free radical scavenging activities of polysaccharide extracts from a Se-enriched mushroom species of the genus Ganoderma. Eur Food Res Technol. 2008;226:499–505.

    Article  CAS  Google Scholar 

  • Zhao B, Zhang J, Yao J, et al. Selenylation modification can enhance antioxidant activity of Potentilla anserina L. polysaccharide. Int J Biol Macromol. 2013;58:320–8.

    Article  CAS  PubMed  Google Scholar 

  • Zhao Q, Dong B, Chen J, Zhao B, Wang X, Wang L, Zha S, Wang Y, Zhang J, Wang Y. Effect of drying methods on physicochemical properties and antioxidant activities of wolfberry (Lycium barbarum) polysaccharide. Carbohydr Polym. 2015;127:176–81.

    Article  CAS  PubMed  Google Scholar 

  • Zhao D, Xu J, Xu X. Bioactivity of fucoidan extracted from Laminaria japonica using a novel procedure with high yield. Food Chem. 2018;245:911–8.

    Article  CAS  PubMed  Google Scholar 

  • Zhu H, Sheng K, Yan E, Qiao J, Lv F. Extraction, purification and antibacterial activities of a polysaccharide from spent mushroom substrate. Int J Biol Macromol. 2012;50:840–3.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Mohan, S.C., Thirupathi, A. (2021). Antioxidant and Antibacterial Activities of Polysaccharides. In: Oliveira, J., Radhouani, H., Reis, R.L. (eds) Polysaccharides of Microbial Origin. Springer, Cham. https://doi.org/10.1007/978-3-030-35734-4_32-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-35734-4_32-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-35734-4

  • Online ISBN: 978-3-030-35734-4

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics