Skip to main content

Shoot Organogenesis, Genetic Stability, and Secondary Metabolite Production of Micropropagated Digitalis purpurea

  • Living reference work entry
  • First Online:
Plant Cell and Tissue Differentiation and Secondary Metabolites

Abstract

Digitalis purpurea L. is a cardenolide-producing medicinal and ornamental plant. Cardenolides, like digoxin, are commonly used to treat congestive heart failure, cardiac arrhythmia, and atrial fibrillation. More recently, its cytotoxic activity on several types of cancer and antiviral effect have been confirmed. As chemical synthesis is not viable, D. purpurea plants are one of the major sources of cardenolides for the pharmaceutical industry. However, cardenolide content is highly variable under natural conditions. Therefore, D. purpurea in vitro culture has been a focus of research since the second half of the twentieth century. This chapter is a compendium of these reports with emphasis on the effects of morphogenesis, culture conditions, and in vitro culture medium composition on cardenolide content. Besides, some studies on the genetic stability of Digitalis plants are summarized. Finally, we describe the biotechnological approaches reported so far to obtain a higher yield of cardenolides in vitro, such as elicitation and metabolic engineering, both recognized as promising strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

2,4-D:

2,4-Dichlorophenoxyacetic acid

2iP:

N6-[2-Isopentenyl] adenine

ABA:

Abscisic acid

BA:

Benzyladenine

BTOA:

2-Benzothiazole-oxyacetic acid

DW:

Dry weight

FW:

Fresh weight

GA3:

Gibberellic acid

IAA:

Indoleacetic acid

LED:

Light-emitting diode

LS medium:

Linsmaier and Skoog medium

MS medium:

Murashige and Skoog medium

NAA:

Naphthaleneacetic acid

PEG:

Polyethylene glycol

RAPD:

Random amplified polymorphic DNA

RuBisCO:

Ribulose-1,5-bisphosphate carboxylase/oxygenase

TDZ:

Thidiazuron

TIS:

Temporary immersion system

References

  1. David B, Wolfender JL, Dias DA (2015) The pharmaceutical industry and natural products: historical status and new trends. Phytochem Rev 14:299–315. https://doi.org/10.1007/s11101-014-9367-z

    Article  CAS  Google Scholar 

  2. El-Seedi HR, Khalifa SAM, Taher EA et al (2019) Cardenolides: insights from chemical structure and pharmacological utility. Pharmacol Res 141:123–175. https://doi.org/10.1016/j.phrs.2018.12.015

    Article  CAS  PubMed  Google Scholar 

  3. Kreis W (2017) The foxgloves (Digitalis) revisited. Planta Med 83:962–976. https://doi.org/10.1055/s-0043-111240

    Article  CAS  PubMed  Google Scholar 

  4. WHO (2018) World Health Statistics 2018: monitoring health for the SDGs, sustainable development goals. World Health Organization, Geneva

    Google Scholar 

  5. Heron M, Anderson R (2016) Changes in the leading cause of death: recent patterns in heart disease and cancer mortality. NCHS data brief, no 254. National Center for Health Statistics, Hyattsville, pp 1–8

    Google Scholar 

  6. Sales E, Frieder M, Nebauer SG et al (2011) Wild crop relatives: genomic and breeding resources. Springer, Berlin/Heidelberg

    Google Scholar 

  7. Verma SK, Das AK, Cingoz GS, Gurel E (2016) In vitro culture of Digitalis L. (Foxglove) and the production of cardenolides: an up-to-date review. Ind Crop Prod 94:20–51. https://doi.org/10.1016/j.indcrop.2016.08.031

    Article  CAS  Google Scholar 

  8. Rietbrock N, Woodcock BG (1984) Trends in pharmacological sciences in 1784. Trends Pharmacol Sci 5:446–448. https://doi.org/10.1016/0165-6147(84)90500-5

    Article  Google Scholar 

  9. Staba EJ (1962) Production of cardiac glycosides by plant tissue cultures I: nutritional requirements in tissue cultures of Digitalis lanata and Digitalis purpurea. J Pharm Sci 51:249–254. https://doi.org/10.1002/jps.2600510314

    Article  CAS  PubMed  Google Scholar 

  10. Büchner SA, Staba EJ (1964) Preliminary chemical examination of digitalis tissue cultures for cardenolides. J Pharm Pharmacol 16:733–737. https://doi.org/10.1111/j.2042-7158.1964.tb07397.x

    Article  Google Scholar 

  11. Kaul B, Wells P, Staba EJ (1967) Production of cardio-active substances by plant tissue cultures and their screening for cardiovascular activity. J Pharm Pharmacol 19:760–766. https://doi.org/10.1111/j.2042-7158.1967.tb08028.x

    Article  CAS  PubMed  Google Scholar 

  12. Furuya T, Kawaguchi K, Hirotani M (1973) Biotransformation of progesterone by suspension cultures of Digitalis purpurea cultured cells. Phytochemistry 12:1621–1626. https://doi.org/10.1016/0031-9422(73)80379-6

    Article  CAS  Google Scholar 

  13. Hirotani M, Furuya T (1975) Metabolism of 5β-pregnane-3,20-dione and 3β-hydroxi-5β-pregnan-20-one by Digitalis suspension cultures. Phytochemistry 14:2601–2606. https://doi.org/10.1016/0031-9422(75)85233-2

    Article  CAS  Google Scholar 

  14. Hirotani M, Furuya T (1980) Biotransformation of digitoxigenin by cell suspension cultures of Digitalis purpurea. Phytochemistry 19:531–534. https://doi.org/10.1016/0031-9422(80)87008-7

    Article  CAS  Google Scholar 

  15. Yoshikawa T, Furuya T (1979) Purification and properties of sterol: UDPG glucosyltransferase in cell culture of Digitalis purpurea. Phytochemistry 18:239–241. https://doi.org/10.1016/0031-9422(79)80061-8

    Article  CAS  Google Scholar 

  16. Corduan G, Spix C (1975) Haploid callus and regeneration of plants from anthers of Digitalis purpurea L. Planta 124:1–11. https://doi.org/10.1007/BF00390062

    Article  CAS  PubMed  Google Scholar 

  17. Nitsch JP, Nitsch C (1969) Haploid plants from pollen grains. Science 163:85–87. https://doi.org/10.1126/science.163.3862.85

    Article  CAS  PubMed  Google Scholar 

  18. Hagimori M, Matsumoto T, Kisaki T (1980) Studies on the production of Digitalis cardenolides by plant tissue culture I. Determination of digitoxin and digoxin contents in first and second passage calli and organ redifferentiating calli of several Digitalis species by radioimmunoassay. Plant Cell Physiol 21:1391–1404. https://doi.org/10.1093/pcp/21.8.1391

    Article  CAS  PubMed  Google Scholar 

  19. Hagimori M, Matsumoto T, Obi Y (1982) Studies on the production of Digitalis cardenolides by plant tissue culture: II. Effect of light and plant growth substances on digitoxin formation by undifferentiated cells and shoot-forming cultures of Digitalis purpurea L. grown in liquid media. Plant Physiol 69:653–656. https://doi.org/10.1104/pp.69.3.653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hagimori M, Matsumoto T, Obi Y (1982) Studies on the production of Digitalis cardenolides by plant tissue culture III. Effects of nutrients on digitoxin formation by shoot-forming cultures of Digitalis purpurea L. grown in liquid media. Plant Cell Physiol 23:1205–1211. https://doi.org/10.1093/oxfordjournals.pcp.a076462

    Article  CAS  Google Scholar 

  21. Hagimori M, Matsumoto T, Mikami Y (1984) Photoautotrophic culture of undifferentiated cells and shoot-forming cultures of Digitalis purpurea L. Plant Cell Physiol 25:1099–1102. https://doi.org/10.1093/oxfordjournals.pcp.a076797

    Article  CAS  Google Scholar 

  22. Hagimori M, Mikami Y, Matsumoto T (1984) Jar Fermenter culture of shoot-forming cultures of Digitalis purpurea L. using a revised medium. Agric Biolog Chem 48:965–970. https://doi.org/10.1271/bbb1961.48.965

    Article  CAS  Google Scholar 

  23. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

    Article  CAS  Google Scholar 

  24. Matsumoto M, Koga S, Shoyama Y, Nishioka I (1987) Phenolic glycoside composition of leaves and callus cultures of Digitalis purpurea. Phytochemistry 26:3225–3227. https://doi.org/10.1016/S0031-9422(00)82474-7

    Article  CAS  Google Scholar 

  25. Čellárová E, Hončariv R (1991) The influence of n-[2-isopentenyl] adenine on shoot differentiation in Digitalis purpurea L. tissue cultures. Acta Biotechnol 11:331–334. https://doi.org/10.1002/abio.370110408

    Article  Google Scholar 

  26. Gärtner DE, Seitz HU (1993) Enzyme activities in cardenolide-accumulating, mixotrophic shoot cultures of Digitalis purpurea L. J Plant Physiol 141:269–275. https://doi.org/10.1016/S0176-1617(11)81733-5

    Article  Google Scholar 

  27. Seitz HU, Gärtner DE (1994) Enzymes in cardenolide-accumulating shoot cultures of Digitalis purpurea L. Plant Cell Tissue Organ Cult 38:337–344. https://doi.org/10.1007/BF00033894

    Article  CAS  Google Scholar 

  28. Gartner DE, Keilholz W, Seitz HU (1994) Purification, characterization and partial peptide microsequencing of progesterone 5β-reductase from shoot cultures of Digitalis purpurea. Eur J Biochem 225:1125–1132. https://doi.org/10.1111/j.1432-1033.1994.1125b.x

    Article  CAS  PubMed  Google Scholar 

  29. Palazón J, Bonfill M, Cusidó RM et al (1995) Effects of auxin and phenobarbital on morphogenesis and production of digitoxin in Digitalis callus. Plant Cell Physiol 36:247–252. https://doi.org/10.1093/oxfordjournals.pcp.a078756

    Article  Google Scholar 

  30. Bonfill M, Palazón J, Cusidó RM et al (1996) Effect of auxin and phenobarbital on the ultrastructure and digitoxin content in Digitalis purpurea tissue culture. Can J Bot 74:378–382. https://doi.org/10.1139/b96-047

    Article  CAS  Google Scholar 

  31. Pérez-Alonso N, Chong-Pérez B, Capote A et al (2014) Agrobacterium tumefaciens-mediated genetic transformation of Digitalis purpurea L. plant. Biotechnol Rep 8:387–397. https://doi.org/10.1007/s11816-014-0329-0

    Article  Google Scholar 

  32. Cacho M, Morán M, Herrera MT, Fernández-Tárrago J (1991) Morphogenesis in leaf, hypocotyl and root explants of Digitalis thapsi L. cultured in vitro. Plant Cell Tissue Organ Cult 25:117–123. https://doi.org/10.1007/BF00042182

    Article  CAS  Google Scholar 

  33. Sales E, Nebauer SG, Arrillaga I, Segura J (2002) Plant hormones and Agrobacterium tumefaciens strain 82.139 induce efficient plant regeneration in the cardenolide-producing plant Digitalis minor. J Plant Physiol 159:9–16. https://doi.org/10.1078/0176-1617-00534

    Article  CAS  Google Scholar 

  34. Sales E, Segura J, Arrillaga I (2003) Agrobacterium tumefaciens-mediated genetic transformation of the cardenolide-producing plant Digitalis minor L. Planta Med. 69: 143–147. https://doi.org/10.1055/s-2003-37709

    Article  CAS  PubMed  Google Scholar 

  35. Kreis W, Haug B, Yücesan B (2015) Somaclonal variation of cardenolide content in Heywood’s foxglove, a source for the antiviral cardenolide glucoevatromonoside, regenerated from permanent shoot culture and callus. In Vitro Cell Dev Biol Plant 51:35–41. https://doi.org/10.1007/s11627-014-9642-0

    Article  CAS  Google Scholar 

  36. Pérez-Alonso N, Martín R, Capote A et al (2018) Efficient direct shoot organogenesis, genetic stability and secondary metabolite production of micropropagated Digitalis purpurea L. Ind Crop Prod 116:259–266. https://doi.org/10.1016/j.indcrop.2018.02.067

    Article  CAS  Google Scholar 

  37. Pérez-Alonso N, Wilken D, Gerth A et al (2009) Cardiotonic glycosides from biomass of Digitalis purpurea L. cultured in temporary immersion systems. Plant Cell Tissue Organ Cult (PCTOC) 99:151–156. https://doi.org/10.1007/s11240-009-9587-x

    Article  CAS  Google Scholar 

  38. Patil JG, Ahire ML, Nitnaware KM et al (2013) In vitro propagation and production of cardiotonic glycosides in shoot cultures of Digitalis purpurea L. by elicitation and precursor feeding. Appl Microbiol Biotechnol 97:2379–2393. https://doi.org/10.1007/s00253-012-4489-y

    Article  CAS  PubMed  Google Scholar 

  39. Li Y, Gao Z, Piao C et al (2014) A stable and efficient Agrobacterium tumefaciens-mediated genetic transformation of the medicinal plant Digitalis purpurea L. Appl Biochem Biotechnol 172:1807–1817. https://doi.org/10.1007/s12010-013-0648-6

    Article  PubMed  Google Scholar 

  40. Verma SK, Gantait S, Jeong BR, Hwang SJ (2018) Enhanced growth and cardenolides production in Digitalis purpurea under the influence of different LED exposures in the plant factory. Sci Rep 8:18009. https://doi.org/10.1038/s41598-018-36113-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Martín R, Chong-Pérez B, Pérez-Alonso N (2015) Organogénesis in vitro en el género Digitalis. Biotecnología Vegetal 15:195–206

    Google Scholar 

  42. Bairu MW, Aremu AO, Van Staden J (2011) Somaclonal variation in plants: causes and detection methods. Plant Growth Regul 63:147–173. https://doi.org/10.1007/s10725-010-9554-x

    Article  CAS  Google Scholar 

  43. Govindaraj M, Vetriventhan M, Srinivasan M (2015) Importance of genetic diversity assessment in crop plants and its recent advances: an overview of its analytical perspectives. Genet Res Int 2015(14). https://doi.org/10.1155/2015/431487

    Article  Google Scholar 

  44. Gavidia I, Del Castillo Agudo L, Pérez-Bermúdez P (1996) Selection and long-term cultures of high-yielding Digitalis obscura plants: RAPD markers for analysis of genetic stability. Plant Sci 121:197–205. https://doi.org/10.1016/S0168-9452(96)04510-4

    Article  CAS  Google Scholar 

  45. Sales E, Nebauer SG, Arrillaga I, Segura J (2001) Cryopreservation of Digitalis obscura selected genotypes by encapsulation-dehydration. Planta Med 67:833–838. https://doi.org/10.1055/s-2001-18861

    Article  CAS  PubMed  Google Scholar 

  46. Nebauer SG, Del Castillo-Agudo L, Segura J (2000) An assessment of genetic relationships within the genus Digitalis based on PCR-generated RAPD markers. Theor Appl Genet 100:1209–1216. https://doi.org/10.1007/s001220051426

    Article  CAS  Google Scholar 

  47. Sales E, Nebauer SG, Mus M, Segura J (2001) Population genetic study in the Balearic endemic plant species Digitalis minor (Scrophulariaceae) using RAPD markers. Am J Bot 88:1750–1759. https://doi.org/10.2307/3558349

    Article  CAS  PubMed  Google Scholar 

  48. Boronnikova SV, Kokaeva ZG, Gostimskiǐ SA et al (2007) Analysis of DNA polymorphism in a relict Uralian species, yellow foxglove (Digitalis grandiflora Mill.), using RAPD and ISSR markers. Genetika 43:653–659. https://doi.org/10.1134/S1022795407050080

    Article  CAS  PubMed  Google Scholar 

  49. Hodel RGJ, Segovia-Salcedo MC, Landis JB et al (2016) The report of my death was an exaggeration: a review for researchers using microsatellites in the 21st century. Appl Plant Sci 4:1600025. https://doi.org/10.3732/apps.1600025

    Article  Google Scholar 

  50. Pérez-Alonso N, Chong-Pérez B, Capote A et al (2016) Protocols for in vitro cultures and secondary metabolite analysis of aromatic and medicinal plants, 2nd edn. Springer, New York

    Google Scholar 

  51. Pérez-Alonso NL, Arana LF, Capote PA et al (2014) Estimulación de cardenólidos en brotes de Digitalis purpurea L. cultivados in vitro mediante elicitores. Rev Colomb Biotecnol 16:51–61

    Article  Google Scholar 

  52. Sales E, Muñoz-Bertomeu J, Arrillaga I, Segura J (2007) Enhancement of Cardenolide and Phytosterol levels by expression of an N-terminally truncated 3-Hydroxy-3-methylglutaryl CoA Reductase in transgenic Digitalis minor. Planta Med 73:605–610. https://doi.org/10.1055/s-2007-967199

    Article  CAS  PubMed  Google Scholar 

  53. Kairuz E, Pérez-Alonso N, Chong-pérez B (2018) Estrategias para la selección in vitro de plantas transgénicas de Digitalis L. Biotecnologia Vegetal 18(2):63–80

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Borys Chong-Pérez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kairuz, E., Pérez-Alonso, N., Angenon, G., Jiménez, E., Chong-Pérez, B. (2020). Shoot Organogenesis, Genetic Stability, and Secondary Metabolite Production of Micropropagated Digitalis purpurea. In: Ramawat, K., Ekiert, H., Goyal, S. (eds) Plant Cell and Tissue Differentiation and Secondary Metabolites. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-11253-0_16-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11253-0_16-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11253-0

  • Online ISBN: 978-3-030-11253-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics